
Title Bus Catcher: A Context Sensitive Prototype System for Public Transportation Users

Authors(s) Bertolotto, Michela, O'Hare, G. M. P. (Greg M. P.), Strahan, Robin, Brophy, Ailish, Martin, A.

(Alan), McLoughlin, Eoin

Publication date 2002

Publication information Bertolotto, Michela, G. M. P. (Greg M. P.) O’Hare, Robin Strahan, Ailish Brophy, A. (Alan)

Martin, and Eoin McLoughlin. “Bus Catcher: A Context Sensitive Prototype System for Public

Transportation Users.” IEEE, 2002.

Conference details The Second International Workshop on Web and Wireless Geographical Information Systems

(W2GIS), Singapore, 2002 in conjunction with the Third International Conference on Web

Information Systems Engineering (Workshops), 11 December 2002, Singapore.

Publisher IEEE

Item record/more

information

http://hdl.handle.net/10197/4430

Publisher's statement Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in other works.

Publisher's version (DOI) 10.1109/WISEW.2002.1177848

Downloaded 2024-03-29T04:02:15Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Bus+Catcher%3A+A+Context+Sensitive+Prot...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F4430

Bus Catcher: a Context Sensitive Prototype System
for Public Transportation Users

Michela Bertolotto, Gregory O’Hare, Robin Strahan, Ailish Brophy, Alan Martin, Eoin McLoughlin
Department of Computer Science,

University College Dublin,
Ireland.

michela.bertolotto@ucd.ie, gregory.ohare@ucd.ie, robin.strahan@ucd.ie, alan.martin@ucd.ie,
eoin.a.mcloughlin@ucd.ie

Abstract

In this paper we describe the architectural and
functional characteristics of Bus Catcher, a context
sensitive prototype system for public transportation users.
Bus Catcher assists mobile users in planning their bus
rides by providing timely and accurate information about
current bus locations and estimated arrival times. A
complete report on the implementation together with a
preliminary evaluation of the system is provided in this
paper.

1. Introduction

This paper introduces the Bus Catcher system. Bus
Catcher represents a context sensitive service targeted at
the transportation sector. With escalating levels of mobile
device penetration, increasingly the citizen will be
equipped with some Personal Digital Assistant (PDA).
PDA ownership in Europe is set to treble in the 5-year
period 1998-2003 (IDC Western Smart handheld Devices
Review, 1998-2003). PDA sales lie just below the mass-
market penetration threshold of 10%.

Bus Catcher seeks to use such devices as a conduit for
communicating public transportation information relative
to the needs of the individual traveler. Mobile location
services worldwide are set to increase from 2 Million
connections in 2001 to 560 million in 2006 [27] and
indications are such that services that are personalized and
easy to use will maximize their revenue streams. Bus
Catcher is representative of this new generation of user
friendly, personalized and mobile context sensitive
services. It embraces ambient computing principles,
enabling less technologically skilled users to have casual
and tailored access to information. In the case of Bus
Catcher this information pertains to general issues of
transportation and movement of the citizen.

In particular, bus networks can be confusing. To a
traveler in an unknown city, information about which bus
routes lead to which destinations can be scarce. Even for
people who know the city, the sheer number of bus routes
can be daunting; for instance Dublin Bus [21] serves over
150 routes. Added to this is the inaccuracy inherent in the
timetables; any number of factors can cause disruption,
making a timetable little more than a rough guide to the
actual time that a bus will arrive at. What is required is a
system with up to the minute data about bus stops, routes
and timetables. Handheld PDA’s can be a valuable aid in
this situation, as they are capable of providing real time
information on the move. As they are mobile and travel
with the user, she would be capable of accessing the data
anywhere, rather than just at the bus stop.

The idea to realize the Bus Catcher system was
inspired by typical real life situations such as those
depicted in Figure 1 and by the announcement in May
2001 that Dublin Bus was planning to install GPS
receivers on all their buses to improve management and
monitoring of their service. This would allow obtaining
timely and accurate information about current bus
locations and estimated arrival times. This capability
differentiates Bus Catcher from other mobile context
sensitive services targeted at the transportation sector.

