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Abstract — In this paper we introduce the development of a framework for testing
safety-critical embedded systems based on the concepts of model-based testing. In
model-based testing the test cases are derived from a model of the system under test.
In our approach the model is an automaton model that is automatically extracted
from the C-source code of the system under test. Beside random test data generation
the test case generation uses formal methods, in detail model checking techniques.
To find appropriate test cases we use the requirements defined in the system speci-
fication. To cover further execution paths we developed an additional, to our best
knowledge, novel method based on special structural coverage criteria. We present
preliminary results on the model extraction using a concrete industrial case study
from the automotive domain.

1 Introduction

Our work was motivated by the increasing occurrence of failures in embedded systems in
the automotive domain causing worldwide recalls of cars. Due to the increasing capacity
of processors, the functionality and thus the complexity of the embedded system software
is growing. Because embedded systems are often used in safety-critical applications,
where failures can cause crucial damage to people, creatures or the environment, testing
is extremely important to ensure the quality and reliability of the embedded systems.
Sophisticated and mature testing techniques using formal methods are of common use in
areas of high safety-criticality, for instance transportation, avionics, or aerospace [1]. In
other application domains formal methods for testing are only starting to gain ground.

∗This work has been supported by the FIT-IT research project “Systematic test case generation for
safety-critical distributed embedded real time systems with different safety integrity levels (TeDES)”; the
project is carried out in cooperation with TU-Graz, Magna Steyr, and TTTech.
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Using formal methods within our testing framework has the big advantage that the
complete system behavior can be described in a formal, thus unambiguous way. The
limits of the applicability of formal methods are given by the difficulty to use them for
software systems of high complexity.

The testing framework we are developing consists of two main parts: First we build the
automaton model of the system under test. This is realized by automatically parsing and
analyzing the source code. Once we have built the model, we can use it as a basis for our
test case generation methods.

Test data is generated in following ways: We generate test data randomly to cover
execution traces of the system fast and easily. Test cases for testing a specific system
property are found by means of model checking techniques. Within our framework we
use model checkers to find concrete execution paths of the system that correspond to
requirements defined in the system specification. The input and output values of these
executions paths yield concrete test cases.

The article is organized as follows: In Section 2 we characterize our testing method. In
Section 3 we introduce the general concepts of model-based testing and the scenario for
our testing framework. In Section 4 we describe in detail how we build the automaton
model of the system automatically by extracting it from the C-source code. Section 5
deals with the test case generation methods using formal methods and the applicability
of model checking techniques for the test case derivation. In Section 6 we discuss the
preliminary results of our approach by evaluating it on a concrete case study. Finally we
give an overview on related work and conclude with a summary and the plans for future
work.

2 Testing Safety-Critical Applications

Testing is a process centered around the goal of finding defects in a system for debugging
or acceptance reasons [2]. The ultimate goal is to prove the absence of failures in the
system behavior. In general it is not possible to test a system exhaustively, that means to
execute all possible system configurations and thus find and fix all defects in a reasonable
time. For functional testing it is essential to provide suitable test cases to the system
under test. The execution of these test cases should prove, whether a system requirement
defined in the specification is valid or violated by the implementation.

We characterize our framework as dynamic, gray box, systematic, and automated test-
ing:

Dynamic Testing: In dynamic testing the concrete test cases are executed against the
code and thus the proper functioning of operations can be tested on different levels:
SIL (software in the loop: test cases run against the object code), PIL (processor in
the loop: test cases are applied to the system on the embedded processor) and HIL
(hardware in the loop: testing is processed in the target environment).

Gray Box Testing: In general it is difficult to distinguish exactly between white box and
black box testing. For example, an ambiguity occurs when the module structure of
a system is known, but not the code of each module. We want to refer to this kind of
testing with the term gray box testing.
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Systematic Testing: Systematic testing means that the test cases are generated according
to specific test purposes. We create test cases based on the formalized properties to
be tested. For details please refer to Section 5.

