
Causally Ordered Message Delivery in Mobile Systems*

Sridhar Alagar and S. Venkatesan
Department of Computer Science

University of Texas at Dallas, Richardson, TX 75083
{ sridhar,venky} @utdallas.edu

abstract

There is a growing trend in using mobile comput-
ing environment for several applications, and it is im-
portant that the mobile systems are provided adequate
support both a t the systems level and a t the commu-
nication level. Causal ordering is a useful property,
particularly i n applications that involve human inter-
actions. In this paper, we present three algorithms for
causal ordering in mobile systems. The first algorithm
handles the resource constraints of the mobile hosts.
But the system is not easily scalable and is not grace-
ful to host disconnections a n d connections. The sec-
ond algorithm eliminates the above disadvantages at
the cost of inhibiting some messages. The third algo-
rithm is a trade-off between the first two algorithms.

1 Introduction

Many of the distributed algorithms designed for
static hosts cannot be directly used for mobile sys-
tems due to the change in physical connectivity, re-
source constraints of mobile hosts and limited band-
width of the wireless links [l]. This has spawned con-
siderable amount of research in mobile computing: de-
signing communication protocols [3, 91, file system op-
erations [4], and providing fault tolerance [5]. In this
paper, we consider the problem of providing a partic-
ular kind of communication support, namely, causally
ordered message delivery to mobile hosts. Consider
two messages m and m’ sent to the same destination
such that sending of m “happened before” sending of
m’. Causal ordering is obeyed if m is received before
m’ is received.

Causal ordering is useful in several applications
like management of replicated data , resource allo-

‘This research was supported in part by N S F under Grant
No. CCR-9110177, by the Texas Advanced Technology Pro-
gram under Grant No. 9741-036, and by grants from Alcatel
Network Systems.

cation, monitoring a distributed system, USENET
etc., [7, lo]. Causal ordering is best suited for appli-
cations that involve human interactions from several
locations [lo]; such applications are typical in mobile
systems. Some osf the major applications of distributed
mobile systems in which causal ordering is useful are
teleconferencing, stock trading, collaborative applica-
tions, etc.

1.1 Motivat,ion

While designing algorithms for mobile systems, the
following factors! should be taken into account.

F1.

F2.

F3.

F4.

The amount of computation performed by a mo-
bile host should be low.

The communication overhead in the wireless
medium should be minimal.

Algorithms should be scalable with respect to the
number of mobile hosts.

Algorithms should be able to easily handle the
effect of hosts disconnections and connections.

If mobile hosts are made to execute the traditional
causal ordering algorithms (by storing the relevant
da ta structures in the mobile hosts), none of the above
factors (FlLF4) can be satisfied. We present three al-
gorithms for causal ordering in mobile systems.

Our first algorithm stores the da ta structures of
mobile hosts (MHs) relevant to causal ordering in the
mobile support stations (MSSs), and the algorithm is
executed by the MSSs on behalf of the MHs. However,
the message overhead is proportional to the square
of the number of mobile hosts. Thus, factor F3 is
not satisfied. Also, the algorithm is graceful to hosts
disconnections and connections.

Algorithm 2 eliminates the problems in Algorithm
1. The size of the message header is proportional to
the square of the number of MSSs. Since the size

169
0-8186-6345-6/95 $04.00 0 1995 IEEE

mailto:utdallas.edu

of the header does not vary with the number of mo-
bile hosts, the algorithm is scalable (with respect to
the number of the mobile hosts) and host disconnec-
tions/connections do not pose any problem. But there
may be some “inhibition” in delivering the messages
to the mobile hosts. Our experimental results suggest
that delay due to inhibition is less than the delay in-
volved in transmitting and processing the long header
(of each message) used in Algorithm 1. Also, the load
placed on the MSSs is less compared to Algorithm 1.

Algorithm 3 is a hybrid algorithm and is a trade-
off between algorithm 1 and algorithm 2. Every MSS
is partioned into IC logical MSSs to reduce the delay
due to “inhibition” in delivering the messages to MHs.
However, le cannot be large as this will increase the
size of the header and hence the message overhead. A
summary of our results is shown in Table 1.

