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Abstract

Managing multiple versions of XML documents repre-
sents an important problem for many traditional applica-
tions, such as software configuration control, as well as new
ones, such as link permanence of web documents. Research
on managing multiversion XML documents seeks to provide
efficient and robust techniques for storing, retrieving and
querying such documents. In this paper, we present a novel
approach to version management that achieves these ob-
jectives by a scheme based on Durable Node Numbers and
timestamps for the elements of XML documents. We first
present efficient storage and retrieval techniques for mul-
tiversion documents. Then, we explore the indexing and
clustering strategies needed to assure efficient support for
complex queries on content and on document evolution.

1 Introduction

The management of multiple versions of XML docu-
ments finds important applications [21] and poses interest-
ing technical challenges. Indeed, the problem is important
for application domains, such as software configuration and
cooperative work, that have traditionally relied on version
management. As these applications migrate to a web-based
environment, they are increasingly using XML for repre-
senting and exchanging information—often seeking stan-
dard vendor-supported tools and environments for process-
ing and exchanging their XML documents.

Many new applications of versioning are also emerging
because of the web; a particularly important and pervasive
one is assuring link permanence for web documents. Any
URL becoming invalid causes serious problems for all doc-
uments referring to it—a problem that is particularly severe
for search engines that risk directing millions of users to
pages that no longer exist. Replacing the old version with
a new one, at the same location, does not cure the prob-
lem completely, since the new version might no longer con-
tain the keywords used in the search. The ideal solution
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is a version management system supporting multiple ver-
sions of the same document, while avoiding duplicate stor-
age of their shared segments. For this reason, professionally
managed sites and content providers will have to use docu-
ment versioning systems; frequently, web service providers
will also support searches and queries on their reposito-
ries of multiversion documents. Specialty warehouses and
archives that monitor and collect content from websites of
interest will also rely on versioning to preserve informa-
tion, track the history of downloaded documents, and sup-
port queries on these documents and their history [11].

Current document management systems used in software
configuration support and other applications rely on two
versioning schemes, RCS [18] and SCCS [16], discussed
next. The RCS scheme is edit-based: edit scripts are used
to represent document changes and to reconstruct different
versions incrementally. Thus RCS [18] stores the most cur-
rent version intact while previous versions are stored as re-
verse edit scripts. These scripts describe how to go back-
ward in the document’s development history. For any ver-
sion except the current one, extra processing is needed to
apply the reverse editing script to generate the old version.
Rather than appending version differences at the end, SCCS
[16] inserts editing operations in the original (source code)
document and associates a pair of timestamps (version ids)
with each document segment to specify its lifespan. Ver-
sions are retrieved from an SCCS file via scanning through
the file and retrieving valid segments based on their times-
tamps.

Various techniques for versioning have also been pro-
posed by database researchers who have focused on prob-
lems such as transaction-time management of temporal
databases [13], support for versions of CAD artifacts in
object-oriented databases [15] and, more recently, change
management for semistructured information [3].

In the past, the approaches to versioning taken by
database systems and document management systems have
often been different, because of the different requirements
facing the two application areas. In fact:



e Database systems are designed to support complex
queries, while document management systems are not,
and

e Databases assume that the order of the objects is not
significant—Dbut the lexicographical order of the ob-
jects in a document is essential to its reconstruction.

This state of affairs has been changed dramatically by
XML that merges applications, requirements and enabling
technology from the two areas. Indeed the differences men-
tioned above are fast disappearing since:

e support for complex queries on XML documents is
critical. This is demonstrated by the amount of cur-
rent research on this topic [17, 22] and the emergence
of powerful XML query languages [2], and

e the structure and position of their objects (i.e., its el-
ements) is essential for XML documents and must be
preserved for browsing and various processing tasks
performed on the web. Furthermore, queries on XML
documents might make use of this information.

In [4, 7], we extended the edit-based representation of
RCS with an efficient clustering scheme (the usefulness-
based page management) that clusters together data valid
for the same version. This approach is very effective for re-
trieval of complete versions but does not support well more
complex queries on XML documents. Preorder traversal
numbers are used to identify the elements of the XML doc-
ument viewed as an ordered tree. While easy to compute,
these numbers do not provide for durable referencing by ex-
ternal indices since insertions and deletions in the document
change the preorder numbers of all the elements that follow.
However, numbering schemes have been recently proposed
for XML documents, that are durable with respect to docu-
ment changes [14, 10].