Automated Testing: In automated testing both the generation of the test cases and the
evaluation of the test results are done in an automated way.

2.1 Testing Safety-Critical Systems

The requisites for the quality of safety-critical systems are defined in several standards,
for instance DO-178B [3] or IEC 61508 [4].

The developed testing framework is oriented on the IEC 61508 standard. IEC 61508 is
a standard for functional safety of electrical/electronic/programmable electronic safety-
related systems. It provides a list of guidelines for the testing process and multiple testing
methods. Some of the relevant issues for our framework are:

– Structure-based Testing: Structure-based testing aims to apply tests which exercise
certain subsets of the program structure [4]. The standard defines a few coverage
metrics, for instance: statement coverage, branch coverage, or MC/DC (modified
condition decision coverage).

– Modeling - Finite State Machines: As the standard defines, finite state machines,
resp. state transition diagrams are means to model, specify or implement the control
structure of a system [4].

– Formal Methods: Formal methods can be used to express a specification unambigu-
ously and consistently, so that mistakes and omissions can be detected. The resulting
description takes a mathematical form and can be subjected to mathematical analysis
to detect various classes of inconsistency or incorrectness [4].

The testing framework we are developing aims to meet concrete coverage criteria for
the system under test. As described below, we will use finite state machines to model the
system behavior and we will use formal methods to prove the integrity of the system and
to direct our test case generator to derive test cases.

3 Model-Based Testing

Referring to the Encyclopedia on Software Engineering, 2001 [5] the term model-based
testing characterizes an approach that bases common testing tasks, such as test case gen-
eration and test result evaluation, on a model of the application under test (see Figure 1).

 

Test Cases SUT 

 Test Case 
Specification 

 Model 

Figure 1: Principle of Model-Based Testing

Several kinds of models can serve as a basis for the generation of test cases. For in-
stance, test cases can be created based on UML-models of the system. Furthermore, lots
of other modeling languages for the formal specification exist, for example, synchronous
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languages (e.g., Esterel or Lustre), Petri nets, transition systems and automata-based for-
malism (e.g., finite state machines). For an overview please refer to [6].

The model for the test case generation can be built before the development of the soft-
ware, as a supplement parallel to the software development process or separated from the
software development process. Hence, different scenarios for generating test cases are
possible, as described by Pretschner et al. [7]:

1. A common model can be used for both, code generation and test case genera-
tion. This scenario is used especially with respect to the model-centric development
paradigm, like MDA (model-driven architecture) [8].

2. A second scenario is concerned with extracting models from an existing system.
Once the system is built (e.g., hand coded), one creates a model manually or auto-
matically, and this model is then used for test case generation.

3. A further approach consists of manually building the model for test case generation,
while the system is again built on top of a different specification.

4. The last noteworthy scenario involves two distinct models, one for test case genera-
tion, and one for code generation.

An essential issue in model-based testing is the automatic verdict for the test cases.
When the same model is used for code generation and test case derivation, the test cases
can also be run against the application. But the following problem occurs: The verdict,
i.e. the expected output for the test data, is deduced from a model that maps completely
to the code. The resulting test cases executed against the system will all pass the test
procedure, because possible erroneous behavior from the code is directly reproduced in
the model. In this scenario it is not possible to produce test cases that prove if the im-
plementation is valid against the model. Therefore most model-based testing scenarios
need an additional manually built model. This model is assumed to be valid against the
specification. The test cases derived from this model can be run on the object code, thus
errors in the implementation can be detected [9].

3.1 Our Approach to Model-Based Testing

In our framework we derive the test cases from an automaton model that is extracted from
the source code. The test cases are generated from the model and the requirements of
the specification (see Figure 2). The system behavior is defined in the specification and
the requirements. SRS means safety requirements specification, which is a subset of the
requirements, focusing on the functional safety of the system. Based on the specification,
an implementation model is built (in our case study with Matlab Simulink) and the source
code for the system is automatically generated with a code generator (TargetLink from
dSpace1).

