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abstract 

There is a growing trend in using mobile comput- 
ing environment for  several applications, and it is im-  
portant that the mobile systems are provided adequate 
support both a t  the systems level and a t  the commu- 
nication level. Causal ordering is a useful property, 
particularly i n  applications that involve human inter- 
actions. In  this paper, we present three algorithms for 
causal ordering in  mobile systems. The first algorithm 
handles the resource constraints of the mobile hosts. 
But the system is not easily scalable and is not grace- 
ful  to host disconnections a n d  connections. The sec- 
ond algorithm eliminates the above disadvantages at 
the cost of inhibiting some messages. The third algo- 
rithm is a trade-off between the first two algorithms. 

1 Introduction 

Many of the distributed algorithms designed for 
static hosts cannot be directly used for mobile sys- 
tems due to  the change in physical connectivity, re- 
source constraints of mobile hosts and limited band- 
width of the wireless links [l]. This has spawned con- 
siderable amount of research in mobile computing: de- 
signing communication protocols [3, 91, file system op- 
erations [4], and providing fault tolerance [5]. In this 
paper, we consider the problem of providing a partic- 
ular kind of communication support, namely, causally 
ordered message delivery to  mobile hosts. Consider 
two messages m and m’ sent to  the same destination 
such that  sending of m “happened before” sending of 
m’. Causal ordering is obeyed if m is received before 
m’ is received. 

Causal ordering is useful in several applications 
like management of replicated data ,  resource allo- 
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cation, monitoring a distributed system, USENET 
etc., [7, lo]. Causal ordering is best suited for appli- 
cations that  involve human interactions from several 
locations [lo];  such applications are typical in mobile 
systems. Some osf the major applications of distributed 
mobile systems in which causal ordering is useful are 
teleconferencing, stock trading, collaborative applica- 
tions, etc. 

1.1 Motivat,ion 

While designing algorithms for mobile systems, the 
following factors! should be taken into account. 

F1. 

F2. 

F3. 

F4. 

The amount of computation performed by a mo- 
bile host should be low. 

The communication overhead in the wireless 
medium should be minimal. 

Algorithms should be scalable with respect to  the 
number of mobile hosts. 

Algorithms should be able to  easily handle the 
effect of hosts disconnections and connections. 

If mobile hosts are made to execute the traditional 
causal ordering algorithms (by storing the relevant 
da ta  structures in the mobile hosts), none of the above 
factors (FlLF4) can be satisfied. We present three al- 
gorithms for causal ordering in mobile systems. 

Our first algorithm stores the da ta  structures of 
mobile hosts (MHs) relevant to  causal ordering in the 
mobile support stations (MSSs), and the algorithm is 
executed by the MSSs on behalf of the MHs. However, 
the message overhead is proportional to  the square 
of the number of mobile hosts. Thus, factor F3 is 
not satisfied. Also, the algorithm is graceful to  hosts 
disconnections and connections. 

Algorithm 2 eliminates the problems in Algorithm 
1. The  size of the message header is proportional to  
the square of the number of MSSs. Since the size 
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of the header does not vary with the number of mo- 
bile hosts, the algorithm is scalable (with respect to  
the number of the mobile hosts) and host disconnec- 
tions/connections do not pose any problem. But there 
may be some “inhibition” in delivering the messages 
to  the mobile hosts. Our experimental results suggest 
that  delay due to  inhibition is less than the delay in- 
volved in transmitting and processing the long header 
(of each message) used in Algorithm 1. Also, the load 
placed on the MSSs is less compared to  Algorithm 1. 

Algorithm 3 is a hybrid algorithm and is a trade- 
off between algorithm 1 and algorithm 2. Every MSS 
is partioned into IC logical MSSs to  reduce the delay 
due to  “inhibition” in delivering the messages to  MHs. 
However, le cannot be large as this will increase the 
size of the header and hence the message overhead. A 
summary of our results is shown in Table 1. 

2 Model and Definitions 

A distributed mobile system consists of a set of mo- 
bile hosts and static hosts. A mobile host (MH) is a 
host whose geographical location can change with time 
while retaining its connectivity to  the network [ 3 ] .  A 
static host is a host whose location does not change 
during the computation. A static host can also be a 
mobile support station (MSS). An MSS has the neces- 
sary infrastructures to support the mobile hosts. For 
simplicity, we assume tha t  the system consists of only 
MSSs and MHs. A static host can be considered as an 
MH that  does not move. 