In this paper we propose a new document versioning
scheme (SPaR) that, while preserving the page management
approach of [4, 7], it does away with the edit-based repre-
sentation. Our scheme uses timestamping and durable node
numbers to preserve the structure and the history of the doc-
ument during its evolution. Furthermore, the new scheme
is conducive to efficient support of both version and con-
tent queries, using multiversion indexing techniques. The
rest of the paper is organized as follows. The next section
summarizes previous work while Section 3 introduces the
SPaR versioning scheme. Full version reconstruction under
the new scheme is described in Section 4 and more complex
queries are discussed in Section 5. Preliminary performance
results are presented in Section 6 while conclusions and fur-
ther open problems appear in Section 7.

2 Background

A new document version (V1) is established by apply-
ing a number of changes (object insertions, deletions or up-

dates) to the current version (V;). In a typical RCS scheme,
these changes are stored in a (forward or reverse) edit script.
Such a script could be generated directly from the edit com-
mands of a structured editor, if one was used to revise the
XML document. In most situations, however, the script will
be obtained by applying, to the pair (V;, V1), a structured
diff package [9].

For forward editing scripts, the RCS scheme stores the
script and the data together is successive pages. Thus, to
reconstruct version (V;) all pages stored by successive ver-
sions up to version (V) must be retrieved. The SCSS tries
to improve the situation by keeping an index that identifies
the pages used by each version. However, as the document
evolves, document objects valid for a given version can be
dispersed in various disk pages. Since a given page may
contain very few of the document objects for the requested
version, many more pages must be accessed to reconstruct
a version.

To solve these problems, in [4] we introduced an edit-
based versioning scheme that (i) separates the actual doc-
ument data from the edit script, and (ii) uses a usefulness-
based clustering scheme for page management. Because of
(i) the script is rather small and can be easily accessed. The
usefulness-based clustering is similar to a technique used in
transaction-time databases [12, 19, 1] for clustering tempo-
ral data.

Page Usefulness. Consider the actual document objects
and their organization in disk pages. For simplicity, as-
sume the only changes between document versions are ob-
ject additions and deletions (other document changes are
discussed later). As objects are added in the document, they
are stored sequentially in pages. Object deletions are not
physical but logical; the objects remain in the pages where
they were recorded, but the script is updated marking such
objects as deleted. As the document evolution proceeds,
various pages will contain many “deleted” objects and few,
if any, valid objects for the current version. Such pages, will
provide few objects for reconstructing the current version.
As a result, a version reconstruction algorithm will have to
access many pages. Ideally we would like to cluster the ob-
jects valid at a given version in few, useful pages. We define
the usefulness of a full page P, for a given version V, as the
percentage of the page that corresponds to valid objects for
V.

For example, assume that at version V7, a document con-
sists of five objects O1, Oz, O3, O4 and Oy whose records
are stored in data page P. Let the size of these objects be
30%, 10%, 20%, 25% and 15% of the page size, respec-
tively. Consider the following evolving history for this doc-
ument: At version V5, O, is deleted; at version V3, O3 is
deleted, and at version Vj, object Os is deleted. Hence page
P is 100% useful for version V;. Its usefulness falls to 90%



for version Va, since object O, is deleted at V5. Similarly,
P is 70% useful for version V3. For version V4, P is only
55% useful.

Clearly, as new versions are created, the usefulness of
existing pages for the current version diminishes. We would
like to maintain a minimum page usefulness, U,,;,, over all
versions. Thus, when a page’s usefulness falls below U,
for the current version, all the records that are still valid in
this page are copied (i.e., salvaged) to another page (while
preserving their order). The value of U,,;, is set between
0 and 1 and represents the main performance parameter of
our scheme. For instance, if U,,;, = 60%, then page P
falls below this threshold of usefulness at Version 4; at this
point objects O1, and O4 are copied to a new page.

We note that the above page usefulness definition holds
for full pages. A page is called an acceptor for as long as
document objects are stored in this page. While being the
acceptor (and thus not yet full), a page is by definition use-
ful. This is needed since an acceptor page may not be full
but can still contain elements alive for the current version.
Note that there is always only one acceptor page. After a
page becomes full (and stops being the acceptor) it remains
useful only as long as it contains enough alive elements (the
Umin parameter).

Reconstructing a given version is then reduced to retriev-
ing only the useful pages for this version. Various schemes
can be used to assure that only useful pages are retrieved
when reconstructing a version. The UBCC scheme de-
scribed in [4] uses the edit script to determine the useful
pages for each version—along with the order in which these
pages must be accessed to reconstruct the order of the doc-
ument. Techniques to keep the edit script within a small
percentage of the actual data are presented in [5].