Figure 1. Typical bus users scenarios

The remainder of this paper is organized as follows.
Section 2 provides a research context within which Bus
Catcher was developed. Section 3 discusses issues related
to the high-level design of the system including major
objectives and architectural characteristics. Section 4
reports on the implementation details while section 5 is
dedicated to the system evaluation. Finally, Section 6
presents some concluding remarks.

2. Related research

Bus Catcher is broadly situated in the arena of context
sensitive systems. The term context refers to any
information that can be used to characterize the situation
of an entity, where an entity is either a person, place, or
object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves [3].

Many aspects of the physical and conceptual
environment can be included in the notion of context. The
user or system’s location in space and time is an obvious
one. Personal information about a user, such as their
preferences, their knowledge and their history of previous
interaction with the system could also be considered as
context.

The use of context is increasingly important in the
fields of handheld and ubiquitous computing, where the
user’s context changes rapidly. Whilst it would be possible
to require users to explicitly provide contextual
parameters, most systems accrue such data in an
unobtrusive and implicit manner by listening to user
system interaction and their general behaviour.

User location and orientation for example, could be
detected using one of several position sensing
technologies. Specific instances include Global
Positioning System (GPS), Galileo, Cellpoint, and True
Position. Generally three broad approaches exist: those of
satellite based, base cell triangulation or hybrid
approaches.

A rich variety of applications have been developed to
demonstrate the usefulness of context-awareness in
wireless computing. Two seminal systems are those of
Cyberguide and Guide.

Cyberguide provides a mobile context-aware tour
guide [1]. The contexts Cyberguide is aware of are the
location and direction of the user. The application has four
distinct parts: Map, Information, Positioning and
Communications. The map component displays a map of
the user’s immediate location and enables the user to
navigate the environment. It can be viewed at varying
levels of detail and scrolled around. The user’s location
and direction is displayed as well as locations of interest.

The information component displays information about
the area and its objects available to the user. The

positioning component in turn provides information on the
user’s location and direction while the communication
component allows the user to communicate with other
Cyberguide users. Two versions were developed, an
indoor based on Infra Red technologies and the other
utilizing GPS.

The Guide project was carried out by the Distributed
Multimedia Research Group of Lancaster University. The
major aim of the project was to develop a context-aware
mobile multi-media visitor guide and to evaluate its use in
the city of Lancaster [2]. The contexts that it was aware of
were classed into two types, personal and environmental.
Environmental contexts included the current time and
opening hours of attractions. Personal contexts covered
the user’s profile (interests and age, etc), current location
and their native language.

Guide allowed the user to explore the city anyway they
wanted to, without sticking to fixed tours. The user’s
location was plotted on a map (determined by GPS),
which allowed the user to navigate easily. While walking
about the city, the user could make queries about the area
they were in, nearby attractions, points of interest etc.
They could request the latest weather forecast or ask
Guide to create a personalized tour for them based on their
current location. The user was also able to communicate
with other Guide users (to arrange to meet up for
example), to book accommodation and to receive alerts
about changes in opening times of attractions. The system
architecture adopted was that of a client-server model as
this supported dynamic real-time update of the content
presented to the user. In addition it enabled content stored
on the device to be minimized and thus the device could
be smaller and less expensive.

In addition to these generic context sensitive services
other specific applications have been developed that
address the transportation sector.

KMap [22] from JShape Software, is a complete raster
image graphics program. It was written in J2ME for the
Palm as a demonstration to show how to pan and zoom on
a map image. It retrieved its map data from a database that
was loaded on to the Palm. This differs from Bus Catcher
in that Bus Catcher’s map image is dynamic and comes
from the server. Because it was an experimental project it
is very basic.

Train Schedule [23] constitutes a simple J2ME
application developed for the Palm OS platform. It allows
the users an easy way to view commuter train schedules.
Although this application was written for the Chicago
Metro train system, it is possible to use it for other train or
bus systems by changing the database. Train Schedule
works by allowing the user to choose which line they wish
to catch a train on. Then by choosing a start and
destination station on that line along with the time and day
they wish to travel, the program will search the database

loaded onto the Palm for a group of the most suitable
trains that the user can get.

In contrast to Bus Catcher, Train Schedule works from
a stored static database. So the program will only be
correct if its database is correct. If the schedules change
the database will have to be updated and uploaded to the
Palm. It is also not possible to run this program, even
though it is written in Java, on a PDA operating an OS
other than Palm OS because of its reliance on the Palm
Database file.