The geographical area within which an MSS sup- 
ports MHs is called a cell. Communication between 
MHs and MSSs is through a wireless channel. An 
MH can communicate directly with an MSS only if 
the MH is located in the cell of the MSS. A mobile 
host may belong to  a t  most one cell a t  any time. Mo- 
bile hosts communicate with other hosts through their 
MSSst . MSSs are connected among themselves using 
wired channels. The MSSs and the wired channels 
constitute the static network. We assume that  a logi- 
cal channel exists between every pair of MSSs. These 
logical channels need not be FIFO channels; whereas 
the wireless channels are FIFO. Both wired and wire- 
less channels are reliable and take an arbitrary but  
finite amount of time to  deliver messages. 

A mobile host can migrate from one cell to  another 
cell a t  any time. Every MSS periodically broadcasts a 
beacon [3]. Let MH hl move from the cell of MSS s1 

!The MSS of an MH is the MSS in whose cell the MH is 
located. 

to  the cell of s2. hl discovers tha t  i t  is in the cell of sz 
after receiving the beacon broadcast by sa. MH hl in- 
forms MSS s2 of hl’s i d  and the id of its previous MSS 
SI. A handoff procedure is then executed between s2 

and SI. s2 informs s1 about hl’s migration and gets 
the relevant information associated with hl from MSS 
S1. 

A mobile host can disconnect itself from the net- 
work by sending a disconnect message to  its current 
MSS and can reconnect a t  a later time by sending a 
connect message. If an MSSs receives a message for 
any of the disconnected mobile hosts, the message can 
be stored and delivered to  mobile host after it recon- 
nects, or the message can be dropped depending on 
the application. 

An event in a host may be a send event (sending 
a message to  another host), a receive event (receiving 
a message from a host), or a n  internal event which 
does not involve sending or receiving a message. Let 
send(m) be the event that  corresponds to  the sending 
of message m and recv (m)  be the event that  corre- 
sponds to  the receipt of m. Events in a mobile system 
are ordered based on the “happened before” relation, 
+, introduced by Lamport [B]. For any two events e 
and e’, e + e’ is true if (i) e and e’ are two events in 
the same host and e occurs before e’ or (ii) e corre- 
sponds to  sending a message m and e’ corresponds to  
the receipt of m or (iii) there exists an event e” such 
that  e -+ e” and e“ ----f e‘. Causal ordering of message 
delivery is obeyed if, for any two messages m and m’ 
that  have the same destination, s e n d ( m )  + send(m’) 
implies that  recw(m) -+ recw(m’). 

3 Preliminaries 

Causal ordering was first proposed for the ISIS 
system [2]. There are several algorithms that  im- 
plement causal ordering for distributed systems with 
static hosts 12, 7, 81. The  algorithm by Birman and 
Joseph [a] appends, to  every message, the history of 
the communications that happened before the sending 
of the message. The size of the appended information 
can become unbounded. However, the channels need 
not be reliable. The  algorithm by Raynal, Schiper and 
Toueg, referred henceforth as RST algorithm, is based 
on message counting and assumes the channels to  be 
reliable [7]. The RST algorithm, which we will discuss 
subsequently, appends N 2  integers to  every message, 
where N is the number of hosts in the system. The al- 
gorithm by Schiper et al. [8] uses vector clocks and is 
somewhat similar to  the RST algorithm. In this paper 
we extend the RST algorithm to  mobile systems. 
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Algorithm 
Algorithm 1 
Algorithm 2 
Algorithm 3 

The RST algorithm for causal ordering maintains 
two arrays, DELIV;[N] and SENT;[N, NI, for each host 
Pi. D E L I V ; [ ~ ]  denotes the total number of messages re- 
ceived by Pi from Pj.  SENT;[^,^] indicates Pi's knowl- 
edge about the number of messages Pk has sent to Pj. 
The following steps are executed at Pi to  ensure causal 
ordering. 

When Pi sends message m to  Pj, Pi appends its 
current value of SENT; with m. (Pi sends  SENT^) 
to  Pj.) Pi then increments s E N T i [ i , j ]  by 1. 

On receiving (m,ST)  from Pj,  the causal order- 
ing algorithm a t  Pi first checks if DELIVi[k]  > ST[k ,  i] 
for all k. If so, the message m is delivered to  the 
application, D E L I V i [ j ]  is incremented by 1,  SENT^[^, i] 
is set to  ST[j ,  i] + 1, and finally  SENT^[^, k] is set 
to  maz(ST[j, I C ] ,   SENT^[^, k]) for all j ,  k. If not, m is 
queued till DELIVi[k]  2 S?"[k, i ]  for all k .  