While the UBCC schema is effective at the storage level,
it is not effective with complex queries and the transport
level (i.e., the web-based exchange of documents). A
reference-based scheme was thus introduced in [7] which
facilitates the exchange of multiversion documents by rep-
resenting the whole history of a document as yet another
XML document. The reference-based scheme is also con-
ducive to efficient support for some queries but not all; in
particular, it does not support the path-expression queries
discussed next.

A path-expression query is described by a regular ex-
pression on the document tree. For example, the query
‘Find all figures in chapter 10 of the document’ is supported
in XML query languages [2] by a special path-expression
notation: chapter[10]/ x /figure. Figures may be any-
where in the subtree rooted in the chapter[10] node of the
document. To answer such queries efficiently (i.e., without
fully traversing document subtrees), a scheme is needed to
quickly identify ancestor-descendant relationships between
document elements. A numbering scheme is proposed in

[14], whereby the number assigned to an element remains
the same even though other elements are added or deleted
from the document. This is achieved by sorting the nodes
as in the preorder traversal, but leaving space between them
to make room for future insertions.

Such a durable numbering scheme is advantageous since
it automatically maintains the document tree structure. One
has to maintain an ordered list with the node durable num-
bers. Moreover it allows indexing various document ele-
ments in a persistent way. An interesting open problem
is whether an efficient versioning scheme exists for doc-
uments that use durable numbers. In the next section we
propose such a scheme and discuss how complex queries
involving path expressions over versions can be addressed.

3 TheSPaR Versioning Scheme

The new indexing scheme relies on assigning durable
structure-encoding ID numbers to the elements of the doc-
ument [14]. An XML document is viewed as an ordered
tree, where the tree nodes corresponds to document ele-
ments (and the two terms will be used as synonyms). A
preorder traversal number can then identify uniquely the el-
ements of the XML tree. While this is easy to compute, it
does not provide a durable reference for external indexes
and other objects that need to point to the document ele-
ment, since insertions and deletions normally change the
preorder numbers of the document elements which follow.
Instead, we need durable node IDs that can be used as sta-
ble references in indexing the elements and will also allow
the decomposition of the documents in several linked files
[14]. Furthermore, these durable IDs must also describe
the position of the element in the original document— a
requirement not typically found for IDs in object-oriented
databases.

3.1 TheNumbering Scheme

The SPaR (Sparse Preorder and Range) numbering
scheme consists of (1) a Durable Node Number( DN N)
and (2) a Range. The DNN establishes the same total order
on the elements of the document as the preorder traversal,
but, rather than using consecutive integers, leaves as much
an interval between nodes as possible; thus DNN is a sparse
numbering scheme that preserves the lexicographical order
of the document elements.

The second element in the SPaR scheme is the Range.
This was proposed in [14] as a mechanism for supporting
efficiently path expression queries. For instance, a docu-
ment might have chapter elements and figure elements con-
tained in such chapters. Thus, a typical query might be ‘Re-
trieve all titles under chapter elements’. Recently proposed
XML query languages [2] provide a special path expression
to support these queries, as follows:

doc/chapter/ * /figure



Let dnn(E) and range(E) denote the DNN and the
range of a given element E; then a node B is descendant
of anode A ! iff:

dnn(A) < dnn(B) < dnn(A) + range(A).

Therefore, the interval [dnn(X), dnn(X) + range(X)] is
associated with element X. When the elements in the doc-
ument are updated, their SPaR numbers remain unchanged.
When new elements are inserted, they are assigned a DNN
and a range that do not interfere with the SPaR of their
neighbors—actually, we want to maintain sparsity by keep-
ing the intervals of nearby nodes as far apart as possible.

Consider two consecutive document elements X and Z
where dnn(X) < dnn(Z). Then element Z can either be
(i) the first child of X, (ii) the next sibling of X, or (iii) the
next sibling of an element K who is an ancestor of X. If
a new element Y is inserted between elements X and Z,
it can similarly be the first child of X, the next sibling of
X or the next sibling of one of X s ancestors. For each of
these three cases, the location of Z creates three subcases,
for a total of nine possibilities. For simplicity we discuss
the insertion of Y as the first child of X and consider the
possible locations for element Z (the other cases are treated
similarly). Then we have that:

1. Z becomes the first child of Y. In this case the follow-
ing conditions should hold: dnn(X) < dnn(Y) <
dnn(Z) and dnn(Z) + range(Z) < dnn(Y) +
range(Y) < dnn(X) + range(X).

