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Optimizing Local Capacity of Wireless Ad Hoc Networks

Salman Malik∗, Philippe Jacquet†

Abstract

In this work, we evaluate local capacity of wireless ad hoc networks with several medium
access protocols and identify the most optimal protocol. We define local capacity as the
average information rate received by a receiver randomly located in the network. We analyzed
grid pattern protocols where simultaneous transmitters are positioned in a regular grid pattern,
pure ALOHA protocols where simultaneous transmitters are dispatched according to a uniform
Poisson distribution and exclusion protocols where simultaneous transmitters are dispatched
according to an exclusion rule such as node coloring and carrier sense protocols. Our analysis
allows us to conjecture that local capacity is optimal when simultaneous transmitters are
positioned in a grid pattern based on equilateral triangles and our results show that this
optimal local capacity is at most double the local capacity of simple ALOHA protocol. Our
results also show that node coloring and carrier sense protocols approach the optimal local
capacity by an almost negligible difference.

1 Introduction

Seminal work of Gupta & Kumar [1] and later studies, e.g., [2, 3] quantify the capacity in wireless
ad hoc networks in terms of scaling laws or bounds. These results are very important but may not
provide detailed insight into the actual performance of various medium access protocols, such as the
exact achievable capacity, or network design issues such as trade-offs involving protocol overhead
versus performance of various medium access protocols, etc. Therefore, in order to get better insight
into the designing of medium access protocols for wireless ad hoc networks, we will evaluate various
protocols under the framework of local capacity.

Medium access protocols in wireless ad hoc networks can be broadly classified into two main classes:
continuous time access and slotted access. In this article, we mainly focus on slotted medium access
although many of our results can be applied to continuous time medium access. Within slotted
medium access category, we distinguish node coloring, carrier sense multiple access (CSMA) and
slotted ALOHA protocols. This article has two main goals. The first goal is to identify the most
optimal medium access protocol in wireless ad hoc networks and evaluate its local capacity. Our
second goal is to compare this optimal local capacity with the local capacities of above mentioned
medium access protocols.
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2 General Settings

We consider a wireless ad hoc network where nodes are distributed uniformly over an infinite 2D
map. In slotted medium access, at any given slot, simultaneous transmitters in the network are
distributed like a set of points, S = {z1, z2, . . . , zn, . . .}, where zi is the location of transmitter i.
The spatial distribution of simultaneous transmitters, i.e. the set S, depends on the medium access
protocol employed by the nodes. Therefore, we do not adopt any universal model for the locations
of simultaneous transmitters and assume that, in all slots, the set S has homogeneous density equal
to λ.

Let γij denote the channel gain from node i to node j such that the received power at node j
is Piγij, where Pi is the transmit power of node i. We consider that all nodes use unit nominal
transmit power. We ignore multi-path fading or shadowing effects and γij = |zi − zj |−α, where
α > 2 is the attenuation coefficient and |.| is the Euclidean norm of the vector. We also assume
that the background noise power is negligible. Therefore, the transmission from node i to node j is
successful only if the following condition is satisfied

|zi − zj |−α

∑

k 6=i |zk − zj |−α
≥ K ,

where K is the minimum signal to interference ratio (SIR) threshold required for successfully re-
ceiving the packet.

3 Parameters of Interest

The SIR of transmitter i at any point z on the plane is given by

Si(z) =
|z − zi|−α

∑

j 6=i |z − zj |−α
. (1)

We call the reception area of transmitter i, the area of the plane, A(zi, λ,K, α), where this trans-
mitter is received with SIR at least equal to K. A(zi, λ,K, α) also contains the point zi since here
the SIR is infinite. The average size of A(zi, λ,K, α) is σ(λ,K, α): σ(λ,K, α) = E(|A(zi, λ,K, α)|),
where |A| is the size of an area A.

Note that obviously, σ(λ,K, α) does not depend on zi.

3.1 Local Capacity

Our principal parameter of interest is local capacity, hereafter referred to as capacity only, which
is defined as the average information rate received by a receiver randomly located in the network.
Consider a receiver at a random location z in the network and let N(z,K, α) denote the number of
reception areas it belongs to. Under general settings, following identity has been proved in [4]

E(N(z,K, α)) = λσ(λ,K, α) . (2)
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E(N(z,K, α)) represents the average number of transmitters from which a receiver, randomly placed
in the network, can receive with SIR at least equal to K. Under the hypothesis that a node can
only receive at most one packet at a time, e.g., when K > 1, then N(z,K, α) ≤ 1. The average
information rate received by the receiver, c(z,K, α), is equal to E(N(z,K, α)) multiplied by the
nominal capacity. Without loss of generality, we assume unit nominal capacity and we will compute

c(z,K, α) = E(N(z,K, α)) = λσ(λ,K, α) . (3)

We will find exact bounds on capacity in wireless ad hoc networks with node coloring, CSMA and
ALOHA protocols. We will also show that maximum capacity can be achieved with grid pattern
protocols. Wireless networks of grid topologies are studied in, e.g., [5,6] and compared to networks
with randomly distributed nodes. In contrast, we assume that only the simultaneous transmitters
form a regular grid pattern.