Size of message header 

O(k2  * n:) integers 

O ( n i )  integers O( 1) messages 
O(n:) integers O(n,) messages 

O(k * 

4 Algorithm 1 

Algorithm 1 consists of two modules: static module 
and handoff module. The  static module is executed 
when an MH is in a particular cell. The handoff mod- 
ule is executed when an MH moves from one cell to  
another. 

4.1 Static Module 

For each MH hi, we maintain two arrays- 

the number of mobile hosts. MH-DELIV;[j]  denotes 
the total number of messages received by hi from 
hj .  MH-SENTI [k, j] indicates hi's knowledge about the 
number of messages h k  has sent t o  hj.  Assume that  
MH hi is in the cell of MSS s k .  To reduce the commu- 
nication and computation overhead of MH hi, these 
arrays are stored in MSS sk. Since the messages from 
(to) hi go through MSS s k ,  the causal ordering algo- 
rithm is executed by MSS sk. 

Initially, all the entries in the arrays MHDELIV; and 
MH-SENT; are set to  0. To send a message m to  an- 
other M H  h j ,  hi first sends the message m to  its MSS 

MH_DELIVi[nh]  and M H - S E N T i [ n h ,  n h ] ,  where n h  is 

Sk. s k  sends ( ~ , M H - S E N T ; )  to  the MSS of hj and 
increments MH-SENT;[~ ,  j]. There are several proto- 
cols [3, 91 tha t  ensure reliable message delivery to  mo- 
bile hosts. Any of these protocols can be used. 

MSS sk, on receiving a message (m,  ST)  meant 
for hi from MH h j ,  first checks whether m is deliu- 
eruble. m is deliverable if MH-DELIVi[k] 2 ST[k,i] 
for all k. If so, sk transmits m to  hi, incre- 
ments MH-DELI'V;[j], and MH-SENTj [ j ,  k] is set to  
maz(ST[j, IC], M H S E N T ~ [ ~ ,  IC]) for all j ,  k. m is also 
temporarily stored by s k  in PEND-ACK~.  Message m 
will be deleted from PEND-ACK~ after receiving an ack 
for m from MB hi. If m is not deliverable, m is 
stored in MH-PEN DING^ till m becomes deliverable. 
Whenever a message is delivered to  hi, s k  checks 
MH-PEN DING^ for any message that  becomes deliver- 
able. 

4.2 Handoff' Module 

Let hi move from the cell of MSS S k  to  the cell of 
MSS s t .  The handoff module is then executed by Sk 
and s t .  After entering the cell of s t ,  MH hi sends the 
message register(hi, s k )  to  s t .  Also, hi retransmits the 
messages ( to  s t )  for which it did not receive ack from 
its previous MSS s k .  MSS st then informs s k  that  
hi has switched from MSS Sk to  MSS st by sending 
a handof-beginfhi)  message to  sk. After receiving 
hundof-begin(hi), Sk transfers M H B E L I V ~ ,  MHSENT~,  
M H J E N D I N G ~ ,  and PEND-ACK~ to MSS st and finally 
sends message hundofj-over(hi)  to  s t .  

On receiving these da ta  structures, st first trans- 
mits all messages in P E N D A C K ~ .  Also, st forwards 
the messages ( to  their destinations) retransmitted by 
hi. The handoff procedure is then terminated a t  st. If 
MH hi switches to  some other cell before the handoff 
is completed, the current handoff is completed before 
a new handoff begins. 

4.3 Analysis 

For every message sent by MH hi, the MSS (in 
whose cell hi resides) sends MH- SENT^ with the mes- 
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sage. Hence, the size of the header for every mes- 
sage sent over the static network is O ( n i )  integers. 
The  handoff module uses O(1) messages of size O(n:) 
numbers when MH hi switches its cell. 

Now, consider the factors F1-F4 discussed in Sec- 
tion 1.1. Since Algorithm 1 is executed at MSSs, fac- 
tors F l  and F2 are satisfied. The  overhead in the 
wireless medium is kept minimal. But factors F3-F4 
are not satisfied. An overhead of O ( n i )  integers over 
the static network is costly if nh is very large. Also, 
due to  disconnections and connections, nh varies. So 
during disconnections, some of the entries in the ar- 
rays MH-DELIV, and MH-SENT are not needed. The 
arrays need not be static, but maintaining dynamic 
arrays can become complicated if the MH disconnec- 
tions and connections are frequent. In addition, the 
processing time for upda.ting t,he matrix MH-SENT will 
be substantial for large n h ,  and the nontrivial process- 
ing time increases the delay in delivering a message. 