2. Z becomes the next sibling of Y under X. The inter-
val of new element Y is inserted in the middle of the
empty interval between dnn(X) and dnn(Z) (thus,
the conditions dnn(X) < dnn(Y) and dnn(Y) +
range(Y) < dnn(Z) must hold).

3. Z becomes the next sibling of an ancestor of Y. Then
element Y is “covered” by element X which implies
that: dnn(X) < dnn(Y") and dnn(Y) + range(Y’) <
dnn(X) + range(X).

Our insertion scheme assumes that an empty interval is
at hand for every new element being inserted. When in-
tegers are used, range overflow may occur occasionally,
thus, SPaR reassignments might be needed to assure this
property. A better solution is to use floating point num-
bers with variable length, where additional decimal dig-
its can be added as needed for new insertions. For in-
stance, let elements X and Z be siblings, with: dnn(X) +
range(X) = .22 and dnn(Z) = .23. If element Y is to be
inserted between X and Z, we can set dnn(Y) = .222 and
range(Y’) = .006 since:

dnn(X) + range(X) = .22 < dnn(Y) = 222 <

LIf the preorder traversal number is used as DNN, then range(A) is
equal to the number of descendants of A.
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Figure 1. An XML document version repre-
sented in the SPaR model.

dnn(Y) + range(Y) = .228 < dnn(Z) = .23

Nevertheless, for simplicity of exposition, in the following
examples we use integer SPaRs.

Figure 1 shows a sample XML document with its SPaR
values. The root element is assigned range [1,2100]. That
range is split into five sub-ranges — [1,199], [200,1200],
[1201,1299], [1300,2000], and [2001,2100] for its two di-
rect child elements, CH A and CH C, and three insertion
points, before CH A, after CH A and before CH C and after
CH C. The range assigned to each of these chapter element
continues to be split and assigned to their direct child ele-
ments until leaf elements are met.

The SPaR numbering scheme makes it possible to use
timestamps to manage changes in both the content and the
structure of documents. In the next section, we describe
a new model which uses SPaR values and timestamps to
manage XML document versions.

3.2 TheVersion Model

The record of each XML document element is extended
with the element’s SPaR and the element’s lifespan. The
lifespan is described by two timestamps (Vsiart, Vend)—
where Viiare IS the version where the element is created
and V,,4 is the version where the element is deleted. An
element is called “alive” for all versions in its lifespan. If
an element is inserted in the current version, its V,,,4 value
is yet unknown and is represented by variable now. This
variable corresponds to the ever increasing current version
(as per the standard notion from temporal databases [8]).

Adding a New Version The elements of the initial ver-
sion are stored in new data pages by their document (DNN)
order. We then assume that successive versions are de-
scribed with respect to the last version by an edit script
generated by the structured XML editor used to generate
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Figure 2. The Repository for Version 2.

the new version, or otherwise by a package that computes
the structured diff between the two documents. Then, the
following operations are performed when in version Vi we
delete, insert or update an element:

e DELETE — Update the V,,; timestamp of the
deleted element and all its descendants as expired at
Version V. Free the SPaR range of deleted elements
for reuse.

e INSERT — Create a record for the new element and
initialize its lifespan to (Vv, now). Assign an unused
range to the new element based on the weighted range
allocation algorithm. The record is stored in the cur-
rent acceptor page.

e UPDATE — Update the V., 4 timestamp of the up-
dated element as expired at Version V. Create a new
record and initialize its lifespan to (Viv,now). The
new record should keep the same SPaR values (since
the position of the updated element in the document
did not change).

Additional operations, such as MOV E elements and
COPY elements can be reduced to the above.

Usefulness-Based Copying. Whenever a page falls be-
low the U,,;n usefulness level all its alive elements are
copied to a new page, in the order established by their SPaR
values. All copied elements preserve their SPaR values, but
are given a new lifespan, as if they were updated—in fact,
copying can be treated as an update where the new SPaR
values are the same as the old ones. Note that the delta
elements for each new version (i.e., the newly inserted ele-
ments as well as the copied elements due to usefulness) are
stored in pages by increasing DNN values.