2 Model and Definitions

A distributed mobile system consists of a set of mo-
bile hosts and static hosts. A mobile host (MH) is a
host whose geographical location can change with time
while retaining its connectivity to the network [3] . A
static host is a host whose location does not change
during the computation. A static host can also be a
mobile support station (MSS). An MSS has the neces-
sary infrastructures to support the mobile hosts. For
simplicity, we assume tha t the system consists of only
MSSs and MHs. A static host can be considered as an
MH that does not move.

The geographical area within which an MSS sup-
ports MHs is called a cell. Communication between
MHs and MSSs is through a wireless channel. An
MH can communicate directly with an MSS only if
the MH is located in the cell of the MSS. A mobile
host may belong to a t most one cell a t any time. Mo-
bile hosts communicate with other hosts through their
MSSst . MSSs are connected among themselves using
wired channels. The MSSs and the wired channels
constitute the static network. We assume that a logi-
cal channel exists between every pair of MSSs. These
logical channels need not be FIFO channels; whereas
the wireless channels are FIFO. Both wired and wire-
less channels are reliable and take an arbitrary but
finite amount of time to deliver messages.

A mobile host can migrate from one cell to another
cell a t any time. Every MSS periodically broadcasts a
beacon [3]. Let MH hl move from the cell of MSS s1

!The MSS of an MH is the MSS in whose cell the MH is
located.

to the cell of s2. hl discovers tha t i t is in the cell of sz
after receiving the beacon broadcast by sa. MH hl in-
forms MSS s2 of hl’s i d and the id of its previous MSS
SI. A handoff procedure is then executed between s2

and SI. s2 informs s1 about hl’s migration and gets
the relevant information associated with hl from MSS
S1.

A mobile host can disconnect itself from the net-
work by sending a disconnect message to its current
MSS and can reconnect a t a later time by sending a
connect message. If an MSSs receives a message for
any of the disconnected mobile hosts, the message can
be stored and delivered to mobile host after it recon-
nects, or the message can be dropped depending on
the application.

An event in a host may be a send event (sending
a message to another host), a receive event (receiving
a message from a host), or a n internal event which
does not involve sending or receiving a message. Let
send(m) be the event that corresponds to the sending
of message m and recv (m) be the event that corre-
sponds to the receipt of m. Events in a mobile system
are ordered based on the “happened before” relation,
+, introduced by Lamport [B]. For any two events e
and e’, e + e’ is true if (i) e and e’ are two events in
the same host and e occurs before e’ or (ii) e corre-
sponds to sending a message m and e’ corresponds to
the receipt of m or (iii) there exists an event e” such
that e -+ e” and e“ ----f e‘. Causal ordering of message
delivery is obeyed if, for any two messages m and m’
that have the same destination, s e n d (m) + send(m’)
implies that recw(m) -+ recw(m’).

3 Preliminaries

Causal ordering was first proposed for the ISIS
system [2]. There are several algorithms that im-
plement causal ordering for distributed systems with
static hosts 12, 7, 81. The algorithm by Birman and
Joseph [a] appends, to every message, the history of
the communications that happened before the sending
of the message. The size of the appended information
can become unbounded. However, the channels need
not be reliable. The algorithm by Raynal, Schiper and
Toueg, referred henceforth as RST algorithm, is based
on message counting and assumes the channels to be
reliable [7]. The RST algorithm, which we will discuss
subsequently, appends N 2 integers to every message,
where N is the number of hosts in the system. The al-
gorithm by Schiper et al. [8] uses vector clocks and is
somewhat similar to the RST algorithm. In this paper
we extend the RST algorithm to mobile systems.

170

Algorithm
Algorithm 1
Algorithm 2
Algorithm 3

The RST algorithm for causal ordering maintains
two arrays, DELIV;[N] and SENT;[N, NI, for each host
Pi. D E L I V ; [~] denotes the total number of messages re-
ceived by Pi from Pj. SENT;[^,^] indicates Pi's knowl-
edge about the number of messages Pk has sent to Pj.
The following steps are executed at Pi to ensure causal
ordering.