3.2 Relationship of Local Capacity and Transport Capacity

Gupta & Kumar [1] introduced the concept of transport capacity. It is defined as the bit-meters
that can be transported by the network per second. Their result is a scaling law, i.e., the density
of transport capacity scales as Ck1

√
λ bit-meters per second per unit area where C is the nominal

capacity and k1 > 0 depends on medium access protocol and system parameters. If all nodes are
capable of transmitting at C bits per second, the capacity of each node is Ck1/

√
λ bit-meters per

second. It is also shown in [1] that under general settings, the effective radius of transmission is
k2/

√
λ for some k2 > 0 which also depends on medium access protocol and system parameters. If

each node transmits to a receiver which is randomly located within its effective radius of transmission
or, in other words, its reception area, the information rate received by a receiver is constant and
equal to Ck1/k2 bits per second. We evaluate the average of this information rate received by a
receiver randomly located in the network, i.e., the local capacity. Note that, this capacity also
incorporates the pre-constants associated with the scaling law, e.g. k1 and k2, and it is independent
of λ as it is invariant for any homothetic transformation of the set of transmitters.

4 Related Works

In one of the first analyses on capacity of medium access protocols in wireless networks, [7] studied
slotted ALOHA and despite using a very simple geometric propagation model, the result is similar
to what can be obtained under realistic SIR based interference model (non-fading, SIR threshold of
10.0 and attenuation coefficient of 4.0). Under a similar propagation model and assuming that all
nodes are within range of each other, [8] evaluated CSMA protocol and compared it with slotted
ALOHA in terms of throughput. [9] used simulations to analyze CSMA under a realistic SIR based
interference model and compared it with ALOHA (slotted and un-slotted). For simulations, [9]
assumed that transmitters send packets to their assigned receivers which are located at a fixed
distance.

[10,11] studied transmission capacity, which is the maximum number of successful transmissions per
unit area at a specified outage probability, of ALOHA and code division multiple access (CDMA)
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protocols. They assumed that simultaneous transmitters form a homogeneous Poisson point process
(PPP) and used the same model for location of receivers as in [9]. The fact that the receivers are not
a part of network (node distribution) model and are located at a fixed distance from the transmitters
is a simplification. An accurate model of wireless networks should consider that the transmitters,
transmit to receivers which are randomly located in their neighborhood. Similarly, [12] analyzed
transmission capacity of ALOHA and CSMA in networks with general node distributions under a
restrictive hypothesis that density of interferers is very low and, asymptotically, approaches 0.

With exclusion protocols, like node coloring or CSMA, the correlation between the location of
simultaneous transmitters makes it extremely difficult to develop a tractable analytical model.
Some of the proposed approaches are as follows. [13, 14] modeled interferers as PPP and exclude
or suppress some of the interferers in the guard zone around a receiver. [12, 15] used Matérn point
process however [16] showed that it may lead to an underestimation of the density of simultaneous
transmitters and proposed to use Simple Sequential Inhibition (SSI) or an extension of SSI called
SSIk point process. But, very few analytical results are available for SSI or SSIk point processes
and results are usually obtained via simulations.

In other related works, [17] analyzed local (single-hop) throughput and capacity with slotted
ALOHA, in networks with random and deterministic node placement, and TDMA, in 1D line-
networks only. [18] determined the optimum transmission range under the assumption that interfer-
ers are distributed according to PPP whereas [19] gave a detailed analysis on the optimal probability
of transmission for ALOHA which optimizes the product of simultaneously successful transmissions
per unit of space by the average range of each transmission.

5 Grid Pattern Based Protocols

It can be argued that optimal capacity in wireless ad hoc networks can be achieved if simultaneous
transmitters are positioned in a grid pattern. However, designing a protocol, which ensures that
simultaneous transmitters are positioned in a grid pattern, is very difficult because of the limitations
introduced by wave propagation characteristics and actual node distribution. For this, location
aware nodes may be useful but the specification of a distributed protocol that would allow grid
pattern transmissions is beyond the scope of this article.

In this section, we will investigate the optimality of a grid pattern based protocol and later we will
also present an analytical method to analyze its capacity. Grid pattern based protocols may have
no practical implementation but their evaluation is interesting in order to establish an upper bound
on the optimal capacity in wireless ad hoc networks.