Example. Elements of the initial version (Version 1), are
stored with their SPaR range and lifespan in pages P1, P2
and P3 as shown in Figure 1. We have assumed that the sizes
of document objects, BOOK, CH A, attribute AUTHOR,

SEC E, FIGURE B, SEC F, PCDATA of SEC F, FIGURE
H, CH C, SEC I, FIGURE J, and PCDATA of CH C are
50%, 25%, 10%, 15%, 5%, 30%, 35%, 30%, 5%, 10%,
5%, and 80% of a data page size, respectively. Assume that
we want to maintain a minimum page usefulness of 70%.
Then pages P1, P2 and P3 are well above the threshold for
Version 1.

Assume that \Version 2 is created by the following
changes:

(delete AUTHOR), (update PCDATA of SEC F), (delete FIGURE
H), (insert CH K after CH A), (delete PCDATA of CH C), (insert
FCM)

Let the sizes of the new PCDATA of SEC F, CH K and
SEC M be 20%, 45%, and 50% of a data page size, respec-
tively. Hence, the logical order of objects in version 2 are:
BOOK, CH A, SEC E, FIGURE B, SEC F, new PCDATA
of SEC F, CH K, CH C, SEC I, FIGURE J, and SEC M.
After applying these changes, Page P1 becomes 90% useful
(AUTHOR is deleted for version 2), page P2 becomes 35%
useful (since the old PCDATA for SEC F and FIGURE H
are not part of Version 2) and page P3 becomes 20% use-
ful because of the deletion of the PCDATA of CH C. Then,
pages P2 and P3 are useless for the second version and, thus,
valid objects in P2 and P3 are copied into a new data page.
Copied objects include FIGURE B, SEC F, CH C, SEC I,
and FIGURE J.

After determining which objects need copying, the
copied objects are inserted into new pages together with
new objects (new PCDATA of SEC F, CH K, and SEC M)
in their logical DNN order as shown in Figure 2.

4 Full Version Reconstruction

Reconstructing a given document version consists of
three tasks: (1) identifying the useful pages for the given
version, (2) ordering the elements according to their SPaR
number, and (3) reconstructing the ordered-tree structure of
the document.

Identifying the Useful Pages. The notion of usefulness
associates with each page a usefulness interval. This in-
terval has also the form of (Viiart, Vend), Where Vigapt 1S
the version when the page became acceptor and V4 is
the version when the page became non-useful. As with
the element records, a page usefulness interval is initiated
as (Vstart, now) and later updated at V,,,4. ldentifying the
data pages that were useful in V; is then equivalent to find-
ing which pages have intervals that contain V;. This prob-
lem has been solved in temporal databases with an access
method called the Snapshot Index [19]. This approach uses
a doubly-linked list L and an array A as described next.
List L is initiated with a special record S which always
remains at the top of the list and is never removed. Let Ipr
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Figure 3. Snapshot Index.

be a pointer pointing to the end of L. Initially Ipr points to
S. When page p becomes acceptor at version V; a record
of the form (p, (V;, now)) is added at the end of L and Ipr
points to this new record. Similarly, records are added at
the end of the list for each acceptor page. When page p be-
comes non-useful, three actions are taken: (i) the usefulness
interval of p’s record is updated, (ii) the record is taken off
the list and (iii) it is assigned as the next child under the
record that was before p in the list.

The above procedure creates a structure that has the form
of trees rooted in records that are still located in list L
(the access forest). The access forest has the following
properties ([19]): (1) For each version, list L contains the
useful pages in this version. (2) In each tree in the ac-
cess forest, the Vy;4,¢ fields are in preorder. (3) The use-
fulness interval of a parent record contains all the useful-
ness intervals of the records in its subtree. (4) The intervals
(Vi,V;) and (Vi41, Vj41) of two consecutive records under
the same parent may have one of the following orderings:
Vi <Vj < Vigr < Viga, 00 V; < Vigr < Vj < Vi,
Figure 3 presents the usefulness intervals for various pages
and the corresponding access forest created through list L.
The current version is version 10. Since S was in the list
before any other record, its interval is (0, now). Using these
properties, the pages useful at a given version can be easily
identified.

The array A stores, for each version, a pointer to the
record of the last acceptor page used by this version. That
is, array records have the form: (version — id, pointer).
Array A is incrementally updated and is easily maintained
(using for example a B+-tree on the version numbers).