For the testing framework the requirements are formalized, i.e. the requirements defined
in the system specification are translated into temporal logic formulas. These formulas
are the main part of the test case specification. The test case specification also contains
information about coverage metrics, for instance, aimed coverage criteria, like branch
coverage or MC/DC.

1http://www.dspace.com
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Figure 2: Our Approach of Model-Based Testing

The extracted model, which is automatically extracted from the source code, and the
test case specification serve as a basis in our framework for the generation of test cases.
The model and the formalized requirements are provided to the model checker. The idea
is to find traces in the automaton model of the system that represent execution paths
corresponding to specific requirements. The input and output values of the resulting traces
are used as test cases. These test cases are then applied to the system under test. See also
Section 5.

In our approach the verdict, i.e. the expected output for the test data, is given by the
requirements. The model is assumed to be valid against the specification (see also Sec-
tion 5). The resulting test cases running on the target platform prove, whether the system
behaves consistent to the model and thus consistent to the specification.

In the following, we describe the model extraction process and the formal test case
generation methods.

4 Model Extraction

Extracting the model from the source code is extensive but can be easily automated.
Our model extraction framework is based on a framework that has been developed for
measurement-based worst-case execution time analysis within the project Model-Based
Development of distributed Embedded Control Systems (MoDECS) [10, 11, 12]. The
model extraction is done in the following steps [10]:

1. First the C-code is parsed and the syntax tree is generated by static analysis (see
Figure 3). Depending on the complexity of the program, optional single blocks
(modules of the system) can be identified to ease the analysis.

2. The resulting syntax tree is used to generate the control flow graph (see Figure 4) and
the decision tree (see Figure 5) for further analysis within the final testing process
(e.g., path coverage analysis).

3. The syntax tree is used to generate the automaton model of the system. This is
realized by sequentially processing the syntax tree and interpreting the semantics of
the single statements.

4. The description of the automaton is given in an automata language (for instance, the
modeling language of the SAL or NuSMV model checker).
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We give a simple example to demonstrate our model extraction: We start with a small
C-program. In this program the function test takes two arguments x and a and contains
two composed if-else conditions. Depending on the current values of x and a, the vari-
able x is assigned with the values 10, 20 or 100. The resulting syntax tree consists of
approximately 100 nodes, of which we have to deal with 16 statements for the generation
of the automaton model. Figure 3, 4 and 5 show the syntax tree, the control flow graph,
and the relating decision tree for the example. The analysis of the syntax tree yields the
automatically generated NuSMV model.

Example:

C source code:

int test (int x, int a)

{
if (x == 1) {
x=10;

} else if (a == 2) {
x=20;

} else {
x=100;

}
}

NuSMV Model:

MODULE main
VAR

sequence nr : 0..65535;
v0 x : 0..255;
v1 a : 0..255;

ASSIGN
init(sequence nr):= 16;
next(sequence nr):=
case
sequence nr= 2: 1;
sequence nr= 5: 1;
sequence nr= 8: 1;
sequence nr= 12 & (v1 a=2) : 5;
sequence nr= 12 & !(v1 a=2) : 8;
sequence nr= 16 & (v0 x=1) : 2;
sequence nr= 16 & !(v0 x=1) : 12;

esac;
next(v0 x):=
case
sequence nr= 2: 10;
sequence nr= 5: 20;
sequence nr= 8: 100;

esac;

The additional variable sequence nr in the NuSMV model stems from the static
analysis and represents in principle the program counter. The NuSMV model can be
directly processed by the NuSMV model checker. In the following section we describe
how we generate the test cases from this NuSMV model.