5.1 Optimality of Grid Pattern Based Protocols

In this section also, we consider that an infinite number of transmitters are uniformly distributed
like a set of points, S = {z1, z2, . . . , zn, . . .}, on an infinite 2D plane. The location of transmitter i
is denoted by zi and the center of the plane is at (0, 0).
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In order to simplify our analysis, we define a function gi(z) as

gi(z) =
|z − zi|−α

∑

j |z − zj |−α
,

where α > 2. The function gi(z) is similar to the SIR function Si(z), in (1), except that the
summation in the denominator factor also includes the numerator factor. In order to simplify the
notations, we will remove the reference to z when no ambiguity is possible. We also define a function
f(gi) which can be continuous or integrable. For instance, we will use f(gi) = 1gi(z)≥K ′, for some
given K ′ (in this case, the function is not continuous but we will not bother with this). In the
following discussion, we can consider without loss of generality that the value of K ′ is given by
K ′ = K

K+1
. Therefore, if transmitter i is received successfully at location z (with SIR at least equal

to K, i.e., Si(z) ≥ K), then gi(z) ≥ K ′ and f(gi) is equal to 1.

We also assume a virtual disk on the plane centered at (0, 0) and of radius R. This allows us to
express the density of set S, ν(S), in terms of the number of transmitters covered by the disk of
radius R or area πR2, where R approaches infinity, and it is given by a limit as

ν(S) = lim
R→∞

1

πR2

∑

i

1|zi|≤R .

We denote h(z) =
∑

i f(gi). Note that h(z) is equal to the number of transmitters which can be
successfully received at z and its maximum value shall be 1 if K > 1.

We define E(h(z)) by the limit

E(h(z)) = lim
R→∞

1

πR2

∫

|z|≤R

h(z)dz2 .

The integration is over an infinite plane or, in other words, over the disk of radius R where R
approaches infinity. The notations are simplified by taking dxdy equal to dz2. We denote the
reception area of an arbitrary transmitter i as

σi =

∫

f(gi)dz
2 ,

and we have

E(h(z)) = lim
R→∞

1

πR2

∑

i

1|zi|≤Rσi = ν(S)E(σi) ,

with

E(σi) = lim
n→∞

1

n

∑

i≤n

σi .

As R approaches infinity, n, i.e., the number of transmitters in the set S, covered by the disk of
radius R, approaches infinity.

Our objective is to optimize E(h(z)) whose definition is equivalent to the definition of E(N(z,K, α))
and therefore capacity, c(z,K, α), in expressions (2) and (3) respectively.
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5.1.1 First Order Differentiation

We denote the operator of differentiation w.r.t. zi by ∇i. For i 6= j, we have

∇igj = αgigj
z − zi
|z − zi|2

and

∇igi = α(g2i − gi)
z − zi
|z − zi|2

.

Therefore

∇ih(z) = ∇i

∑

i

f(gi) = f ′(gi)∇igi +
∑

j 6=i

f ′(gj)∇igj

= αgi
z − zi
|z − zi|2

(

− f ′(gi) +
∑

j

gjf
′(gj)

)

.

Although, we know that
∫

h(z)dz2 = ∞, we nevertheless have a finite ∇i

∫

h(z)dz2. In other words,
the sum

∑

j ∇iσj converges for all i.

Lemma 5.1. For all j in S, ∑i ∇iσj = 0. Indeed this would be the differentiation of σj when all

points in S are translated by the same vector. Similarly,
∑

i∇i

∫

h(z)dz2 = 0.

Theorem 5.1. If the points in the set S are arranged in a grid pattern then:

∇i

∫

h(z)dz2 =
∑

j

∇iσj = 0

and grids patterns are locally optimal.

Proof. If S is a set of points arranged in a grid pattern, then: ∇i

∫

h(z)dz2 =
∑

j ∇iσj would be

identical for all i and, therefore, would be null since
∑

i ∇i

∫

h(z)dz2 = 0.

We could erroneously conclude that,

- all grid sets are optimal and
- all grid sets give the same E(h(z)).

In fact this is wrong: we could also conclude that E(σi) does not vary but this will contradict that
ν(S) must vary. The reason of this error is that a grid set cannot be modified into another grid set
with a uniformly bounded transformation, unless the two grid sets are just simply translated by a
simple vector.

However, we prove that the grid sets are locally optimal within sets that can be uniformly trans-
formed between each other. In order to cope with uniform transformation and to be able to
transform a grid set to another grid set, we will introduce the linear group transformation.
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5.1.2 Linear Group Transformation

Here, we assume that the points in the plane are modified according to a continuous linear transform
M(t) where M(t) is a matrix with M(0) = I, e.g., M(t) = I + tA where A is a matrix.

Without loss of generality, we only consider σ0, i.e., the reception area of the transmitter at z0
which can be located anywhere on the plane. Under these assumptions, we have

∂

∂t
σ0 =

∑

i

(Azi.∇iσ0) = tr
(

∑

i

AT zi ⊗∇iσ0

)

.

