
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Effective Pruning Strategies for Sequential Pattern Mining

Xu Yusheng Ma Zhixin Li Lian
School of Information Science and Technology

Lanzhou University, China
e-mail: { xuyusheng, mazhx,lil}@ lzu.edu.cn

Tharam S. Dillon
School of Information System

Curtin University, Perth, Australia
e-mail: tharam.dillon@cbs.curtin.edu.au

Abstract— In this paper, we systematically explore the search
space of frequent sequence mining and present two novel
pruning strategies, SEP (Sequence Extension Pruning) and
IEP (Item Extension Pruning), which can be used in all
Apriori-like sequence mining algorithms or lattice-theoretic
approaches. With a little more memory overhead, proposed
pruning strategies can prune invalidated search space and
decrease the total cost of frequency counting effectively. For
effectiveness testing reason, we optimize SPAM [2] and present
the improved algorithm, SPAMSEPIEP, which uses SEP and
IEP to prune the search space by sharing the frequent 2-
sequences lists. A set of comprehensive performance experi-
ments study shows that SPAMSEPIEP outperforms SPAM by
a factor of 10 on small datasets and better than 30% to 50%
on reasonably large dataset.

I. INTRODUCTION

Frequent sequence mining is a task of discovering frequent
patterns shared across time among a large database objects
[1]. It has attracted considerable attention from database
practitioners and researches because of its broad applications
in many areas such as analysis of sales data, discovering
of Web access patterns, extraction of Motifs from DNA
sequence, etc.

In the last decade, a number of algorithms have been
proposed to deal with the problem of mining sequential
patterns in sequence databases. Most of them are Apriori-like
algorithms which utilize a bottom-up candidate generation-
and-test method. Unlike frequent itemset mining, the order of
items in a sequence is very important for mining sequential
patterns. Due to this difference, the task of discovering all
frequent sequences in large database is quite challenging. For
example, with n different items there are O(nk) potentially
frequent sequences of length k. Can we find some effective
pruning strategies that help algorithms to generate as fewer
candidates as possible? This is the motivation of this paper.

In this paper, we systematically explore the search space
of frequent sequence mining and present two novel prun-
ing strategies, SEP (Sequence Extension Pruning) and
IEP (Item Extension Pruning), which can be used in all
Apriori-like sequence mining algorithms or lattice-theoretic
approaches. With a little more memory overhead, proposed
strategies can prune invalidated search space effectively. For
effectiveness testing reason, we optimize SPAM [2] by pro-
posed pruning strategies and present the improved algorithm,
SPAMSEPIEP, which adopts a two steps mining process.
In the first step, SPAMSEPIEP generates all frequent 2-
sequences. In the second step, SPAMSEPIEP uses SEP

and IEP to prune the search space of SPAM by sharing
the frequent 2-sequences lists. A comprehensive performance
study shows that SPAMSEPIEP outperforms SPAM by a
factor of 10 on small datasets and better than 30% to 50%
for reasonably large dataset.

The rest of the paper is organized as follows. Section
2 introduces the basic concepts related to the sequence
mining problem. Section 3 discusses the related works. The
proposed pruning strategies are discussed in section 4. A
comprehensive experimental study is presented in Section 5.
Finally, conclusions can found in section 6.

II. PROBLEM STATEMENT

Let I = {i1, i2, . . . , im} be a set of m distinct items
comprising the alphabet. An itemset e = {i1, i2, . . . , ik} is
a non-empty unordered collection of items. Without loss of
generality, we assume that items of an itemset are sorted
in lexicographic order and denoted as (i1, i2, . . . , ik). A
sequence s is an ordered list of itemsets, denoted as (e1 →
e2 → . . .→ en), where ei is an itemset.

The number of instances of items in a sequence is called
the length of sequence. Let |ei| refer to the number of items
in itemset ei, a sequence with length l is called l-sequence,
where l =

∑
|ei| and 1 ≤ i ≤ n. For example, (a→ ab→

a) is a 4-sequence.
The size of a sequence, denoted as size(s), is the number

of events that it contains. For example, for s = (e1 → e2 →
. . .→ em), size of s is m.

A sequence s1 = (a1 → a2 → . . . → am) is said to be
contained in another sequence s2 = (b1 → b2 → . . .→ bn)
if and only if ∃i1, i2, . . . , im, such that 1 ≤ i1 < i2 < . . . <
im ≤ n, and a1 ⊂ b1, a2 ⊂ b2, . . ., am ⊂ bm. If s1 is
contained in s2, s1 is a subsequence of s2. This relationship
is denoted by s1 ≤ s1. For example, the sequence (a→ c)
is a subsequence of (ab→ cd).