5 Formal Test Case Generation

For the test case generation, amongst other methods, we use model checking techniques.
We work with the model checkers SAL2 and NuSMV3. Beside its original purpose for
formal verification of systems, model checking has become an applicable tool for test
case generation. The main purpose of model checking is to verify a formal property given
as a logic formula (in general formalized in some kind of temporal logic, e.g., linear
temporal logic LTL or computational tree logic CTL) on a system model. In the case of
that the formal property is invalid on a given model, a model checker typically provides
a counterexample, which describes a concrete instantiation of variable values and a path

2http://sal.csl.sri.com/
3http://nusmv.irst.itc.it/
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(0,0)

IDENTIFIER
val:x
seq: -1 l:2 r:1 if:0
s: 0x103b1688

parameter_declaration
val:
seq: -1 l:4 r:1 if:0
s: 0x103b1b70

declaration_specifiers
val:
seq: -1 l:4 r:1 if:0
s: 0x103b1a48

declarator
val:
seq: -1 l:4 r:2 if:0
s: 0x103b1b28

type_specifier
val:int
seq: -1 l:4 r:4 if:0
s: 0x103b19f8

direct_declarator
val:
seq: -1 l:4 r:1 if:0
s: 0x103b1ae0

IDENTIFIER
val:a
seq: -1 l:4 r:1 if:0
s: 0x103b1a90

expression
val:
seq: -1 l:6 r:1 if:0
s: 0x103b1fd0

statement
val:
seq: 4 l:7 r:2 if:0
s: 0x103a3e30

statement
val:
seq: 14 l:8 r:2 if:0
s: 0x103b37c8

assignment_expression
val:
seq: -1 l:6 r:1 if:0
s: 0x103b1f88

compound_statement
val:
seq: 3 l:7 r:2 if:0
s: 0x103a88b0

compound_statement
val:
seq: 13 l:8 r:2 if:0
s: 0x103b36d0

equality_expression
val:
seq: -1 l:6 r:1 if:0
s: 0x103b1f18

postfix_expression
val:primary
seq: -1 l:6 r:8 if:0
s: 0x103b1d70

equality_operator
val:==
seq: -1 l:6 r:1 if:0
s: 0x103b1dd0

postfix_expression
val:primary
seq: -1 l:6 r:8 if:0
s: 0x103b1eb8

primary_expression
val:
seq: -1 l:6 r:1 if:0
s: 0x103b1d28

primary_expression
val:
seq: -1 l:6 r:2 if:0
s: 0x103b1e70

IDENTIFIER
val:x
seq: -1 l:6 r:1 if:0
s: 0x103b1cd8

CONSTANT
val:1
seq: -1 l:6 r:1 if:0
s: 0x103b1e20

statement_list
val:
seq: -1 l:7 r:1 if:0
s: 0x103b23a8

statement
val:
seq: 2 l:7 r:3 if:0
s: 0x103b0ad8

expression_statement
val:
seq: -1 l:7 r:2 if:0
s: 0x103b2340

expression
val:
seq: -1 l:7 r:1 if:0
s: 0x103b22f8

assignment_expression
val:
seq: -1 l:7 r:2 if:0
s: 0x103b2288

postfix_expression
val:primary
seq: -1 l:7 r:8 if:0
s: 0x103b2098

assignment_operator
val:=
seq: -1 l:7 r:1 if:0
s: 0x103b20f8

assignment_expression
val:
seq: -1 l:7 r:1 if:0
s: 0x103b2240

primary_expression
val:
seq: -1 l:7 r:1 if:0
s: 0x103b2050

postfix_expression
val:primary
seq: -1 l:7 r:8 if:0
s: 0x103b21e0

IDENTIFIER
val:x