In other words, using the identity ∂tr(AT
B)

∂A
= B, the derivative of σ0 w.r.t. matrix A is exactly

equal to D =
∑

i zi ⊗∇iσ0, such that

D =

[

Dxx Dxy

Dyx Dyy

]

.

Therefore, we can write the following identity

tr
(

AT ∂

∂A
σ0

)

=
∂

∂t
σ0(t,A)

∣

∣

∣

t=0
,

where σ0(t,A) is the transformation of σ0 under M(t), i.e., σ0(t,A) = det(I +At)σ0. We assume
that M(t) = (1 + t)I with A = I, i.e., the linear transform is homothetic.

Theorem 5.2. D is symmetric and tr(D) = 2σ0.

Proof. Under the given transform, σ0(t,A) = σ0(t, I) = (1 + t)2σ0. As a first property, we have
tr(D) = 2σ0, since the derivative of σ0 w.r.t. identity matrix I is exactly 2σ0, i.e.,

tr(ATD) = tr(D) = σ′
0(0, I) = 2σ0 .

The second property that D is a symmetric matrix is not obvious. The easiest proof of this

property is to consider the derivative of σ0 w.r.t. matrix J =

[

0 −1
1 0

]

, which is zero since

J is the initial derivative for a rotation and reception area is invariant by rotation. Therefore,
tr(JTD) = Dyx −Dxy = 0, which implies that D is symmetric.

Note that D can also be written in the following form

D =
∑

i

zi ⊗∇iσ0 =

∫

dz2
∑

i

zi ⊗∇if(g0) .

Let T be defined as T =
∫

dz2
∑

i(z − zi) ⊗ ∇if(g0) , such that D =
∫
∑

i z ⊗ ∇if(g0)dz
2 − T .

The purpose of these definitions will become evident from theorems 3 and 4.

Theorem 5.3. We will show that
∫
∑

i z⊗∇if(g0)dz
2 is equal to σ0I and, therefore, D = σ0I−T.

We will also prove that T is symmetric.
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Proof. From the definition of T, we can see that the sum
∑

i(z − zi)⊗∇if(g0) leads to a symmetric
matrix since

T = α

∫

f ′(g0)
( g20 − g0
|z − z0|2

(z − z0)⊗ (z − z0) +

∑

i 6=0

g0gi
|z − zi|2

(z − zi)⊗ (z − zi)
)

dz2 ,

and the left hand side is made of (z − zi)⊗ (z − zi) which are symmetric matrices. This implies
that T is also symmetric.

We can see that
∑

i ∇if(g0) = −∇f(g0), and using integration by parts we have
∫

∑

i

z ⊗∇if(g0)dz
2 = −1×

[

∫

x ∂
∂x
f(g0)dxdy

∫

x ∂
∂y
f(g0)dxdy

∫

y ∂
∂x
f(g0)dxdy

∫

y ∂
∂y
f(g0)dxdy

]

=

[

σ0 0
0 σ0

]

,

which is symmetric and equal to σ0I. The sum/difference of symmetric matrices is also a symmetric
matrix and, therefore, D is a symmetric matrix and D = σ0I−T.

Now, we will only consider grid patterns and, by virtue of a grid pattern, we can have

E(σi) = σ0 =

∫

f(g0)dz
2 ,

and E(h(z)) = ν(S)σ0. Under homothetic transformation, ν(S) and σ0 are transformed but ν(S)σ0

remains invariant.

Theorem 5.4. If the pattern of the points in set S is optimal w.r.t. linear transformation of the

set, D = σ0I and T = 0.

Proof. The derivative of σ0 w.r.t. matrix A is exactly equal to D. Similarly, under the same
transformation

∂

∂t
ν(S) = 1

det(I +At)
ν(S) ,

and for A = I, it can be written as ν ′(S)(t, I) = ν(S)/(1 + t)2.

In any case, the derivative of ν(S) w.r.t. matrix A is exactly equal to −Iν(S). We also know that
if the pattern is optimal w.r.t. linear transformation, the derivative of ν(S)σ0 w.r.t. to matrix A

shall be null. This implies that ν(S)D − Iν(S)σ0 = 0 , which leads to D = σ0I and T = 0.

We know that T is symmetric and T = 0. Thus, tr(T) = 0, i.e., Eigen values are invariant by
rotation. When a grid is optimal, we must have T = 0. In any case, the matrix T must be invariant
w.r.t. isometric symmetries of the grid. On 2D plane, the grid patterns which satisfy this condition
are square, hexagonal and triangular grids. The square grid is symmetric w.r.t. any horizontal or
vertical axes of the grid and, in particular, with rotation of π/2 represented by J. Therefore, the
Eigen system must be invariant by rotation of π/2. This implies that the Eigen values are the same
and therefore null since tr(T) = 0. Same argument also applies for the hexagonal grid with the
invariance for π/3 rotation and for the triangular pattern with invariance for 2π/3 rotation.
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Figure 1: Square, Hexagonal and Triangular grids. The arrows (blue and red) represent the invari-
ance of Eigen values w.r.t. isometric symmetries of the grids.