Bus Catcher gets its schedule from the server so the
user will get the most up-to-date information (provided its
administrator updates the server) and it does not rely on
any platform specific database. Train Schedule does not
use GPS or maps to show the user how to get to a train
station or other attraction. There is no ‘point & query’ akin
to that offered by Bus Catcher.

Train Brain, on the other hand, is a Java applet that
simulates the accelerated or real time animation of a transit
system, such as a train or bus system. It can display pop-
up schedules for various lines or routes, and provides
‘point & click’ station information.

Train Brain has been used as the basis for a context-
aware system for the Virginia Railway Express (VRE).
The context of interest was the trains’ locations. Train
Brain accesses a preexisting Train Information Provider or
TRIP system that informs users at a VRE station of the
arrival of the next train. The Train Brain applet accesses
the TRIP server. When any delays or disruptions to trains
are logged on the TRIP server the applet will calculate the
train’s position according to this information and display it
on the VRE website. To find out about a particular train
the user moves the mouse over that train and a pop up box
informs the user about that train and any associated delay
status.

The major disadvantage of this system is that it is web
enabled and only accessible via desktop machines utilizing
standard HTML. To be of real use to a commuter, the
applet would have to be written so that it could be viewed
on a WAP or web-enabled phone or PDA.

Numerous commercial systems have been successfully
developed some of which are beginning to develop client
bases. These include TomTom [24], which provides
context aware software for PDAs, such as city maps, route
planners and restaurant and attraction guides. CitiKey [25]
provides electronic reference guides of capital cities
hosted on PDAs. Tourists can rent the system from the
local tourist office. Citikey does not feature any context
awareness or personalization.

Several recent systems have deployed Multi-Agent
Systems such as Impulse, ComMotion and Ad-Me. The
Impulse [20] project provides personalized location-based
information through the use of agent communication. A
User Agent residing on a hand-held device creates a user

profile and builds queries for the Wherehoo server and
Provider Agents. The results of the queries are displayed
to the user by the User Agents in the form of URLs.
ComMotion [12, 26] uses a location-learning agent to
observe the locations frequently visited by the user via a
GPS receiver. It uses both a speech and graphical user
interface, which assist in providing location based
information, displaying maps and controlling
administrative functions. The Ad-me project [7] is a
mobile tourist guide that proactively delivers
advertisements to users based upon perceived individual
user needs together with their location. It adopts a Multi-
Agent System (MAS) design philosophy and strives for
maximum content diffusion across HTML, WML, HDML
and iMode formats.

3. High-level Bus Catcher design

3.1. System objectives

The Bus Catcher system was designed on the basis of
the following requirements:

• Modularity: each component should be developed
independently and be of the plug & play type;

• Portability: the application should be designed so
that it will run on any Java enabled device
regardless of its type, its OS and its available
resources;

• Extensibility: the system is targeted to bus users
but should allow for easy integration of other type
of transportation services information as well as
tourist information etc.

• Ease of use: in order to be an effective decision
support tool, the system should facilitate human-
computer interaction.

The main objectives we considered in the realization of
the Bus Catcher System (from the point of view of the
functionality offered) are:

1. To provide an interface that is intuitive to use.
The interface should be of the ‘point & click’
variety, as the only input modality is that of stylus
on the touch sensitive display.

2. To display accurate and timely timetable
information for all bus routes.

3. To plot in real time both the user’s and bus’s
location on a map-based display using GPS as the
localization technology.

In addition, the information provided should be context
sensitive. For instance, maps should only provide data on
bus services close to where the user is located, and the
timetable information should be related to the real-time
location of the buses, taking into account factors such as

the time of day and weather conditions. Further context-
sensitive features might include basing data retrieved upon
previous requests, if a user frequently requests a particular
route, the timetable for that route could come up by
default.

Other possible functionality includes: calculation of the
correct fare for a specified journey, display of major
tourist attractions, possibility for the users to select the
language that they wish this interface to be presented in
(English, Irish, French, Italian, etc).

3.2. System architecture

The Bus Catcher system relies on a multi-tier
architecture comprising four main layers, namely the
Client Layer, the Application Server Layer, the GIS Layer
and the Database Layer (see Figure 2).

Figure 2. Bus Catcher architecture.