seq: -1 l:7 r:1 if:0
s: 0x103b2018

primary_expression
val:
seq: -1 l:7 r:2 if:0
s: 0x103b2198

CONSTANT
val:10
seq: -1 l:7 r:1 if:0
s: 0x103b2148

statement_list
val:
seq: -1 l:8 r:1 if:0
s: 0x103b3688

statement
val:
seq: 12 l:8 r:4 if:0
s: 0x103b3590

selection_statement
val:
seq: 11 l:8 r:2 if:0
s: 0x103b34a8

expression
val:
seq: -1 l:8 r:1 if:0
s: 0x103b26f0

statement
val:
seq: 7 l:9 r:2 if:0
s: 0x103b2cd0

statement
val:
seq: 10 l:11 r:2 if:0
s: 0x103b33b0

assignment_expression
val:
seq: -1 l:8 r:1 if:0
s: 0x103b26a8

compound_statement
val:
seq: 6 l:9 r:2 if:0
s: 0x103b2bd8

compound_statement
val:
seq: 9 l:11 r:2 if:0
s: 0x103b32b8

equality_expression
val:
seq: -1 l:8 r:1 if:0
s: 0x103b2638

postfix_expression
val:primary
seq: -1 l:8 r:8 if:0
s: 0x103b2490

equality_operator
val:==
seq: -1 l:8 r:1 if:0
s: 0x103b24f0

postfix_expression
val:primary
seq: -1 l:8 r:8 if:0
s: 0x103b25d8

primary_expression
val:
seq: -1 l:8 r:1 if:0
s: 0x103b2458

primary_expression
val:
seq: -1 l:8 r:2 if:0
s: 0x103b2590

IDENTIFIER
val:a
seq: -1 l:8 r:1 if:0
s: 0x103b2420

CONSTANT
val:2
seq: -1 l:8 r:1 if:0
s: 0x103b2540

statement_list
val:
seq: -1 l:9 r:1 if:0
s: 0x103b2ba0

statement
val:
seq: 5 l:9 r:3 if:0
s: 0x103b2aa8

expression_statement
val:
seq: -1 l:9 r:2 if:0
s: 0x103b2a60

expression
val:
seq: -1 l:9 r:1 if:0
s: 0x103b2a18

assignment_expression
val:
seq: -1 l:9 r:2 if:0
s: 0x103b29a8

postfix_expression
val:primary
seq: -1 l:9 r:8 if:0
s: 0x103b27b8

assignment_operator
val:=
seq: -1 l:9 r:1 if:0
s: 0x103b2818

assignment_expression
val:
seq: -1 l:9 r:1 if:0
s: 0x103b2960

primary_expression
val:
seq: -1 l:9 r:1 if:0
s: 0x103b2770

postfix_expression
val:primary
seq: -1 l:9 r:8 if:0
s: 0x103b2900

IDENTIFIER
val:x
seq: -1 l:9 r:1 if:0
s: 0x103b2738

primary_expression
val:
seq: -1 l:9 r:2 if:0
s: 0x103b28b8

CONSTANT
val:20
seq: -1 l:9 r:1 if:0
s: 0x103b2868

statement_list
val:
seq: -1 l:11 r:1 if:0
s: 0x103b3270

statement
val:
seq: 8 l:11 r:3 if:0
s: 0x103b3150

expression_statement
val:
seq: -1 l:11 r:2 if:0
s: 0x103b3108

expression
val:
seq: -1 l:11 r:1 if:0
s: 0x103b30c0

assignment_expression
val:
seq: -1 l:11 r:2 if:0
s: 0x103b3050

postfix_expression
val:primary
seq: -1 l:11 r:8 if:0
s: 0x103b2e60

assignment_operator
val:=
seq: -1 l:11 r:1 if:0
s: 0x103b2ec0

assignment_expression
val:
seq: -1 l:11 r:1 if:0
s: 0x103b3008

primary_expression
val:
seq: -1 l:11 r:1 if:0
s: 0x103b2e18

postfix_expression
val:primary
seq: -1 l:11 r:8 if:0
s: 0x103b2fa8

IDENTIFIER
val:x
seq: -1 l:11 r:1 if:0
s: 0x103b2dc8

primary_expression
val:
seq: -1 l:11 r:2 if:0
s: 0x103b2f60

CONSTANT
val:100
seq: -1 l:11 r:1 if:0
s: 0x103b2f10

(0,1)