PSfrag replacements
zi

z

dz = J ∇Si(z)
|∇Si(z)|

δt

C(zi, K, α)

A(zi, λ,K, α)

Figure 2: Computation of the reception area of transmitter i.

5.2 Reception Areas

Here, the simultaneous transmitters, i.e., the set S is a set of points arranged in a grid pattern. We
consider that, for every slot, the grid pattern is the same modulo a translation. We have covered
grid layouts of square, hexagonal and triangle as shown in Fig. 1. Grids are constructed from d
which defines the minimum distance between neighboring transmitters and can be derived from the
hop-distance parameter of a typical TDMA-based protocol. The density of grid points, λ, depends
on d. However, the capacity, c(z,K, α), is independent of the value of d or, for that matter, λ as it
is invariant for any homothetic transformation of the set of transmitters.

Our aim is to compute the size of the reception area, A(zi, λ,K, α), around each transmitter i. By
consequence of the regular grid pattern, all reception areas are the same modulo a translation (and
a rotation for the hexagonal pattern), and their surface area size, σ(λ,K, α), is the same.

If C(zi, K, α) is the closed curve that forms the boundary of A(zi, λ,K, α) and z is a point on
C(zi, K, α), we have

σ(λ,K, α) =
1

2

∫

C(zi,K,α)

det(z − zi, dz) , (4)

where det(a, b) is the determinant of vectors a and b and dz is the vector tangent to C(zi, K, α) at
point z. det(z − zi, dz) is the cross product of vectors (z − zi) and dz and gives the area of the
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parallelogram formed by these two vectors.

The SIR Si(z) of transmitter i at point z is given by (1). We assume that at point z, Si(z) = K.
On point z we can also define the gradient of Si(z), ∇Si(z). ∇Si(z) is inward normal to the

curve C(zi, K, α) and points towards zi. The vector dz is co-linear with J ∇Si(z)
|∇Si(z)|

where J is the

anti-clockwise rotation of 3π/2 (or clockwise rotation of π/2) given by

J =

[

0 1
−1 0

]

.

Therefore, we can fix dz = J ∇Si(z)
|∇Si(z)|

δt and in (4)

det(z − zi, dz) = (z − zi)× J
∇Si(z)

|∇Si(z)|
δt

= −(z − zi).
∇Si(z)

|∇Si(z)|
δt ,

where δt is assumed to be infinitesimally small. The sequence of points z(k) computed as

z(0) = z

z(k + 1) = z(k) + J
∇Si(z(k))

|∇Si(z(k))|
δt ,

gives a discretized and numerically convergent parametric representation of C(zi, K, α) by finite
elements.

Therefore, (4) reduces to

σ(λ,K, α) ≈ −1

2

∑

k

(z(k)− zi).
∇Si(z(k))

|∇Si(z(k))|
δt , (5)

assuming that we stop the sequence z(k) when it loops back on or close to the point z.

The point, z(0) = z, can be found using Newton’s method. First approximate value of z, required
by Newton’s method, can be computed assuming only one interferer nearest to the transmitter i.
The negative sign in (5) is automatically negated by the dot product of vectors (z(k) − zi) and
∇Si(z(k)).

5.3 Capacity

c(z,K, α) = E(N(z,K, α)) = N(z,K, α) = λσ(λ,K, α) ,

where σ(λ,K, α) is computed using the above described method.

6 Protocols Based on Exclusion Rules

Because of the lack of any satisfactory and tractable analytical model for protocols based on exclu-
sion rules, like node coloring and CSMA based protocols, we will use Monte Carlo simulations along
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with the analytical method of §5.2 to compute their capacity. Here, we will discuss the models of
these protocols which we will employ in our Monte Carlo simulations. For the following discussion,
the set of all nodes in the network is N . In practical implementation, this set is finite but in theory,
it can be infinite but with a uniform density.

6.1 Node Coloring Based Protocols

Node coloring protocols use a managed transmission scheme based on time division multiple access
(TDMA) approach. The aim is to minimize the interference between transmissions that cause packet
loss. These protocols assign colors to nodes that correspond to periodic slots, i.e., nodes that satisfy
a spatial condition, either based on physical distance or distance in terms of number of hops, will
be assigned different colors. For example, in order to avoid collisions at receivers, all nodes within
k hops are assigned unique colors. Typical value of k is 2. A few practical implementations of node
coloring protocols are [20–24].