In the following we briefly describe each component.
The client layer comprises a lightweight client machine
running a Java Virtual Machine (JVM). It functions as a
thin client with most of the computation handled by the

remote server. We strive for a thin client and thick server
model. The application is executed on the client using a
standard Java applet. All communications between the
client layer and the database and GIS layers are conducted
through the application server layer. The applet
communicates with the application server using the
existing TCP networking protocol.

Information is downloaded to the PDA, as it is needed.
The client sends requests to the server, which in turn will
obtain data from either the map server (residing on the
GIS layer) or the database or both. It will then return this
information to the client for display to the user. The client
also receives data from GPS satellites through the use of a
GPS receiver.

The application server layer has been designed
according to the following considerations:

1. The server needs to be able to handle many
clients simultaneously and efficiently. This is
achieved by making the server multithreaded. In
addition, each thread should terminate
appropriately and use as little memory as
possible.

2. Due to the inherently unreliable nature of mobile
communications, error control is vital. Timeout
handling is required on both sides to avoid waste
of CPU time and user’s money. If an error
occurs, the system should attempt to either retry
or gracefully disconnect as appropriate.

3. The protocol should be kept simple and
unambiguous. This ensures efficient use of
bandwidth and reduces chance of a protocol error
occurring.

4. The server should be integrated with the GIS and
database.

A dedicated server model has been utilized for the
application server. A dedicated server was chosen over a
web server because it is simpler, easier to implement, and
allows more control over the client-server communication.

A thin client was chosen over a thick client not only to
maximise speed but also to provide a higher degree of
abstraction and modularity. Indeed, the Database and GIS
do not need to be concerned with operations of the client.
The Client-Server protocol can be changed without
consent of the Database or GIS, increasing
programmability and simplicity. The Server can also
anticipate what the client needs and request data from the
GIS or Database in advance.

Modularity is one of the main characteristics of the Bus
Catcher system architecture. Each component has been
developed independently and can be easily modified
without affecting the others. For example, the system is
completely independent of the particular GIS system used
in the GIS layer. Communications occur via standard
protocols and by exchanging data in standard formats.

GPS receiver

GPS signal

GPS satellites

PDA with
GPS receiver

Client

Java
Applet

Application Server
Layer

Application
Programs

Database Layer

GIS Layer

GPS signal

Map
Server

The GIS layer includes a map server whereby any
program can gain access to a range of maps stored
remotely, through an API (Application Programming
Interface). This component communicates with the
database to allow access to, and mapping of, bus related
data stored there, such as the bus stops and their locations.

The database layer stores all the information about the
bus routes, bus stops, and timetables. SQL statements are
issued to retrieve from the database the information to be
displayed on the client site. For example, when the user
requests to see a given timetable, an event is associated
with that particular request and the corresponding SQL
statement is called. All prepared statements including the
most frequently requested queries are also stored in this
layer. These include: route queries, nearest stop queries,
arrival time queries, etc. Estimated time of arrival of the
next bus is calculated by taking into account parameters
such as rush hours, traffic loads of specified areas, weather
conditions, etc.

4. Implementation

In this section we describe the implementation of the
Bus Catcher system. Technologies employed include:

• Java for the application server layer,
• MapInfo for the GIS layer,
• Visual Basic for the Map Server (for its full

integration with MapInfo through OLE
automation and window reparenting),

• MySQL for the underlying database system,
• ODBC API to access the database with

application programs,
• JDBC for access to the Map Server from the

application server.
Connections between Java application programs and

the Map Server take place through a TCP socket
connection across which requests and maps are sent. The
TCP protocol was chosen over HTTP as the TCP packets
do not have to correspond to HTTP (GET and POST
requests). This reduces protocol overhead since the data
does not have to be wrapped in HTTP. The server will
consequently be smaller and more efficient as the need for
servlets does not exist.

TCP was chosen over UDP as the network layer
protocol of choice as it is simpler to program (Socket I/O
similar to File I/O). It provides a reliable error free
channel between the client device and the server with
automatic flow control. The simplicity and reliability of
TCP far outweighs the modest speed increase provided by
UDP.