root
val:
seq: -1 l:1 r:0 if:0
s: 0x103b15b8

translation_unit
val:
seq: -1 l:2 r:1 if:0
s: 0x103b1888

translation_unit
val:
seq: -1 l:4 r:2 if:0
s: 0x103b3d60

external_declaration
val:
seq: -1 l:2 r:2 if:0
s: 0x103b1850

external_declaration
val:
seq: -1 l:4 r:1 if:0
s: 0x103b3d18

declaration
val:
seq: -1 l:2 r:2 if:0
s: 0x103b17f8

declaration_specifiers
val:
seq: -1 l:2 r:1 if:0
s: 0x103b1640

init_declarator_list
val:
seq: -1 l:2 r:1 if:0
s: 0x103b17b0

type_specifier
val:int
seq: -1 l:2 r:4 if:0
s: 0x103b15f0

init_declarator
val:
seq: -1 l:2 r:1 if:0
s: 0x103b1768

declarator
val:
seq: -1 l:2 r:2 if:0
s: 0x103b1720

direct_declarator
val:
seq: -1 l:2 r:1 if:0
s: 0x103b16d8

function_definition
val:
seq: 18 l:4 r:2 if:0
s: 0x103b3be0

declaration_specifiers
val:
seq: -1 l:4 r:1 if:0
s: 0x103b1930

declarator
val:
seq: -1 l:4 r:2 if:0
s: 0x103b1ca0

compound_statement
val:
seq: 17 l:6 r:2 if:0
s: 0x103b3ae8

type_specifier
val:int
seq: -1 l:4 r:4 if:0
s: 0x103b18e0

direct_declarator
val:
seq: -1 l:4 r:5 if:0
s: 0x103b1c48

statement_list
val:
seq: -1 l:6 r:1 if:0
s: 0x103b3aa0

direct_declarator
val:
seq: -1 l:4 r:1 if:0
s: 0x103b19b0

parameter_type_list
val:
seq: -1 l:4 r:1 if:0
s: 0x103b1c00

IDENTIFIER
val:main_nice
seq: -1 l:4 r:1 if:0
s: 0x103b1978

parameter_list
val:
seq: -1 l:4 r:1 if:0
s: 0x103b1bc8

statement
val:
seq: 16 l:6 r:4 if:0
s: 0x103b39a8

selection_statement
val:
seq: 15 l:6 r:2 if:0
s: 0x103b38c0

Figure 3: Syntax Tree

Figure 4: Control Flow Graph

Figure 5: Decision Tree

for which the property is violated. This feature of a model checker can also be used to
generate test data in a formal and systematic way [13, 1, 14, 15].

The goal of our testing framework is to test, whether the SUT conforms to the system
requirements. Thus, we calculate test cases where the verdict is based on formal assertions
derived from the system requirements. So besides building the model we formalize the
requirements from the system specification in temporal logic.

Several approaches of requirement-based test case generation using model checkers ex-
ist. For example, mutation testing is an approach, where test cases are derived from a
system, where either the model or the logic formula to be tested are modified [16]. In
the following we sketch the test case generation methods that we will use in our test-
ing framework. The first method “property-based test case generation” is similar to the
use of so-called “never-claims” as described by Engels et al. [15]. The second method
“relevance-based test case generation” is, to our best knowledge, a novel technique we
developed as a complementary test case generation method.

5.1 Property-Based Test Case Generation

The basic idea of this technique is to find test cases for locations in the model where the
property f is valid. To find such test cases with the model checker, we state that f is
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not feasible within the system model. The negated formula ¬f is provided to the model
checker. The model checker searches the state space of the model to prove if this formula
is valid or not. In the case of a violation of the assertion ¬f the model checker provides
a path on which f is true (a counterexample). This path is one instance of an execution
trace of the program, where the property f holds and can thus be used as a test case to
test the requirement f (see Figure 6). The model checker delivers a counterexample, if
the property we want to test is valid.

For example, in the model of the example in Section 4 the assertion (a) is valid. But the
assertion (b) is violated, thus, a counterexample is produced by the model checker.