The database D for sequence mining consists of a collec-
tion of input-sequences. Each input-sequence has a unique
identifier called sequence-id (sid) and each itemset also have
an unique identifier called itemset-id (eid). Given a sequence
database D, the support of a sequence s, denoted as δ(s,D),
is the fraction of sequences in D that contain s. Given a
user-specified threshold min sup, we say that a sequence s
is frequent if support(s) is greater than or equal to min sup.
The problem of sequence mining is to find all the frequent
sequences in the database.

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.22

21

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.22

21

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.22

21

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.22

21

2008 Workshop on Knowledge Discovery and Data Mining

0-7695-3090-7/08 $25.00 © 2008 IEEE
DOI 10.1109/WKDD.2008.22

21

As an example, consider the database shown in Fig.1
which has five items (a to e) and five input-sequences. The
figure also shows all frequent sequences with a min sup of
40%. In this example database D has 22 frequent sequences.

Fig. 1. Frequent sequence mining example.

III. RELATED WORKS

The sequential pattern mining problem was first proposed
in [1] and three mining algorithms, AprioriSome, AprioriAll
and DynamicSome were presented. All of these algorithms
adopted a similar process: litemsets, transformation and
sequence stage. AprioriAll performs better than the other
two as the literature reported. In subsequent work, GSP
[6] algorithm was proposed by the same authors. GSP
is a multi-phase iterative algorithm and requires multiple
passes of database scanning. Independently, by introducing
complex data structure, several more mining algorithms were
proposed, such as PLWAP [3], SPADE [8], SPAM [2], SE-
QUEST [7], PrefixSpan [4], etc. PLWAP is based on the con-
cept of WAPTree and has a desirable scalability. SPADE uses
a vertical id-list structure and a lattice-theoretic approach
to decompose the original search space into smaller oness.
SPAM employs vertical bitmap for frequency counting and
depth-first tree traversal strategy for candidate generation.
SEQUEST generates candidate sequences efficiently based
upon a DMA-Strips structure. Among these algorithms,
SPAM is to our best of knowledge the fastest sequential
patterns mining algorithm.

Several search space pruning strategies were proposed in
algorithms discussed above. For example, in SPADE [8],
before generating the id-list for a k-sequence, all its (k− 1)
subsequences must be frequent. Based on Apriori principle,
full pruning [7], s-step pruning and i-step pruning [2] are
used to trim invalid computing or searching. Unfortunately,
unlike our pruning strategies, these strategies are based on
their own algorithm and data structure and can not be shared
by other algorithms.

A. The SPAM algorithm

In this paper, we will take SPAM as an example for
demonstrating the proposed pruning strategies and com-
paring performance. This section describes SPAM in more
details.

1) SPAM algorithm
SPAM algorithm is based on the lexicographic sequence
tree and can make either depth or width first traversal. The
pseudo-code of its depth first traversal version is shown in

Fig.2. Taking current frequent sub-sequent node n = (s1 →
. . .→ sk), s-step extension candidate items list Sn and i-step
extension candidate items list In as input parameters, SPAM
generates a new sub-sequence by either s-step or i-step. And
this process recursively goes on until no more extension can
be performed
2) s-step and i-step pruning

Fig. 2. Pseudo-code of SPAM algorithm.

s-step pruning: Let a and b are two s-step candidate items
for sequence s, and candidates (s → a) is frequent while
(s → b) is infrequent. By the Apriori principle, both (s →
a → b) and (s → ab) must not be frequent, thus both of
them can be pruned.

i-step pruning: Let a and b are two i-step candidate items
for sequence (s → i1i2 . . . in), and (s → i1i2 . . . ina) is
frequent while (s → i1i2 . . . inb) is not. By the Apriori
principle, (s→ i1i2 . . . inab) must not be frequent and can
be pruned.

IV. PROPOSED PRUNING STRATEGIES

A. The lexicographic sequence tree

The lexicographic subset tree T is presented originally
by Rymon [5] and adopted to describe the itemset lattice in
most of well-known frequent itemset mining algorithms such
as MAFIA, CHARM. This approach is extended to describe
the framework of sequence lattice in SPADE[8] and SPAM
[2]. Let s1 and s2 are two sequences and s1 is a subsequence
of s2, then s2 is a descendant node of s1. By this way, all
sequences can be arranged in a lexicographic sequence tree
whose root is null. Each lower level k in tree contains all of
k-sequences which are ordered lexicographically. Each node
is recursively generated from its parent node by using one
s-extension step or i-extension step.