A preliminary version of Bus Catcher, called Bus
Catcher Lite, was developed to work on the Palm. Due to
device limitations, this version only provides textual

information related to timetables and fare calculations.
These calculations are performed in the Application
Server Layer, and take into account an number of different
factors, including parameters such as rush hours, traffic
loads of specified areas, weather conditions, etc.

Map display resulted in long lead times primarily due
to the Palm processor, a mere 33Mhz compared to
203Mhz for the Compaq Ipaq. In addition heap space
restrictions within the KVM meant that maps larger than
postage stamps were unable to be displayed. For these
reasons a restricted functionality was provided for the
Palm and the full functionality of Bus Catcher was
developed on the Compaq Ipaq (Figure 3 depicts the Bus
Catcher Lite interface).

The Compaq Ipaq connects to the server over an
Internet connection provided by the Nokia Card (v2)
modem. Although this modem supports GPRS, the mobile
network, at the time of testing did not. This meant that the
maximum connection speed available was a modest
9600bps. Global positioning was retrieved using a Garmin
GPS receiver attached to the serial port of the device,
communicating using standard NMEA sentences.

As the fare and timetable parts had been successfully
implemented in the Bus Catcher Lite version, they were
ported to the full version with no changes required.

Within Bus Catcher the key additional functionality is
a map-based interface. Based around this are several key
components of the GUI: map display, standard zoom
in/out and pan operations. Maps are geocoded on the map
server component of the map layer and are sent to the
client through the application server layer. Prior to this,
information about the actual PDA display size must be
sent from the client to the server. This allows the map
server to send an image customized to a particular PDA’s
display size.

A map centring function was provided which involves
requesting a map centred at a particular GPS co-ordinate.
The GPS co-ordinate is calculated from the pixel on the
current map image that the user clicks on. The zooming in
and out is achieved by setting a zoom level. Seven levels
of zoom were provided. If the user wishes to pan the map,
a new map image is generated at the same zoom level as
the current one, just centred at new GPS co-ordinates.

Once the basic manipulation of the map was
completed, bus route overlays (Figure 5) needed to be
delivered from user-designated start and end points. This
was achieved via series of buttons on the map frame.

These bus routes could be annotated with bus stage
information. When the user clicks on the appropriate
button, a dialog box appears that asks the user to select
what route and direction they wish to plot. The user can
select as many routes or stops then want to plot by clicking
the ‘Plot’ button and then click the ‘Done’ button when
completed. The GUI then uses a function from the Client

class to request a map image with the requested items
drawn on it. Again the Client functions abstract from the
GUI how this information is retrieved from the map
server. The ‘Clear’ button removes any previous selected
routes.

User location was similarly overlaid on the map-based
interface (Figure 4). The user’s location was determined
using a GPS receiver. The GPS receiver outputs its data in
NMEA GPGGA format. This is a worldwide standard for
Global Positioning System Fix Data. It contains
information such as time, latitude, longitude, altitude,
number of satellites used to generate position and error
estimation.

A thread is created when the map feature is first
constructed that calls the ImageCanvas paint method every
10 seconds. The paint method was further updated to read
the latitude and longitude received from a GPS receiver.
This latitude and longitude is then checked to see if the
location is viewable on the current map canvas. If they are
viewable, they are coerced into pixels and an image that
represents the user is drawn at that pixel location.

A similar approach was used to plot the bus location.
Except that the co-ordinates of the bus are simulated and
come from a text file on the server. However, such live
GPS coordinates can be received from the GPS receiver
on Dublin buses.

Finally an A to B function was implemented. This
feature allows the user to select a start and end location on
the map and ask which route or combination of routes will
allow them to make that journey.

Figure 3. Bus Catcher Lite

Figure 4. Display of user and bus location

When the user selects this feature, they are prompted
by a dialog to select the starting point of their journey.
Similar to when a user requests to manipulate a map
image, the pixel that the user clicks on is converted into a
GPS co-ordinate. They can of course zoom and pan the
map before selecting any point.

Figure 5. Route overlay

Once the first point is chosen they are prompted to
select their second point. Once the second point has been

selected, the two co-ordinates are passed to the
appropriate method in the Client class. This client will
then in turn send this to the server that will in turn query
the database. The information about which route or routes
are suitable, along with where to board and get off on the
route, are then extracted from the database. These results
are returned to the client and then passed to the GUI to
display in a dialog box. The dialog allows the user to view
which routes they can take and to cycle through them
using the ‘Prev’ and ‘Next’ buttons. The dialog also
allows the user to select up to three routes from the results
given and to plot them on the map.