When Pi sends message m to Pj, Pi appends its
current value of SENT; with m. (Pi sends SENT^)
to Pj.) Pi then increments s E N T i [i , j] by 1.

On receiving (m,ST) from Pj, the causal order-
ing algorithm a t Pi first checks if DELIVi[k] > ST[k , i]
for all k. If so, the message m is delivered to the
application, D E L I V i [j] is incremented by 1, SENT^[^, i]
is set to ST[j , i] + 1, and finally SENT^[^, k] is set
to maz(ST[j, I C] , SENT^[^, k]) for all j , k. If not, m is
queued till DELIVi[k] 2 S?"[k, i] for all k .

Size of message header

O(k2 * n:) integers

O (n i) integers O(1) messages
O(n:) integers O(n,) messages

O(k *

4 Algorithm 1

Algorithm 1 consists of two modules: static module
and handoff module. The static module is executed
when an MH is in a particular cell. The handoff mod-
ule is executed when an MH moves from one cell to
another.

4.1 Static Module

For each MH hi, we maintain two arrays-

the number of mobile hosts. MH-DELIV;[j] denotes
the total number of messages received by hi from
hj . MH-SENTI [k, j] indicates hi's knowledge about the
number of messages h k has sent t o hj. Assume that
MH hi is in the cell of MSS s k . To reduce the commu-
nication and computation overhead of MH hi, these
arrays are stored in MSS sk. Since the messages from
(to) hi go through MSS s k , the causal ordering algo-
rithm is executed by MSS sk.

Initially, all the entries in the arrays MHDELIV; and
MH-SENT; are set to 0. To send a message m to an-
other M H h j , hi first sends the message m to its MSS

MH_DELIVi[nh] and M H - S E N T i [n h , n h] , where n h is

Sk. s k sends (~ , M H - S E N T ;) to the MSS of hj and
increments MH-SENT;[~ , j]. There are several proto-
cols [3, 91 tha t ensure reliable message delivery to mo-
bile hosts. Any of these protocols can be used.

MSS sk, on receiving a message (m, ST) meant
for hi from MH h j , first checks whether m is deliu-
eruble. m is deliverable if MH-DELIVi[k] 2 ST[k,i]
for all k. If so, sk transmits m to hi, incre-
ments MH-DELI'V;[j], and MH-SENTj [j , k] is set to
maz(ST[j, IC], M H S E N T ~ [~ , IC]) for all j , k. m is also
temporarily stored by s k in PEND-ACK~. Message m
will be deleted from PEND-ACK~ after receiving an ack
for m from MB hi. If m is not deliverable, m is
stored in MH-PEN DING^ till m becomes deliverable.
Whenever a message is delivered to hi, s k checks
MH-PEN DING^ for any message that becomes deliver-
able.

4.2 Handoff' Module

Let hi move from the cell of MSS S k to the cell of
MSS s t . The handoff module is then executed by Sk
and s t . After entering the cell of s t , MH hi sends the
message register(hi, s k) to s t . Also, hi retransmits the
messages (to s t) for which it did not receive ack from
its previous MSS s k . MSS st then informs s k that
hi has switched from MSS Sk to MSS st by sending
a handof-beginfhi) message to sk. After receiving
hundof-begin(hi), Sk transfers M H B E L I V ~ , MHSENT~,
M H J E N D I N G ~ , and PEND-ACK~ to MSS st and finally
sends message hundofj-over(hi) to s t .

On receiving these da ta structures, st first trans-
mits all messages in P E N D A C K ~ . Also, st forwards
the messages (to their destinations) retransmitted by
hi. The handoff procedure is then terminated a t st. If
MH hi switches to some other cell before the handoff
is completed, the current handoff is completed before
a new handoff begins.

4.3 Analysis

For every message sent by MH hi, the MSS (in
whose cell hi resides) sends MH- SENT^ with the mes-

171

sage. Hence, the size of the header for every mes-
sage sent over the static network is O (n i) integers.
The handoff module uses O(1) messages of size O(n:)
numbers when MH hi switches its cell.