PSLSPEC AG !(v1 a=2 & v0 x=100); (a)
PSLSPEC AG (v0 x=1 & v0 x=10); (b)

Figure 6: Test Case Generation with Counterexamples

As a by-product we are also performing formal verification. We only get counterexam-
ples that we can use as test cases, if the property is valid in the model. In the case of a
violation of the property, we know that the property is not valid in the model. Because
the model can be directly mapped to the source code of the system, we know in the case
of a violation that a requirement from the specification is violated by the implementation.
This points to the fact that the failure in the implementation has to be corrected.

In general, model checkers produce only one counterexample, where a property is vi-
olated. When we consider only the requirements from the specification this yields only
a few execution paths of the system. One possibility to get more paths is to modify the
model checker to produce more than one counterexample. However, this modification
could yield a huge number of paths, many of them testing the same property. Thus,
instead of using this modification, we developed a complementary test case generation
method described in Section 5.2.

5.2 Relevance-Based Test Case Generation

When using the property-based test case generation described above, it can happen that a
property f is valid in many different locations of the model. In such a case it is desirable
to generate test cases targeted to those locations where the property is most relevant, e.g.,
variables occurring within the formula of a property f influence directly the generation of
the output of the model.

In relevance-based test case generation, the principle of how the model checker gen-
erates test data is similar to the above method. We provide an assertion g to the model
checker and the model checker searches for counterexamples that violate g. The only
difference between the above method and this approach is the meaning of g. With this
approach, g is not simply the negation of f , the property we want to verify by testing. In-
stead, g formally states that a certain location x of the model cannot be reached. Thus, the
counterexample generated by the model checker provides input data to reach the location
x.



SYSTEMATIC TESTING OF EMBEDDED SYSTEMS

x is chosen as one of these locations where variables of f can directly influence the
generation of output. The interesting instances of location x are calculated by a prior
static program analysis phase. For example, if a variable of f is used at a certain location
x to decide, whether the output value should be incremented, then x is an interesting code
location for a test. Based on g, the model checker can calculate those test data for which
x will be reached. This approach provides an effective search for test cases, in the sense
that it focuses only on code locations where the output is influenced by variables from the
property to be tested.

To illustrate how such an assertion g can be formulated, let us assume that we have
found the assignment x = 20 in the source code example of Section 4 to be an interesting
location to be tested (in reality, this code does not generate an output). Since this location
corresponds to the state “sequence nr=5” in the model, we can use the assertion (c)
to get a path to this location:

PSLSPEC G (sequence nr !=5); (c)
Again, the verdict of the test cases in relevance-based test case generation is derived

from the original property f to be tested. For each test execution the values of all variables
occurring in f are monitored. The test result of a test case is positive if the property f
is fulfilled. Properties that represent invariants of the model can be directly used as test
verdicts.

6 Case Study: Preliminary Results and Evaluation

Our case study is a control loop taken from an embedded system application from the
automotive domain. The system was built with Matlab Simulink and the code was gen-
erated by a code generator (TargetLink from dSpace4). The overall system consists of
four modules with about 40 variables, 16 of them of boolean data type, the remainder are
integer. 10 of the variables are input variables and 10 of them represent output values.

For processing the NuSMV automaton model we have to deal with a few challenging
aspects:

– Arithmetic operations: In our case study one module of the system is calculating
the values for an actuator based on input values from sensors. These values are
calculated by a complex arithmetic expression. This causes problems within the
model checker, because the model checker has to generate all possible values, the
resulting BDD (binary decision tree) is quite big.

– Complexity: The set of scalar variables and the operations mentioned above applied
to these variables causes a big state space. Abstraction (e.g., data type reduction)
can ease the analysis and speed up the test case generation process, but we run the
risk of loosing relevant test data. Interesting abstraction mechanisms are: data type
abstraction, decomposition of the system and counterexample refinement.

– C-specific semantics on data ranges: The model checker builds the complete BDD
for all possible data values. Data domain overflow is not treated by the model
checker. The semantics of handling data values out of range from C has to be inte-
grated into building the correct NuSMV model.

4http://www.dspace.com
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– Local preconditions: NuSMV determines the validity of an assignment only locally.
That means that assertions about the assignment of a variable in the model are not
considered at a single transition. This entails that we have to add special precondi-
tions additionally to assertions stated in the C program.