All the code for Bus Catcher and Bus Catcher Lite was
written in Java, and therefore not platform specific. As a
consequence little, if any, changes are required in order to
run Bus Catcher on other platforms. However, device-
specific constraints may restrict portability. Features such
as processor speed, memory and display size vary from
mobile device to mobile device. Ultimately Bus Catcher
will detect device-specific features and dynamically adapt
the GUI format accordingly.

5. System evaluation

In order to evaluate the Bus Catcher system user trials
were undertaken. These trials were conducted in the month
of April 2002 over a two-day period. The sample size was
statistically significant. A sample of subjects, roughly
thirty-five members of the public, were asked to use the
Bus Catcher system briefly in order to achieve
familiarization. Thereafter they were asked to complete a
questionnaire.

Age of Users

7%

59%

10%

17%

7%

0%

Under 18
18-24
25-35
36-45
46-65
Over 65

Figure 6: User demographics

Two contrasting sites were chosen for the trial. The
first was a busy boarding point on the Belfield campus of
University College Dublin, while the second was a busy
Dublin city centre location, Grafton Street, located
adjacent to the central shopping district. Of the two trial
sites subjects were more receptive to participation at the
University bus stop. Consequently the demographics of
our sample are somewhat skewed (Figure 6). This explains
the large number of users in the 18-24 age group (59%).
Among the users who participated in the Grafton Street

trials, roughly half were tourists or visitors to Dublin, one
of the possible target markets for Bus Catcher.

The questionnaire was designed using a seven point
Likert scale, which sought to assess user opinion on all
aspects of the system.

Do you think the services provided are an
improvement of those currently offered?

0

5

10

15

20

25

1 2 3 4 5 6 7

NO < - > YES

N
o.

 o
f U

se
rs

Figure 7. User responses to service improvement

The questions were expressed in an unbiased manner.
Score 4 represents a response that is neither positive nor
negative. Therefore for a successful test we would require
that the majority of answers were for options 5, 6 and 7.
As can be seen from Figures 7, 8, 9, this was indeed the
case with the vast majority of the user’s being very
positive.

Was Bus Catcher user friendly?

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7
NO < - > YES

N
o.

 o
f u

se
rs

Figure 8. User responses to user friendliness

If Bus Catcher was expanded and developed, would
you consider using it?

0

5

10

15

20

25

1 2 3 4 5 6 7

NO < - > YES

N
o.

 o
f U

se
rs

Figure 9. User responses to potential usage

How would you rate system responsiveness?

0

2

4

6

8

10

1 2 3 4 5 6 7

Poor < -- > Excellent

N
o.

 U
se

rs

Figure 10. User responses to system
responsiveness

If Bus Catcher was expanded and developed, would
you consider buying it?

0

2

4

6

8

10

12

1 2 3 4 5 6 7

NO < - > YES

N
o.

 o
f U

se
rs

Figure 11. User responses to potential purchase

Results relating to functional benefits derived from the
system (Figure 7) were very supportive as were results
relating to the user friendliness (Figure 8) and disposition
of users to use such a system were it to be available
(Figure 9).

Results relating to the system responsiveness were not
as positive, (Figure 10). However, this is due to the
connection speed being limited to 9600 bps, which resuled
in a delay, for example, of 15 to 20 seconds for map
retrieval. If the network had supported GPRS, we would
assume these results would be much more promising.

As with most products the ultimate test is in the
willingness of potential customers to purchase Bus
Catcher (Figure 11). These results were less favourable
but given that some 49% of subjects were students this
result may not be significant as the impoverished nature of
the student globally is well documented.

6. Concluding remarks

This paper presents the Bus Catcher system, a context
sensitive GIS/GPS integrated system targeted at the
transportation sector. The main functionality provided
include: display of maps, with overlaid route plotting, user
and bus location, and display of bus timetables and arrival
times. The system has been designed on the basis of
modularity, portability and extensibility requirements.

We are currently extending the system to include
information on places of interest to tourists, such as

museums, galleries etc, and which buses link them. Bus
Catcher could also provide details of bus tours throughout
the city.