Now, consider the factors F1-F4 discussed in Sec-
tion 1.1. Since Algorithm 1 is executed at MSSs, fac-
tors F l and F2 are satisfied. The overhead in the
wireless medium is kept minimal. But factors F3-F4
are not satisfied. An overhead of O (n i) integers over
the static network is costly if nh is very large. Also,
due to disconnections and connections, nh varies. So
during disconnections, some of the entries in the ar-
rays MH-DELIV, and MH-SENT are not needed. The
arrays need not be static, but maintaining dynamic
arrays can become complicated if the MH disconnec-
tions and connections are frequent. In addition, the
processing time for upda.ting t,he matrix MH-SENT will
be substantial for large n h , and the nontrivial process-
ing time increases the delay in delivering a message.

5 Algorithm 2

In Algorithm 1, messages are tagged with com-
plete information to explicitly maintain causal order-
ing among the mobile hosts. In Algorithm 2 , mes-
sages are tagged with sufficient information just to
maintain causal ordering among the MSSs. Since the
wireless channel between an MSS and an MH in its
cell is FIFO, maintaining causal ordering a t the static
network level is sufficient if the MHs do not move.
To ensure that causal ordering is not violated after an
MH moves, we incorporate some steps into the handoff
procedure.

5.1 Static Module

The static module is similar to the static mod-
ule of Algorithm 1 but for some of the da ta struc-
tures. For each MSS si , we maintain MSS-DELIV;[n,],

M S S - S E N T ; [~ , , n,], and MSS-PENDING; . (This is unlike
in Algorithm 1 where we maintain these da ta struc-
tures for every mobile host.) Observe that the size
of the arrays MSS_DELIV;[n,] and MSSSENT;[R, , n,]
vary with n,, the number of MSSs. The value
of MSS-DELIV;[j] indicates the number of messages
(whose destination can be different MHs) received
from MSS s j by MSS si. M S S S E N I I ' ; [~ , ~] denotes the
number of messages sent by MSS s k (not necessarily
delivered) to MSS s j that si knows of. Every MSS
knows (need not be exact) about the location of the
MHs. Initially, we assume that the initial locations
of MHs are known to all MSSs. We show how this

knowledge gets updated in the next section. In other
aspects, the static module is similar t o the static mod-
ule of algorithm 1.

5.2 Handoff Module

The handoff module is more involved when com-
pared to the handoff module of algorithm 1. Since
causal ordering is explicitly maintained only a t the
MSSs level, some measures have t o be taken dur-
ing handoff to maintain causal ordering after an MH
moves.

Before we describe the handoff module, we illus-
trate the problem a t hand with an example. Consider
mobile hosts h l , hz, and h3. Assume that h l , hz and
h3 are in the cells of MSSs SI, s2 and sg respectively.
Let h3 send a message ml to hl (ml will be sent to
MSS S I) and then send a message m2 to hz. Before
receiving ml, let hl switch to the cell of sa. Now, MH
ha, after receiving m2 from h3, sends a message m3 for
hl to s2. If s2 delivers m3 to h l , causal ordering will
be violated because hl has not yet received ml. Also,
sz cannot find out from the knowledge i t has gained so
far whether there are any in-transit messages for hl
sent to SI. However, if s2 delivers m3 after ascertain-
ing that all the messages for hl sent t o s1 have been
delivered, causal ordering will not be violated. Now,
we describe the handoff module.

Assume that a mobile host h k switches from the
cell of MSS si to the cell of MSS sj. After switch-
ing, MH h k sends register(hk,si) message to s j .

On receiving this message, sj sends the message
hando#-begin(hk) to s j , and then broadcasts the mes-
sage notzfy(hk, s i , s j) to all the MSSs. The message
notify(hk, si, s j) signifies that MH h k has switched
from MSS si to MSS s j . An MSS s, on receiving
notify(h k , si, s j) message, updates its local knowledge
about the location of MH h k and sends a l a s t (h k) mes-
sage to si . After receiving no t i f y (hk , s;, sj), MSS s will
send messages meant for MH h k only t o sj (the new
MSS of h k) and not to si (the previous MSS of hk) .
MSS si, after receiving the message handofl-begin(hk)
from s j , sends e n a b l e (h k , P E N D - A C K ~) message t o sj

and waits for l a s t (hk) messages from all the MSSs.
Meanwhile, if any message received by s; for hk be-
comes deliverable to h k , si marks it as old and for-
wards it to sj.