– Type casting: Type casting is standard in C programs. In NuSMV variables are
declared once before the model is built. Therefore, type casts occurring in the C
code cause difficulties within the NuSMV model.

We are able to analyze the source code of our case study and build the control flow
graph; it yields nearly 8000 paths. We are on the way to complete the implementation
of the model extraction with all features that yields an automaton model representing the
overall correct semantics of the C code and can thus be directly processed by the model
checker for the test case generation.

Besides the test case generation methods described in Section 5 we use random test data
generation to reduce the workload of the model checker.

7 Related Work

In Broy et al. [17] various aspects of model-based testing are described in detail. One
chapter of it, written by Pretschner et al. [7], is about Methodological Issues in Model-
Based Testing, which inspired our research on model-based testing. Several existing test-
ing tools are also based on the concepts of model-based testing, for an overview see [18].
Mirko discusses model-based testing of embedded systems on examples from the auto-
motive domain [9].

A general introduction to model checking can be found in Clarke et al. [19]. The ideas
of using model checking techniques also for testing aim back to the mid ’90s, for in-
stance [20]. A survey on formal testing techniques can be found in [21]. The test case gen-
eration techniques are described in detail in [22]. Since then many works are concerned
with using model checking techniques for testing purposes by means of producing coun-
terexamples, for instance Beyer et al. [23]. Amman et al. use model checking to generate
tests from specifications [24, 1]. Also Gargantini et al. [25] generate tests from require-
ment specification. Grabowski discusses issues concerning specification-based testing of
especially real-time distributed systems [26]. Engels et al. [15] are using “never-claims”
for test case generation.

The way of how the model is build depends on how the test cases are finally gener-
ated. We know about model checkers that can process source code directly, for instance
BLAST5, described in Henzinger et al. [27]. CMBC6 is a bounded model checker for
ANSI-C programs, described in [28]. The model checker SPIN7 provides a tool that
translates C-code into the input language of SPIN PROMELA, see [29]. Also MUTT8

developed at Microsoft Research is a tool for automated test generation, but mainly for
unit testing, see [30]. Extracting the automaton model from the source code is based on
works of Wenzel et al. [10]. Schroder et al. [31] discusses a few modeling aspects for the

5http://embedded.eecs.berkeley.edu/blast/
6http://www.cs.cmu.edu/∼modelcheck/cbmc/
7http://spinroot.com
8http://research.microsoft.com/projects/mutt/
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automated test case generation.
Techniques for applying abstraction to models are described in [32, 33, 34, 35]. Clarke

et al. are working on “counterexample-guided refinement” [36]. Ball et al. deal with
abstraction especially in relation to the falsification of branching-time and linear-time
temporal properties [35].

The introduced methods have been applied to a few case studies: Chandra et al. [37]
used software model checking for an industrial case study. The inhouse card study is
a well exercised case study [38]. An evaluation of model-based testing is given by
Pretschner [39] or Paradkar [40], who studied the fault detection effectiveness of model-
based testing. Testing purposes especially concerned to the automotive domain are dis-
cussed amongst others in Ranville and Black [41] or Mirko [9].

8 Summary and Conclusion

In this paper we introduced the development of a testing framework that is based on
model-based testing. The model is automatically extracted from the source code of the
system under test. The test cases are derived from this automaton model by producing
counterexamples by means of model checking. Besides using the “never-claim” prop-
erties directly obtained from the specification (property-based test case generation), we
presented a novel test case generation method (relevance-based test case generation) that
focuses on testing those code locations where variables from the property to be tested
influence the output generation.

Besides describing the conceptual aspects of our testing framework, we demonstrated
the functionality of our implementation for the model extraction on a small sample code.
Furthermore, we showed technical details of extracting the automaton model from the C
source code of an industrial case study.

In our future work we plan to integrate some abstraction mechanisms to reduce the state
space of the automaton model of study to improve the performance of the introduced test
case generation methods.
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