Given a version V;, we identify from array A the record,
say z;, in the access forest where the search starts. Since
x; corresponds to an acceptor page, it was useful for ver-
sion V;. Then all the records in the path from z; to a root
(a record that is still in L) correspond also to useful pages
in version V;. For each useful record, one needs to check

whether its left sibling and its rightmost child records are
useful (i.e., they identify useful pages). The search proceeds
similarly and stops when non-useful records are reached.
For example, to find the useful pages at version 7 we check
the records of E, D, C, S and A. Note that this algorithm
checks at most two non-useful records for each useful one.
If there were wu; useful pages in version V;, the algorithm
identifies them in O(u;) steps through the access forest.
Searching through array A needs an additional logarithmic
effort (on the number of versions).

Ordering the Elements. The useful pages contain the
alive element records for version V;. To order these records
(task 2) a straightforward approach is to perform a sort over
all useful pages. This however may require reading various
useful pages many times, especially when not all of them
can fit in main memory. A better solution, described be-
low, uses the fact that the delta records for each version,
and the pages containing these records are already stored
by increasing SPaR DNN numbers as shown in Figure 2.

Important for each page is to retain the version(s) that
wrote (added) elements to it. For simplicity assume that
each page is written by a single version (the page’s creator
version). In this case, the creator version of page p is the
Vistart OF the p’s usefulness interval. Since a given version
may write many pages, p also retains the position it had
among all pages written by p’s creator version. Let V(%)
be the set of creator versions for the useful pages in ver-
sion V;. For each version in V. (¢) we build an ordered list
with the subset of the u; pages this version wrote. To order
the alive elements in version V;, we simply retrieve the first
page from each list and start ordering the elements in a sort-
merge approach. Assuming that there is enough memory to
hold one page per list, this scheme sorts all alive elements
in V; by reading each useful page only once. Otherwise,
standard external sorting techniques can be used.

Reconstructing the Document Structure. To recon-
struct the ordered-tree structure from an ordered list of el-
ements (task 3) we need to determine two relationships
among elements: 1) parent-child relation, and 2) sibling or-
der. This can be easily done by using the SPaR ranges and
a backward ancestor stack. We use the stack to record
the backward ancestor list. If the next element is a child of
the current one this is pushed into the stack; otherwise, the
stack is used to locate its parent element, by comparing its
DNN with the SPaR range of the elements in the stack. The
algorithm is shown in Figure 4.

5 Support for Complex Queries

In addition to whole version reconstruction, other
queries are important. For example, from version V;, we
may just want to retrieve the abstract, or the conclusion sec-
tion, or the document segment from the fifth chapter till the



Ver si onReconst ructi on( SORTED LI ST) {
Initialize ANCESTOR STACK as enpty;
Assign the first el ement of SORTED LI ST as ROOT
and renpve it from SORTED LI ST;
Push ROOT into ANCESTOR STACK;
current_node = ROCT;
For (each element, E, in SORTED LI ST fromthe begi nning)

if (SPaR(current_node) contains SPaR(E))
Insert E as the first direct child of current_node;
Push E into the ANCESTOR_STACK;
el se {
do {
Pop the top el ement, A, from ANCESTOR STACK and
conpare SPaR(A) with SPaR(E);
if (SPaR(A) contains SPaR(E)) {
Insert E as the next direct child of A
Push A back into ANCESTOR STACK;
Push E into the path_stack

}
} while (the parent of A is found);

Set E as the current_node for the next run;

Figure 4. Version reconstruction algorithm.

tenth chapter. Similarly, we may need the second through
the sixth subsections under the fourth section of chapter
ten in version V;. A complete path in the document tree
is provided in all these queries. Yet, many other useful
queries use a regular expression to specify a pattern for the
path, rather than giving the complete path. For example, an
expression such as version[i]/chapter[10]/ x /figure
might be used to find all figures in chapter 10 of version V;
(or, symmetrically, the chapter that contains a given figure
in version V;). To support these queries efficiently, addi-
tional indices are needed, as discussed next. Since we as-
sumed that the actual element records are organized in data
pages using the page usefulness clustering scheme, these
new indices will be dense: for each indexed element, a
pointer to the element’s position in the data pages is main-
tained. (In contrast, the Snapshot Index is a sparse index.)

Main Document Index. Consider a B+-tree indexing the
element DNNs in the first version of a document. Each
element is stored in this B+-tree as a record that contains
the element ID, tag, SPaR DNN (and range) as well as a
pointer to the data page that contains the actual data of
this element. Such B+-tree facilitates interesting queries
on the document’s first version. For example, if we know
the SPaR range of chapter10 we can find all document el-
ements in this chapter (a range search). As the document
evolves through versions, new elements are added, updated
or deleted from this list. These changes can update the
above B+-tree using the element DNNSs. In order to answer
SPaR range queries over a multiversion document (for ex-
ample: *find the elements in version V; with DNNs in range
(z,y)’), we need to maintain the multiple versions of this
B+-tree.