On receiving the message e n a b l e (h k , P E N D - A C K ~)
MSS s j starts sending the application messages sent
by h k . Also, sj delivers all the messages in P E N D - A C K ~

in the FIFO order to MH h k . sj also delivers all the
messages for MH hk tha t are marked old to h k in
the order in which the messages arrived. Any mes-

172

sages for hk that are not marked old will be queued in
MSS-PENDINGj.

MSS si (the previous MSS of h k) , after receiv-
ing l a s t (hk) from all the MSSs sends the mes-
sage h u n d o & o v e r (h k) to MSS s j . Observe that
no messages for h k sent to si will be in transi-
tion after s; receives l a s t (hk) from all the MSSs.
(Messages sent as part of handoff module are also
causally ordered.) The handoff terminates at sj after
h a n d o f l - o v e r (h k) is received by s j . If sj receives the
message handofl.. .begin(hk) from some other MSS be-
fore the current handoff terminates (this can happen
if hk switches its cell), sj will respond to the message
only after the handoff terminates.

5.3 Analysis

The size of M S S S E N T is n: integers and hence the
size of each message header over the wired network is
O(n3) integers. The overhead does not depend on n h ,

the number of MHs. Clearly, factors F3-F4 are sat-
isfied. MH connections/disconnections do not affect
the size of the arrays MSSDELIV and MSSSENT. Dur-
ing handoff, a notify message has to be sent to all the
MSSs, and all the MSSs send lust messages. Hence,
the handoff module uses O(n,) messages. The storage
requirement of Algorithm 2 and the load placed on the
MSSs are less than that of Algorithm 1.

Though the handoff module is involved, it does not
affect the performance (compared to Algorithm 1) due
to the following reasons. (i) MH h k does not wait for
the handoff module to terminate to receive messages.
It keeps receiving old messages. (ii) Messages sent by
h k for other MHs are sent by sj (the new MSS of h k)

immediately after sj receives enab le message.
The drawback of Algorithm 2 is the possibility of a

message being “inhibited” from being delivered to an
MH. There is an inhibition in delivering a message to
an MH if it is queued in MSSJENDING even though
the delivery of the message does not violate causal
ordering. Messages may be inhibited because, in Al-
gorithm 2, causal ordering is explicitly implemented
among the MSSs. Reception of a message may violate
causal ordering from an MSS’s point of view; whereas
its delivery to a n MH may not violate causal order-
ing from the MH’s point of view. However, this delay
is less than the delay introduced by Algorithm 1 in
transmitting and processing the header of each mes-
sage. The average delay in delivering a message in Al-
gorithm 2 is considerably less than the delay in Algo-
rithm l when n h increases, as shown in Figure l. (For
the details of our simulation model, see Appendix A.)
When n h < 30 the message header in both the algo-

0.2

Message0.15
delay

in secs 0.1

0.05

0

algorithm2 +-

10 20 30 40 50 60 70 80 90 100
No. of MHs

Figure 1: Comparison of Algorithm 1 and Algorithm 2
with respect to message delay. n, = 10

rithms are comparable in size. The message delay in
Algorithm 2 is imore than that of Algorithm 1 due to
the inhibition inherent in Algorithm 2. However, as
n h increases the delay due to processing the message
header in Algorithm 1 dominates.

6 Algorithm 3

This algorithm reduces the delay in delivering the
messages to MIH due to inhibition, the drawback of
Algorithm 2, without much increase in the message
overhead. The algorithm achieves this by partioning
every physical MSS into k logical MSSs.