5 Algorithm 2 

In Algorithm 1, messages are tagged with com- 
plete information to  explicitly maintain causal order- 
ing among the mobile hosts. In Algorithm 2 ,  mes- 
sages are tagged with sufficient information just to  
maintain causal ordering among the MSSs. Since the 
wireless channel between an MSS and an MH in its 
cell is FIFO, maintaining causal ordering a t  the static 
network level is sufficient if the MHs do not move. 
To ensure that  causal ordering is not violated after an 
MH moves, we incorporate some steps into the handoff 
procedure. 

5.1 Static Module 

The  static module is similar to  the static mod- 
ule of Algorithm 1 but for some of the da ta  struc- 
tures. For each MSS si ,  we maintain MSS-DELIV;[n,], 

M S S - S E N T ; [ ~ , ,  n,], and MSS-PENDING; .  (This is unlike 
in Algorithm 1 where we maintain these da ta  struc- 
tures for every mobile host.) Observe that  the size 
of the arrays MSS_DELIV;[n,]  and MSSSENT;[R, , n,] 
vary with n,, the number of MSSs. The  value 
of MSS-DELIV;[j] indicates the number of messages 
(whose destination can be different MHs) received 
from MSS s j  by MSS si. M S S S E N I I ' ; [ ~ , ~ ]  denotes the 
number of messages sent by MSS s k  (not necessarily 
delivered) to  MSS s j  that  si knows of. Every MSS 
knows (need not be exact) about the location of the 
MHs. Initially, we assume that  the initial locations 
of MHs are known to all MSSs. We show how this 

knowledge gets updated in the next section. In other 
aspects, the static module is similar t o  the static mod- 
ule of algorithm 1. 

5.2 Handoff Module 

The  handoff module is more involved when com- 
pared to  the handoff module of algorithm 1. Since 
causal ordering is explicitly maintained only a t  the 
MSSs level, some measures have t o  be taken dur- 
ing handoff to maintain causal ordering after an MH 
moves. 

Before we describe the handoff module, we illus- 
trate the problem a t  hand with an example. Consider 
mobile hosts h l ,  hz, and h3. Assume that  h l ,  hz and 
h3 are in the cells of MSSs SI, s2 and sg respectively. 
Let h3 send a message ml to  hl (ml will be sent to  
MSS S I )  and then send a message m2 to  hz. Before 
receiving ml,  let hl switch to  the cell of sa. Now, MH 
ha, after receiving m2 from h3, sends a message m3 for 
hl to s2. If s2 delivers m3 to  h l ,  causal ordering will 
be violated because hl has not yet received ml. Also, 
sz cannot find out from the knowledge i t  has gained so 
far whether there are any in-transit messages for hl 
sent to  SI. However, if s2 delivers m3 after ascertain- 
ing that  all the messages for hl sent t o  s1 have been 
delivered, causal ordering will not be violated. Now, 
we describe the handoff module. 

Assume that  a mobile host h k  switches from the 
cell of MSS si to  the cell of MSS sj. After switch- 
ing, MH h k  sends register(hk,si) message to  s j .  

On receiving this message, sj sends the message 
hando#-begin(hk) to  s j ,  and then broadcasts the mes- 
sage notzfy(hk,  s i ,  s j )  to  all the MSSs. The message 
notify(hk,  si, s j )  signifies that  MH h k  has switched 
from MSS si to  MSS s j .  An MSS s, on receiving 
notify( h k ,  si, s j )  message, updates its local knowledge 
about the location of MH h k  and sends a l a s t ( h k )  mes- 
sage to  si .  After receiving no t i f y (hk ,  s;, sj), MSS s will 
send messages meant for MH h k  only t o  sj (the new 
MSS of h k )  and not to  si (the previous MSS of hk) .  
MSS si, after receiving the message handofl-begin(hk) 
from s j ,  sends e n a b l e ( h k ,  P E N D - A C K ~ )  message t o  sj  

and waits for l a s t (hk )  messages from all the MSSs. 
Meanwhile, if any message received by s; for hk be- 
comes deliverable to  h k ,  si marks it as old and for- 
wards it to  sj.  

On receiving the message e n a b l e ( h k ,  P E N D - A C K ~ )  
MSS s j  starts sending the application messages sent 
by h k .  Also, sj delivers all the  messages in P E N D - A C K ~  

in the FIFO order to  MH h k .  sj also delivers all the 
messages for MH hk tha t  are marked old to  h k  in 
the order in which the messages arrived. Any mes- 
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sages for hk that  are not marked old will be queued in 
MSS-PENDINGj. 