Various multiversion B+-tree structures have been pro-
posed [12, 1, 20]. Here we use the Multiversion B-tree
(MVBT) [1] which has optimal asymptotic behavior and its

code was readily available. The MVBT has the form of a
directed graph with multiple roots. Associated with each
root is a consecutive version interval. A root provides ac-
cess to the portion of the structure valid for the root’s ver-
sion interval. While conceptually the MVBT maintains all
versions of a given B+-tree, it does not store snapshots of
these versions, since this would require large space. In-
stead, portions of the tree that remain unchanged through
versions are shared between many versions. The MVBT
uses also a notion of page usefulness: records that are alive
for many versions are copied when a page gets below a use-
fulness threshold. However, the page splits are more elabo-
rate than in the Snapshot Index, since the MVBT maintains
also the order among all elements alive in a given version.
As a result, each new page in the MVBT needs to allocate
some free space for future elements that may be added in
this page.

For a B+-tree evolution with n. changes, the MVBT uses
O(n/B) space. Updating an element takes O(loggn;/B),
where n; is the number of elements in the current version.
A query requesting the elements in range R from version
V; is answered in O(loggn/B + r/B) 1/0’s, where r is the
number of elements version V; had in range R.

We use the MVBT to index all element records of the
document; each such record points to the page that contains
the element’s data. In the rest we will refer to this index
as all_MVBT. The index assumes that the SPaR DNNs are
available. However, SPaR numbers are invisible to the user
who expresses queries in terms of document tag names (ab-
stract, chapter, etc.). Therefore, given a tag and a version
number, the DNN of this tag in the given version must be
identified.

We classify the document tags as either list tags or indi-
vidual tags. Individual tags can only occur a small number
of times in the document—typically only once, such as the
abstract and the conclusion section. In some cases, individ-
ual tags occur a few times in a document (e.g., we might
have an address tag for both sender and receiver). How-
ever, list tags, such as chapters, sections (and all the tags
under them), can occur an unlimited number of times in a
document. For individual tags, the SPaR number informa-
tion can be easily maintained and accessed. Consider for
example a query asking for the abstract in version 10. As-
sume that under the abstract tag, the document contains a
subtree that maintains the abstract text, and a list of index
terms. While the abstract SPaR remained unchanged, the
subtree under the abstract tag may have changed. That is,
the abstract text and the index terms could have changed
between versions. To answer the above query we simply
perform a range search (using the abstract’s SPaR range) on
the all_MVBT for version 10.
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Figure 5. Dense element index structure.

Element Indices. Determining the SPaR numbers of list
tags is more complex. This is because a new tag added in
the list affects the position of all tags that follow it. For
example, adding a new chapter after the first chapter in a
document, makes the previously second, third,.., chapters to
become third, fourth etc. Hence to identify the DNN of the
tenth chapter in version 20, we need to maintain the ordered
list of chapter DNNs. Such a list can also be maintained
using a MVBT that indexes the SPaR DNN of chapter tags
(the ch_MVBT). We also maintain one MVBT per list tag
in the document (for example, sec_MVBT indexes all doc-
ument sections while fig_MVBT indexes all figures.) The
dense index architecture is illustrated in Figure 5. At the
bottom level, the data pages organized by the usefulness
page clustering are shown (the structures of the Snapshot
Index is not shown). Here each page has a usefulness in-
terval and contains three element records. Each record has
its tag, SPaR range, lifespan and data (not shown). Records
in MVBT leaf pages contain pointers to the data pages. An
MVBT leaf page contains more records than a data page
since the latter stores the element data as well.

Below we provide various query examples and describe
how to use the various indices in answering them efficiently.
This list is a representative of the various queries that can be
easily addressed through our index organization.

Structural Projection —  Project the part of the document
between the second and the fifth chapters in version 20. To

answer this query we first access the ch_.MVBT and retrieve
the ordered list of chapter DNNs as it was in version 20.
From this list we identify the SPaR range between chapters
2 and 5. With this SPaR range we perform a range search
for version 20 in the all_ MVBT. This search will identify
all elements with DNNs inside this range. From the SPaR
properties, all such elements are between chapters 2 and 5.