Instead of considering any particular protocol, we will present a model which ensures that trans-
mitters use an exclusion distance in order to avoid the use of same slot within a certain distance.
This exclusion distance is defined in terms of euclidean distance d which may be derived from the
distance parameter of a typical TDMA-based protocol. Therefore, a slot cannot be shared within a
distance of d or, in other words, nodes transmitting in the same slot shall be located at a distance
greater or equal to d from each other.

Following is a model of node coloring protocols which constructs the set of simultaneous transmit-
ters, S, in each slot (this is supposed to be done off-line so that transmission patterns periodically
recur in each slot).

1. Initialize M = N and S = ∅.
2. Randomly select a node si from M and add it to the set S, i.e, S = S ∪{si}. Remove si from

the set M.
3. Remove all nodes from the set M which are at distance less than d from si.
4. If set M is non-empty, repeat from step 2.

This model maximizes the number of simultaneous transmitters in each slot and should give the
maximum capacity achievable with any node coloring protocol which may not prioritize the nodes
for coloring, e.g., [24].

6.2 CSMA Based Protocols

Extremely managed transmission scheduling in node coloring protocols has significant overhead, e.g.,
because of the control traffic or message passing required to achieve the distributed algorithms that
resolve color assignment conflicts. CSMA based protocols are simpler but are more demanding on
the physical layer. Before transmitting on the channel, a node verifies if the medium is idle by sensing
the signal level. If the detected signal level is below a certain threshold, medium is assumed idle
and the node transmits its packet. Otherwise, it may invoke a random back-off mechanism and wait
before attempting a retransmission. CSMA/CD (CSMA with collision detection) and CSMA/CA
(CSMA with collision avoidance), which is also used in IEEE 802.11, are the modifications of CSMA
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for performance improvement.

We will adopt a model of CSMA based protocol where nodes contend to access medium at the
beginning of each slot. In other words, nodes transmit only after detecting that medium is idle. We
assume that nodes defer their transmission by a tiny back-off time, from the beginning of a slot,
and abort their transmission if they detect that medium is not idle. We also suppose that detection
time and receive to transmit transition times are negligible and, in order to avoid collisions, nodes
use randomly selected (but different) back-off times. Therefore, the main effect of back-off times is
in the production of a random order of the nodes in competition.

For the evaluation of the performance of CSMA based protocols, we will use the following simplified
construction of the set of simultaneous transmitters S.

1. Initialize M = N and S = ∅.
2. Randomly select a node si from M and add it to the set S, i.e., S = S ∪ {si}. Remove si

from the set M.
3. Remove all nodes from the set M which can detect a combined interference signal of power

higher than θ (carrier sense threshold), from all transmitters in the set S, i.e., if
∑

si∈S

|zi − zj |−α ≥ θ ,

remove sj from M. Here, zi is the position of si and |zi−zj | is the euclidean distance between
si and sj .

4. If set M is non-empty, repeat from step 2.

These steps model a CSMA based protocol which requires that transmitters do not detect an inter-
ference of signal level equal to or higher than θ, during their back-off periods, before transmitting on
the medium. At the end of the construction of set S, some transmitters may experience interference
of signal level higher than θ. However, this behavior is in compliance with a realistic CSMA based
protocol where nodes, which started their transmissions, or, in other words, are already added to
the set S do not consider the increase in signal level of interference resulting from later transmitters.

6.3 Reception Areas

The average size of the reception area of an arbitrary transmitter is evaluated via Monte Carlo
simulation using the analytical method of §5.2. The value of d, in case of node coloring protocol,
or θ, in case of CSMA based protocol, can be tuned to obtain an average transmitter density of λ.

6.4 Capacity

c(z,K, α) = E(N(z,K, α)) = λσ(λ,K, α) ,

is also computed via Monte Carlo simulation. The capacity, c(z,K, α), is invariant for any homoth-
etic transformation of λ and, therefore, it is also independent of the values of protocol parameters
θ or d.
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7 Slotted ALOHA Protocol

In slotted ALOHA protocol, nodes do not use any complicated managed transmission scheduling
and transmit their packets independently (with a certain medium access probability), i.e., in each
slot, each node decides independently whether to transmit or otherwise remain silent. Therefore,
the set of simultaneous transmitters, in each slot, can be given by a uniform Poisson distribution of
mean equal to λ transmitters per unit square area [4, 11, 19]. Here, we will make use of the results
from [4] to derive the analytical expression for the capacity with slotted ALOHA protocol.

7.1 Reception Areas

Under the given settings, the average size of the reception area around an arbitrary transmitter
satisfies the identity

σ(λ,K, α) =
1

λ

sin( 2
α
π)

2
α
π

K− 2

α . (6)

We notice that when α approaches infinity, σ(λ,K,∞) approaches 1/λ. This is due to the fact that
when α is very large, all nodes other than the closest transmitter tend to contribute as a negligible
source of interference and consequently the reception areas turn to be the Voronoi cells around
every transmitter. This holds for all values of K. The average size of Voronoi cell being equal to
the inverse density of the transmitters, 1/λ, we get the asymptotic result.