B. Candidate item sets for extensions

A sequence may be generated in many ways by s-
extension or i-extension. For example, sequence (a → ab)
can either be generated from (a → a) or (a → b), and the
two according paths are ∅ ≤ (a) ≤ (a → a) ≤ (a → ab)
and ∅ ≤ (a) ≤ (a → b) ≤ (a → ab). In order to void
sequence duplicated generation, each node n in the tree can
be associated with two sets, denoted as CSn and CIn. CSn
and CIn are the set of candidate items that can be used
to generate next level of sequences of n by s-extension, i-
extension respectively. For example, let the CIn of sequence
(a → b) be ∅, then (a → ab) can only be generated from
(a→ a).

2222222222

In the Apriori-like sequence mining algorithms or lattice-
theoretic approaches, if the candidate sets CSn or CIn
may be reduced, i.e. the search space is reduced, thus the
performance of these algorithms can be effectively improved.

C. Proposed pruning strategies

LEMMA 1: Given a frequent sequence s and its s-
extension candidate set CSn. For each pair of items a, b
in CSn, if (a → b) is infrequent, then b must not be an
s-extension item for sequence (s→ a).

Proof: Suppose b is an s-extension item for sequence
(s → a), i.e. (s → a → . . . → b) is a frequent sequence.
According to Apriori Principle, each sub-sequence of (s →
a → . . . → b) must be frequent. Then (a → b) is frequent.
This conflict with that (a→ b) is infrequent. Thus, b is not
an s-extension item for sequence (s→ a) and can be pruned.

LEMMA 2: Given a frequent sequence s = (s′ →
is1is2 . . . isn) and its i-extension candidate set CIn. For
each pair of items a, b in CIn, if (ab) is an infrequent
sequence, then b must not be an i-extension item for sequence
(s′ → is1is2 . . . isna).

Proof: Suppose b is an i-extension item for sequence
(s′ → is1is2 . . . isna), i.e. (s′ → is1is2 . . . isna . . . b) is a
frequent sequence. According to Apriori Principle, each sub-
sequence of (s′ → is1is2 . . . isna . . . b) must be frequent.
Then (ab) is frequent, too. This conflict with that (ab) is
infrequent. Thus, b is not a i-extension item for sequence
(s′ → is1is2 . . . isna)and can be pruned.

Suppose there are two sequence lists, denoted as S− list,
I − list, which contains all frequent 2-sequences with size
of 2 and size of 1 respectively. By sharing S − list and
I − list, we have pruning strategies SEP and IEP , which
are as follows.

Sequence extension Pruning (abbr. SEP): Given a fre-
quent sequence s and its according s-extension candidate set
CSn, and s1 is a not null subset of CSn. Let SEP (s1) =⋂
{b|a ∈ s1 and (a→ b) ∈ S − list}, according to Lemma

1, the new s-extension candidate set of sequence (s → s1)
is C∗Sn = CSn

⋂
SEP (s1).

Item extension Pruning (abbr. IEP): Given a frequent
sequence s = (s′ → is1is2 . . . isn) and its according i-
extension candidate item set CIn, and i1 is a not null subset
of CIn. Let IEP (i1) =

⋂
{b|a ∈ i1 and (ab) ∈ I − list},

according to Lemma 2, the new i-extension candidate set for
sequence (s′ → is1is2 . . . isni1) is C∗In = ISn

⋂
IEP (i1).

Fig. 3. Pseudo-code of SEP and IEP pruning algorithms.

D. Example
Considering the database D and minimal support threshold

in Fig. 1, the S − list of database is {a → b, a → c, a →
d, a → e, b → c, b → d, b → e, c → d, c → e, d → e} and
the I − list is {bc}. Suppose we are at node (a → b) in
the tree, the node’s CSn is {c, d, e} and CIn = {c}. Without
pruning, the possible s-extended sequences are (a→ b→ a),
(a→ b→ b), (a→ b→ c), (a→ b→ d) and (a→ b→ e).
Because (b → a) and (b → b) are not in S-list, sequence
(a → b → a) and (a → b → b) must be infrequent. Item a
and b should be trimmed off from node’s CSn. Hence, we
do not have to perform these s-extensions. Similarly, item d
and e should be trimmed off from node’s CIn.

E. SPAMSEPIEP: Using SEP and IEP to optimize
SPAM

In order to test effectiveness of SEP and IEP , we
optimize SPAM by using proposed pruning strategies and
present the improved algorithm, SPAMSEPIEP, shown in
Fig.4. The mining process is divided into two steps. In the
first step, SPAMSEPIEP generates frequent 2-sequences
and stores them in S − list and I − list respectively. In the
second step, the algorithm recursively traverses the search
space in a depth-first manner. At each node, SEP and IEP
are used to trim node’s s-extension candidate set CSn and
i-extension candidate set CIn. The rest part of algorithms is
as same as that in SPAM.