If an MH enters the cell of an MSS, the MH will
be allocated t o one of the logical MSSs depending on
the load in each logical MSS of the MSS. The MHs
will communicate with the other MHs through their
logical MSSs. Every logical MSS maintains two arrays
M S S D E L I V [~ * n,] and MSS-SENT[~ * n,, k * n,] and a
queue MSSPENDING. The algorithm is the same as
Algorithm 2 except for the fact that causal ordering
is explicitly maintained among the logical MSSs. The
size of the message header is O (k 2 * n:).

Messages t o lMHs that belong different logical MSSs
will not inhibit each other though the MHs may be
in the same cell. Thus, as k increases, the unneces-
sary delay in delivering the message to MH decreases.
However, as k increases the size of the message header
will increase and, as a result, the time to process the
message header will become a dominating factor. In
Figure 2, the average message delay initially decreases

173

when k increases. But when k becomes large the av-
erage message delay increases.

0.4 I I I I I

0.35 MHs = 200 +-
0.3

0.25

delay 0.2 1 \
in secs cI I r ,

Message

I /

0 . 0 5 1 I I I , , I
0

0 2 4 6 8 1 0
k

[7] RAYNAL, M., SCHIPER, A. , AND TOUEG, s.
Causal ordering abstraction and a simple way to
implement i t . Inf. Process. Lett. 39, 6 (1991),
343-350.

[8] SCHIPER, -4., EGGLI , J . , A N D S A N D O Z , A. A
new algorithm to implement causal ordering. In
Proceedings of the 3rd International Workshop on
Distributed Algorithms (1989), Springer Verlag,
pp. 219-232.

[9] TERAOKA, F., YOKOTE, Y . , A N D TOKORO, M.
A network architecture providing host migration
transparency. In Proceedings of ACM SIGCOMM
(September 1991).

[lo] VAN RENESSE, R. Causal controversy a t le mont
st.-michel. AGM Operating Systems Review 27, 2
(April 1993), 44-53.

Figure 2: Message delays for various values of l e . n, =
10.

A Simulation Details

References

Our simulation model is similar to that of in [5].
The simulation is event driven and it is run on a
Sparc 10 station. The events are send message, re-
ceive message, and handoff. The bandwidth of a wired
channel is assumed to be 100 Mbits/sec, and the prop-
agation delay in a wired channel is 7 ms. For a wireless
channel, the bandwidth and propagation delay are as-
sumed to be 1 Mbits/sec and 500 ps, respectively.

Initially, the cells of the mobile hosts are assigned
randomly. The time interval between two send events
in a mobile host is an exponentially distributed ran-
dom variable with a mean o f t , seconds. The time
interval between handoff is also an exponentially dis-
tributed random variable with a mean of t h seconds.
The values of t , and t h are varied (0.1, 1.0, 10 secs)
to consider different scenario of communication and
mobility. The processing time considered in measur-
ing the message delay is the actual CPU running time
in processing the message header. The value of every

BADRINATH, B., ACHARYA, A. , A N D IMIELIN-
SKI , T. Impact of mobility on distributed com-
PutationS. ACM Operating Systems Review 27, 2
(April 1993).

BIRMAN, K., A N D JOSEPH, T. Reliable com-
munications in presence of failures. AGM Trans.
Comput. Syst. 5, 1 (1987), 47-76.

IOANNIDIS, J., DUCHAMP, D. , A N D MAGUIRE,
G. IP-based protocols for mobile internetwork-
ing. proceedings of ACM SIGCOMM sympo-
szum on Communication Architecture and Proto-
Cols (1991), pp. 235-245.

KISTLER, J . , A N D SATYANARAYANA, M. Dis-
connected operation in coda file system. ACM
Trans. Comput. Syst. l U , 1 (February 1992).

point in the graph is an average of the results of 1000
K R I S H N A , P. , VAIDYA, N., A N D P R A D H A N , experiments performed.
D. Recovery in distributed mobile environ-
ments. In Proceedings of the IEEE Workshop
on Advances in Parallel a n d Distributed Systems
(1993), pp. 83-88.

LAMPORT, L. Time, clocks, and the ordering of
events in a distributed system. Commun. A C M
21, 7 (1978), 558-565.

174