7.2 Capacity

In this case, the analytical expressions (3) and (6) lead to

c(z,K, α) = E(N(z,K, λ)) = σ(1, K, α) . (7)

8 Evaluation and Results

In order to approach an infinite map, we perform numerical simulations in a very large network
spread over 2D square map with length of each side equal to 10000 meters.

8.1 Grid Pattern Based Protocols

In this case, transmitters are spread over this network area in square, hexagonal or triangular
pattern. For all grid patterns, we set d equal to 25 meters although it will have no effect on the
validity of our conclusions as capacity, c(z,K, α), is independent of λ. To keep away edge effects,
we compute the size of the reception area of transmitter i, located in the center of the network area:
zi = (xi, yi) = (0, 0). The network area is large enough so that the reception area of transmitter i
is close to its reception area in an infinite map. λ depends on the type of grid and it is computed
from the total number of transmitters spreading over the network area.
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8.2 Protocols Based on Exclusion Rules

8.2.1 Node Coloring Based Protocols

Performance of node coloring based protocols is analyzed, via simulations, using the model specified
in §6.1. We set d equal to 25 meters.

8.2.2 CSMA Based Protocols

In order to evaluate the capacity of CSMA based protocols, we perform simulations using the model
specified in §6.2. The value of carrier sense threshold, θ, is set equal to 1× 10−5.

8.2.3 Simulations

We consider that nodes are uniformly distributed over the network area and simultaneous transmit-
ters, in each slot, are selected according to the model of each medium access protocol. Considering
the practical limitations introduced by the bounded network area, we use the following Monte Carlo
method to evaluate σ(λ,K, α). We only compute the size of the reception area of a transmitter
located nearest to the center of the network area and σ(λ,K, α) is the average of results obtained
with 10000 samples of node distributions. Similarly, λ is also the average of the density of simulta-
neous transmitters obtained with these 10000 samples of node distributions. Note that the protocol
models select simultaneous transmitters randomly and transmitters are uniformly distributed over
the network area. Therefore, using Monte Carlo method, i.e., a large number of samples of node dis-
tributions and, with each sample, only measuring the reception area of a transmitter located nearest
to the center of the network area gives an accurate approximation of σ(λ,K, α) in an infinite map
with given values of d or θ.

It can be argued that, in case of CSMA, density of simultaneous transmitters is higher on the
boundaries of the network area, because of lower signal level of interference, as compared to the
central region. The network area is very large and we observed that the difference, in spatial density
of simultaneous transmitters, on the boundaries and central region is negligible. We also know that
the capacity, c(z,K, α), is independent of λ which depends on d or θ. However, if the node density
is very low, it will also have an impact on the packing (density) of simultaneous transmitters in the
network. In fact, λ should be maximized to the point where no additional transmitter can be added
to the network under given values of d or θ. This can be achieved by keeping the node density very
high, e.g., we observed that the node density of 1 node per square meter is sufficient and further
increasing the node density does not increase λ. In order to keep away the edge effects, values of d
or θ are chosen such that λ is sufficiently high and edge effects have minimal effect on the central
region of the network.

8.3 Slotted ALOHA Protocol

In case of slotted ALOHA protocol, capacity, c(z,K, α), is computed from analytic expressions (6)
and (7).
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Figure 3: Capacity, c(z,K, α), of grid pattern (triangular, square and hexagonal) based protocols.
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Figure 4: Capacity, c(z,K, α), of triangular grid (from Fig. 3), node coloring, CSMA and slotted
ALOHA protocols.

8.4 Observations

The values of SIR threshold, K, and attenuation coefficient, α, depend on the underlying physi-
cal layer or system parameters and are usually fixed and beyond the control of network/protocol
designers. However, to give the reader an understanding of the influence of these parameters on
the capacity, c(z,K, α), of different medium access protocols, we assume that these parameters are
variable. Figures 3(a) and 4(a) show the comparison of capacity, c(z,K, α), with grid patterns,
node coloring, CSMA and slotted ALOHA protocols with K varying and α = 4.0. Similarly, Fig.
3(b) and 4(b) show the comparison of these protocols with K = 10.0 and α varying. We know that
as α approaches infinity, reception area around each transmitter turns to be a Voronoi cell with an
average size equal to 1/λ. Therefore, as α approaches infinity, c(z,K, α) approaches 1. For slotted
ALOHA protocol, (6) and (7) also arrive at the same result. For other protocols, we computed
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c(z,K, α) with α increasing up to 100 and from the results, we can observe that asymptotically, as
α approaches infinity, c(z,K, α) approaching 1 is true for all protocols.