Fig. 4. Pseudo-code of SPAMSEPIEP.

2323232323

V. EXPERIMENTAL EVALUATION

To test the performance improvement of SEP and IEP
strategies, an extensive set of experiments were performed
upon an Intel Pentium 4 CPU 1.7GHz PC with 512MB main
memory, running Microsoft Windows 2003 server. Source
code of SPAM was downloaded from the (http://himalaya-
tools.sourceforge.net/) and modified with proposed strate-
gies. Same as SPAM, all synthetic datasets are generated
by using the IBM AssocGen program [1].

A. Performance comparison with SPAM

Firstly, a set of experiments were performed for study-
ing the performance of the SPAMSEPIEP by compare
it with SPAM. The generated datasets include one small
database (Fig.5(a)), two medium-sized ones (Fig.5(b) and
(c)) and a large one (Fig.5(d)). The experiments show that
SPAMSEPIEP outperforms SPAM by a factor of about 10
on small dataset. Although, there is no distinct magnitude
difference between SPAMSEPIEP and SPAM on reason-
ably large dataset, the running time of SPAMSEPIEP is
decreased by 30% to 50% than that of SPAM.

In small sequence databases, frequent 2-sequences are
only a small portion in all 2-sequences. As SPAMSEPIEP
traverses the lexicographic sequence tree, a mass of infre-
quent extensions are pruned. On the other side, in large
database, a majority of 2-sequences are frequent ones. When
SPAMSEPIEP traverses the lexicographic sequence tree,
only few branches are pruned. This is the primary reason
why SEP and IEP strategies perform effectively in small
database while not so effectively in large ones.

Secondly, we study the scale-up performance of

Fig. 5. Performance comparison: Varying support for synthetic datasets.

SPAMSEPIEP as several parameters in dataset generation
were varied and min sup is kept fixed. For each test, only
one parameter was varied and others were kept fixed. The pa-
rameters that we varied were number of customers, average
transactions per customer, average items per transaction and
average length of maximal pattern. The results are shown in
Fig.6. It can be easily observed that: (1) the proposed prune
strategies can effectively improve the performance of SPAM.
(2) The trend of curves of SPAMSEPIEP is same as that
of SPAM, so the proposed prune strategies are independent

of SPAM and can be used for other algorithms.

Fig. 6. Performance comparison: Varying datasets generation parameters.

VI. CONCLUSION

In this paper, by systematically exploring the search
space of frequent sequence mining, we propose two novel
pruning strategies, SEP and IEP , which can be used
in all Apriori-like sequence mining algorithms or lattice-
theoretic approaches. With a little more memory overhead,
proposed pruning strategies can prune invalid search space.
These strategies are independent of underlying enumerat-
ing methods and data structures of sequence mining al-
gorithms, thus can be shared among different algorithms.
For effectiveness testing reason, we optimize SPAM, one
of the fastest algorithms for sequential pattern mining, by
using proposed pruning strategies and present the improved
algorithm, SPAMSEPIEP. The experimental results show
that SPAMSEPIEP outperforms SPAM on every dataset.

REFERENCES

[1] R. Agrawal, R. Srikant. Mining Sequential Patterns. In ICDE 1995,
Volume 6, pp.3-14, 1995.

[2] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential PAttern Mining
using A Bitmap Representation, In ACM SIGKDD 2002, pp. 429-435,
2002.

[3] C.I. Ezeife, and Y. Lu. Mining Web Log Sequential Patterns with
Position Coded Pre-Order Linked WAP-Tree, The International Journal
of Data Mining and Knowledge Discovery(DMKD), Volume 10, pp.5-
38, 2005.

[4] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,U. Dayal, and
M.-C. Hsu. PrefixSpan mining sequential patterns efficiently by prefix
projected pattern growth. In ICDE 2001, pp.215-226, 2001.

[5] R. Rymon. Search through systematic set enumeration. In Proc. of 3rd
Int’l Conf. on Principles of Knowledge Representation and Reasoning,
pp. 539-550, 1992.

[6] R. Srikant, R. Agrawal. Mining Sequential Patterns: Generalizations
and Performance Improvements, In Proc. 5th Int. Conf. Extending
Database Technology (EDBT’96), Volume 1057, pp.3-17, 1996.

[7] H. Tan, T.S. Dillon, F. Hadzic, and E. Chang. SEQUEST: mining
frequent subsequences using DMA Strips, In Proceedings of the
Seventh International Conference on Data Mining and Information
Engineering 2006, pp.35-328, 2006.

[8] M.J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent
Sequences. Machine Learning, Volume 0, pp. 1-31, 2000.

2424242424