Alerting mechanisms are also being included: if a
tourist is taking a bus that passes close to an attraction,
perhaps a pop up ad alerting the tourist to the attraction
including opening times, etc.

We are also investigating the possibility of integrating
Bus Catcher with voice recognition and synthesis
techniques in order, for example, to facilitate impaired
users (e.g. blind people).

A further development relates to the application of
personalization techniques with utilization of user profiles.

Finally, optimisation techniques could be applied to
improve performance. For example, if the user asks what
route would take them from one location to another and
they express an interest in one of the suggested routes, the
fare and timetable parts should automatically update
themselves with the correct settings for that route to speed
up the information retrieval process for the user.

7. References

[1] G. Abowd, C. Atkeson, .J Hong, S. Long, R. Kooper, and M.
Pinkerton, “Cyberguide: A mobile context-aware tour guide”
CHI'96 Short paper, 1997.

[2] K. Cheverst, N. Davies, N. Mitchell and A. Friday,
“Experiences of Developing and Deploying a Context-Aware
Tourist Guide: The GUIDE Project”, Proceedings of MobiCom
2000, Boston, August 2000, pp 20-31, 2000.

[3] A. Dey, and G. Abowd, “Towards a Better Understanding of
Context and Context-Awareness”, Proceedings of the CHI 2000
Workshop on The What, Who, Where, When, and How of
Context-Awareness, 2000.

[4] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-
Computer Interaction, Prentice Hall, 1998.

[5] G. Djuknic, and R. Richton, “Geolocation and Assisted
GPS”, Lucent Technologies White Paper, 2001.

[6] Garmin, “Beginner’s Guide to GPS”,
http://www.garmin.com/aboutGPS/manual.html, 2000.

[7] N. Hristova, and G.M.P. O’Hare, “Ad-me: A Context-
Sensitive Advertising System”, Proc of the 3rd Int’l Conf. on
Information Integration and Web-based Applications & Services
(II-WAS), Austrian Computer Society, Linz Austria, 2000.

[8] W.S. Humphrey, Managing the software process, Addison-
Wesley, 1989.

[10] S. Jones, and S. Gould, “J2ME Step by Step”, IBM
Developer Works, 2001.

[11] H. Lieberman, and T. Selker, “Out of Context: Computer
Systems That Adapt To, and Learn from, Context”, CHI 2000,
ACM Conference on Human Factors in Computing Systems, The
Hague, The Netherlands, 2000.

[12] N. Marmasse, “Location-aware information delivery with
commotion”. Proc. of the 2nd Int’l Symposium on Handheld and
Ubiquitous Computing (HUC), Bristol, UK, September 25-27,
2000.

[13] G. Pomberger and G, Blaschek, Object Orientation and
Prototyping in Software Engineering, Prentice Hall, 1996.

[14] R. Pooley and P. Stevens, Using UML: Software
Engineering with objects and components, Addison-
Wesley,1999.

[15] B. Shneiderman, Designing the User Interface: strategies
for effective human-computer interaction, Addison-Wesley,
1997.

[16] I. Sommerville, Software Engineering 5th Ed, Addison-
Wesley, 2000.

[17] N. Shafer, and A. Steven, Ubiquitous Computing and the
EasyLiving Project, Microsoft Research, 2001.

[18] S. Venkateswaran, Java Programming for Wireless devices
using J2ME/CLDC/MIDP, California Software Labs, 1998.

[19] M. Weiser, “Some computer science issues in ubiquitous
computing”, Communications of the ACM 1993, 1993.

[20] J. Youll, J. Morris, R. Krikorian, and P. Maes, “Impulse:
Location-based Agent Assistance", Software Demos, Proc. of the
Fourth Int’l Conf. on Autonomous Agents (Agents 2000),
Barcelona, Spain, 2000.

[21] Dublin Bus Website http://www.dublinbus.ie

[22] KMap Project http://www.jshape.com/kvm/kmap.htm

[23] Java Palm OS Train Schedule
http://www.ericdaugherty.com/java/palm/trainschedule/index.ht
ml

[24] The TomTom website. http://www.TomTom.com

[25] The citiKey website. http://www.e-street.com/

[26] The comMotion website.
http://www.media.mit.edu/~nmarmas/comMotion.html

[27] The OVUM website. http://www.ovum.com/