From the results, we can see that the maximum capacity in wireless ad hoc networks can be obtained
with triangular grid pattern based protocol. In order to quantify the improvement in capacity by
triangular grid pattern protocol over other protocols, we perform a scaled comparison of triangular
grid pattern, slotted ALOHA, node coloring and CSMA based protocols which is obtained by
dividing the capacity, c(z,K, α), of all these protocols with the capacity, c(z,K, α), of triangular
grid pattern protocol. Figure 5 shows the scaled comparison with K and α varying. It can be
observed that triangular grid pattern protocol can achieve, at most, double the capacity of simple
slotted ALOHA protocol whereas node coloring and CSMA based protocols can achieve almost
85 ∼ 90% of the optimal capacity obtained with triangular grid pattern protocol.

Triangular grid pattern can be visualized as an optimal node coloring which ensures that transmit-
ters are exactly at distance d from each other whereas, in case of random node coloring, transmitters
are selected randomly and only condition is that they must be at a distance greater or equal to d from
each other. The exclusion region around each transmitter is a circular disk of radius d/2 with trans-
mitter at the center. The triangular grid pattern can achieve a packing density of π/

√
12 ≈ 0.9069.

The packing density is defined as the proportion of network area covered by the disks of simultane-
ous transmitters. However, random packing of disks, which is the case in random node coloring, can
achieve a packing density in the range of 0.54 ∼ 0.56 only [16,25]. We have seen in the results that
even this sub-optimal packing of simultaneous transmitters by random node coloring can achieve
almost similar capacity as obtained with optimal packing by triangular grid pattern.

We observe that capacity with CSMA is slightly lower (by approximately 3%) as compared to node
coloring and this is irrespective of the value of carrier sense threshold. The reason of slightly lower
capacity with CSMA is that exclusion rule is based on carrier sense threshold, rather than the
distance in-between simultaneous transmitters, which may not allow to pack more transmitters,
in each slot, that would have been possible with node coloring protocols. In other words, CSMA
may result in a lower packing density of simultaneous transmitters as compared to node coloring
protocol. This can also be observed by comparing the densities of SSI and SSIk point processes
in [16] and also explains the slightly lower capacity of CSMA as compared to node coloring protocol.
However, as α approaches infinity, λ with CSMA approaches the node density and reception area
around each transmitter also becomes a Voronoi cell with an average size equal to the inverse of
node density. In fact, asymptotically, as α approaches infinity, capacity, c(z,K, α), approaches 1.

9 Future Work

In future, we will extend this work to multi-hop networks. A medium access protocol which achieves
higher local capacity should also be able to achieve higher end-to-end capacity in multi-hop networks.
For example, consider that λ is normalized across all protocols to 1. Therefore, higher local capacity
means higher σ(1, K, α) which has an impact on the range of transmission and the number of hops
required to reach the destination. The analysis to establish exact bounds on end-to-end capacity
with different medium access protocols in multi-hop networks will be challenging as we will have to
take into account the impact of routing schemes on capacity as well as various parameters like hop
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Figure 5: Scaled comparison of triangular grid pattern, slotted ALOHA, node coloring and CSMA
protocols.

length, number of hops and density of simultaneous transmitters which are interrelated.

The analysis presented here do not take into account fading and shadowing effects. Some results
with fading are available, e.g., for Poisson distribution of transmitters [9, 11, 17]. Our analysis,
in case of slotted ALOHA, can take into account fading by using the results of [4]. Nevertheless,
analysis of all medium access protocols, discussed here, under the common framework, such as local
capacity, is lacking.

10 Conclusions

We evaluated the performance of wireless ad hoc networks under the framework of local capacity.
Our analysis implies that maximum local capacity in wireless ad hoc networks can be achieved with
grid pattern based protocols and our results show that triangular grid pattern outperforms square
and hexagonal grids. Moreover, compared to slotted ALOHA, which does not use any significant
protocol overhead, triangular grid pattern can only increase the capacity by a factor of 2 or less
whereas CSMA and node coloring can achieve almost similar capacity as the triangular grid pattern
based protocol.

The conclusion of this work is that improvements above ALOHA are limited in performance and
may be costly in terms of protocol overheads and that CSMA or node coloring can be very good
candidates. Therefore, attention should be focused on optimizing existing medium access protocols
and designing efficient routing strategies in case of multi-hop networks. Note that, our results are
also relevant when nodes move according to an i.i.d. mobility process such that, at any time, the
distribution of nodes in the network is homogeneous.

In future, we will extend this analysis to multi-hop networks and we will also take into account
fading and shadowing effects. In case of slotted ALOHA, we can take into account fading by using
the results of [4] but analysis of all medium access protocols, discussed here, under fading effects
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and a common framework, such as local capacity, is required.
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