MSS si (the previous MSS of h k ) ,  after receiv- 
ing l a s t (hk )  from all the MSSs sends the mes- 
sage h u n d o & o v e r ( h k )  to  MSS s j .  Observe that  
no messages for h k  sent to  si will be in transi- 
tion after s; receives l a s t (hk )  from all the MSSs. 
(Messages sent as part of handoff module are also 
causally ordered.) The  handoff terminates at sj after 
h a n d o f l - o v e r ( h k )  is received by s j .  If sj receives the 
message handofl.. .begin(hk) from some other MSS be- 
fore the current handoff terminates (this can happen 
if hk switches its cell), sj will respond to  the message 
only after the handoff terminates. 

5.3 Analysis 

The size of M S S S E N T  is n: integers and hence the 
size of each message header over the wired network is 
O(n3) integers. The  overhead does not depend on n h ,  

the number of MHs. Clearly, factors F3-F4 are sat- 
isfied. MH connections/disconnections do not affect 
the size of the arrays MSSDELIV and MSSSENT. Dur- 
ing handoff, a notify message has to  be sent to  all the  
MSSs, and all the MSSs send lust messages. Hence, 
the handoff module uses O(n,)  messages. The storage 
requirement of Algorithm 2 and the load placed on the 
MSSs are less than that  of Algorithm 1. 

Though the handoff module is involved, it does not 
affect the performance (compared to  Algorithm 1) due 
to  the following reasons. (i) MH h k  does not wait for 
the handoff module to  terminate to  receive messages. 
It keeps receiving old messages. (ii) Messages sent by 
h k  for other MHs are sent by sj (the new MSS of h k )  

immediately after sj receives enab le  message. 
The drawback of Algorithm 2 is the possibility of a 

message being “inhibited” from being delivered to  an 
MH. There is an inhibition in delivering a message to  
an MH if it is queued in MSSJENDING even though 
the delivery of the message does not violate causal 
ordering. Messages may be inhibited because, in Al- 
gorithm 2, causal ordering is explicitly implemented 
among the MSSs. Reception of a message may violate 
causal ordering from an MSS’s point of view; whereas 
its delivery to  a n  MH may not violate causal order- 
ing from the MH’s point of view. However, this delay 
is less than the delay introduced by Algorithm 1 in 
transmitting and processing the header of each mes- 
sage. The average delay in delivering a message in Al- 
gorithm 2 is considerably less than the delay in Algo- 
rithm l when n h  increases, as shown in Figure l. (For 
the details of our simulation model, see Appendix A.) 
When n h  < 30 the message header in both the algo- 
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Message0.15 
delay 

in secs 0.1 

0.05 
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algorithm2 +- 

10 20 30 40 50 60 70 80 90 100 
No. of MHs 

Figure 1: Comparison of Algorithm 1 and Algorithm 2 
with respect to  message delay. n, = 10 

rithms are comparable in size. The  message delay in 
Algorithm 2 is imore than that  of Algorithm 1 due to  
the inhibition inherent in Algorithm 2. However, as 
n h  increases the delay due to  processing the message 
header in Algorithm 1 dominates. 

6 Algorithm 3 

This algorithm reduces the delay in delivering the 
messages to  MIH due to  inhibition, the drawback of 
Algorithm 2, without much increase in the message 
overhead. The  algorithm achieves this by partioning 
every physical MSS into k logical MSSs. 

If an MH enters the cell of an MSS, the MH will 
be allocated t o  one of the logical MSSs depending on 
the load in each logical MSS of the MSS. The MHs 
will communicate with the other MHs through their 
logical MSSs. Every logical MSS maintains two arrays 
M S S D E L I V [ ~  * n,] and MSS-SENT[~ * n,, k * n,] and a 
queue MSSPENDING. The algorithm is the same as 
Algorithm 2 except for the fact that  causal ordering 
is explicitly maintained among the logical MSSs. The 
size of the message header is O ( k 2  * n:). 

Messages t o  lMHs that  belong different logical MSSs 
will not inhibit each other though the MHs may be 
in the same cell. Thus, as k increases, the unneces- 
sary delay in delivering the message to  MH decreases. 
However, as k increases the size of the message header 
will increase and, as a result, the time to process the 
message header will become a dominating factor. In 
Figure 2, the average message delay initially decreases 
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when k increases. But when k becomes large the av- 
erage message delay increases. 
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