Regular Path Expression— Find all sections under the
third chapter in version 10. We first identify the SPaR range
of the third chapter in version 10 from ch_MVBT. With this
SPaR range we perform a range search in the sec_MVBT for
version 10. Only the sections under the third chapter will
have SPaR numbers in the given range.

As another example, consider the query: find the chap-
ter that contains figure 10 in version 5. To answer this
query we first identify the DNN of the tenth figure in ver-
sion 5 from fig_MVBT. Using this SPaR we perform a search
in ch_.MVBT for version 5. According to the properties
of the SPaR numbering scheme, we find the chapter with
the largest SPaR among the chapters before the figure, and
check that its SPaR range contains that of the figure.

Parent-Child Expression— For version 10, retrieve all ti-
tles directly under chapter elements. Using the ch_.MVBT
we identify the chapter elements alive in version 10. For
each chapter, its SPaR range value is used to locate all title
elements under it in version 10 through the title_.MVBT.
Then, the level number of located titles are compared with



that of the chapter element to determine their parent-child
relationship.

Version Selection—  Retrieve versions between 10 and 15.
The full version reconstruction algorithm can be used for
version-ranges. The algorithm will start from version 15
and work backwards until version 10.

Query on Diff— Retrieve the difference between versions
Var and V4. Basically, the difference is the union of in-
serted elements and deleted elements. Inserted elements are
those elements whose creation time is version Vary; and
deleted elements are those elements whose lifespan ends by
Var. Version queries with predicates on the element lifes-
pans can be used to retrieve these two types of elements.

6 Performance Results

We report preliminary experimental results on the use of
the usefulness-based clustering. We used a document evo-
lution with 100 versions. For simplicity, in this evolution
each version has approximately the same size (about 100
pages). Each version changes about 20% from the previ-
ous version; half of the changes are insertions and the other
half are deletions. Changes are uniformly and randomly dis-
tributed among data pages. The U,,;, is set to 50% while
the page size is 4K bytes. We compare the SPaR data orga-
nization, the UBCC edit-script approach [4], the RCS and
an extreme approach that stores the full copy of each ver-
sion. The SPaR and UBCC both use the usefulness-based
clustering. The difference is that UBCC relies on the edit
script for identifying the useful pages while the SPaR uses
timestamps and the access forest. For each method we ob-
served the full version retrieval cost and the space consump-
tion (Figure 6).

The retrieval cost is measured as the number of page
1/0’s needed to reconstruct a full version. Obviously, the
approach that stores complete versions has the minimum
version retrieval cost, but also the maximum storage cost,
since each version is stored in its entirety on disk. Symmet-
rically, the RCS scheme requires the least storage (no use-
fulness based copying is performed) but has the largest aver-
age retrieval cost. The usefulness-based schemes (SPaR and
UBCC) trade-off between these two extremes. The aver-
age retrieval cost for the usefulness-based schemes remains
linear in the size of the reconstructed version by a coeffi-
cient that is controlled by U,,;,. Since in this experiment,
the average version size was kept to about 100 pages and
Unmin = 50% the retrieval cost is approximately parallel to
the horizontal axis (between 130 and 150 pages).

When comparing SPaR and UBCC, the SPaR scheme
provides some improvement in retrieval time (about 10%)
and more improvement in storage. The main reason is that
the SPaR scheme does not need the edit script. Since the ac-
cess forest uses one record per data page used, its structure

is rather small when compared with the edit script. Never-
theless, the UBCC scheme is more robust since it does not
need DNNSs.

7 Conclusions

Versioning schemes for XML documents play an impor-
tant role in the management of web based information. Tra-
ditional text versioning techniques such as RCS and SCCS
are not efficient for XML document versioning. Hence there
is a need for new and improved techniques that are more ef-
fective at the physical level and the logical level.

For the physical level, we have used a page clustering
technique from temporal databases to trade off storage effi-
ciency with retrieval efficiency and optimize the overall per-
formance. Then we have concentrated on support for com-
plex queries including queries on version content, queries
involving the structure of the XML document (e.g., path ex-
pression queries), and temporal queries on the evolution of
the document. We used a durable node numbering scheme
that combined with indexing techniques, such as multiver-
sion B-trees, can support well these three kinds of queries.
Other interesting problems, such as the optimization of
queries that combine these three different kinds of quali-
fications, performance comparison of alternative versioning
schemes, and generalization of XML query languages to de-
termine document evolution, will be the topic of future in-
vestigation. Indeed the problem of managing and querying
multiversion XML documents presents many interesting re-
search challenges for databases and web-based information
systems of the future.
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