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Abstract

We approach a class of discrete event simulation-based optimization problems using optimality in probability,
an approach which yields what is termed a “champion solution”. Compared to the traditional optimality in
expectation, this approach favors the solution whose actual performance is more likely better than that of any
other solution; this is an effective alternative to the traditional optimality sense, especially when facing a dynamic
and nonstationary environment. Moreover, using optimality in probability is computationally promising for a
class of discrete event simulation-based optimization problems, since it can reduce computational complexity by
orders of magnitude compared to general simulation-based optimization methods using optimality in expectation.
Accordingly, we have developed an Omega Median Algorithm in order to effectively obtain the champion solution
and to fully utilize the efficiency of well-developed off-line algorithms to further facilitate timely decision making.
An inventory control problem with nonstationary demand is included to illustrate and interpret the use of the
Omega Median Algorithm, whose performance is tested using simulations.

Keywords: Simulation-based Optimization, Optimality in Probability, Nonstationary Inventory Control.

I. INTRODUCTION

A general stochastic optimization problem using optimality in expectation can be formulated as

min
u∈Φ

E[J(u, ω)] (1)

where u is the decision variable, Φ is the feasible space of u, and ω is used to index sample paths resulting from
different realizations of a collection of random variables that affect the performance J(u, ω). In the context of
discrete event systems, we commonly face a dynamic stochastic process, in which u is an event-triggered online
control action and J(u, ω) is the actual performance of u over a certain sample path ω. For example, in the
on-line inventory control problem later considered in Section III, u is the order quantity decided at the beginning
of each period, ω is a sample path constructed by a sequence of demands, and J(u, ω) is the corresponding
operating cost, including setup cost, holding cost and shortage cost.

Since it is typically impossible to derive the closed form of E
{
J(u, ω)

}
in (1), simulation-based optimization

methods need to be employed to obtain a near-optimal solution. In what follows, we define an “evaluation”
as an operation of calculating the value of J(u, ω) for a specific u over a specific sample path ω. In general,
simulation-based optimization methods include two major operations:

1) Solution Assessment: Implement M evaluations for a specific u over M sample paths and estimate the
expected performance of solution u, E[J(u, ω)], by sample average approximation, i.e.,

∑M
i=1 J(u, ωi)

/
M ;

2) Search Strategy: Use the sample average approximation in 1) to rank solutions and search for better
solutions in promising areas according to gradient information or certain partition structures.

Let I denote the total number of solutions explored in a simulation-based method and C denote the complexity
of an evaluation. Then, the total complexity can be measured by the computational effort of implementing M · I
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evaluations, that is, O(M · I · C) (M is not necessarily a constant throughout the entire search process). To get
a near optimal (or good enough) solution, we need to implement more evaluations to refine solution assessment,
i.e., larger M , and explore a greater number of solutions, i.e., larger I . Since both M and I can be very large
in solving a general simulation-based optimization problem using optimality in expectation, this approach is
computationally intensive or even intractable for many applications in practice.

Some simulation-based optimization methods have been developed over the past few decades. Computational
effort can be reduced by either using a smaller number M of evaluations in assessment, such as Ordinal
Optimization [12] and Optimal Computing Budget Allocation [7], or by reducing I in search, such as Nested
Partitions [17] and COMPASS [14], or by both ways, such as Perturbation Analysis [11] and Retrospective
Optimization [8][15]. Moreover, to further improve computational efficiency, these methods may be applied to
certain approximations of the original systems with little loss of accuracy in the optimization solutions, such as
the use of Stochastic Flow Models [6][19] and Hindsight Optimization [9] [18]. Since these methods still need to
employ sample average approximations to assess every explored solution (or estimate its performance gradient),
their complexity can still be approximated as O(M ·I ·C) with either smaller M or smaller I or both. In practice,
timely decision making is usually preferable or required in a dynamic environment. The heavy computational
burden of those methods using optimality in expectation limits their applications in such situations.

Moreover, we argue that optimality in expectation is not truly “optimal” in certain cases since the expected
performance is not exactly the actual performance, but only a promising guess. This kind of optimality is generally
suitable for a stationary environment, in which probability distributions remain unchanged over time and the
objective value is the average performance over the long term. However, in practice we often face a nonstationary
environment, such as the example included in the paper, in which nonstationary demand is a common occurrence
in industries with short product life cycles, seasonal patterns, varying customer behavior, or other factors. When
we continually or periodically make decisions, the probability distributions used are only valid for a short term
and need to be occasionally updated. Clearly, optimality in expectation does not necessarily lead to the “best”
solution in this case.

In this paper, we propose an alternative sense of optimality, “optimality in probability”, which favors a solution
that has a higher chance to get a better actual performance. The best solution using optimality in probability,
termed “Champion Solution”, is defined as the one whose actual performance is more likely better than that of any
other solution. Optimality in probability is an effective alternative to optimality in expectation, especially when
facing a dynamic and nonstationary environment. Moreover, using optimality in probability is computationally
promising for a class of simulation-based optimization problems, since it can reduce computational complexity by
orders of magnitude compared to general simulation-based optimization methods using optimality in expectation.
Accordingly, we develop an “Omega Median Algorithm” to obtain the champion solution without iteratively
searching for better solutions based on sample average approximations, a process which is computationally
intensive and commonly required when seeking optimality in expectation. Furthermore, although it is quite
challenging to solve many stochastic optimization problems, their corresponding deterministic versions, which
can be regarded as optimization problems defined over a single sample path, have been efficiently solved by
certain off-line algorithms. The Omega Median Algorithm is able to fully utilize the efficiency of these well-
developed off-line algorithms to further facilitate timely decision making, which is clearly preferable in a dynamic
environment with limited computing resources.

In the rest of the paper, we first introduce the champion solution and then develop an efficient simulation-
based optimization method, termed Omega Median Approximation in Section II. We then consider a nonstationary
inventory control in Section III. Numerical results are given in Section IV to demonstrate the performance of the
champion solution. We close with conclusions in Section V.

II. CHAMPION SOLUTION

The “Champion Solution” is the best solution using optimality in probability and defined for general stochastic
minimization problems as follows, where Pr[·] is the usual notation for “probability”:

Definition 1: The champion solution is a solution uc such that

Pr [J(uc, ω) ≤ J(u, ω)] ≥ 0.5, ∀ u ∈ Φ, (2)



where J(u, ω) is the actual performance of u over a certain sample path ω.
Remark: A natural question which immediately arises is “why do we select 0.5?” rather than some q > 0.5 and
define the champion solution as u′ below such that

Pr
[
J(u′, ω) ≤ J(u, ω)

]
≥ q, ∀ u ∈ Φ, (3)

which looks even better than uc in (2). However, a definition using q > 0.5 is not meaningful for the large
majority of stochastic problems with continuous random variables. Generally speaking, if the sample path ω is
constructed with continuous random variables, we can have for u′ 6= uc:

Pr
[
J(u′, ω) < J(uc, ω)

]
= Pr

[
J(u′, ω) ≤ J(uc, ω)

]
. (4)

From (3), we have Pr [J(u′, ω) ≤ J(uc, ω)] ≥ q. Combining it with (4), we have Pr [J(uc, ω) ≤ J(u′, ω)] ≤ 1−q,
which contradicts (2) if q > 0.5. Therefore, even if there might exist some u′ that satisfies (3), it will be still the
same as uc defined in (2).

The NBA Finals can be used as an example to illustrate the champion solution. The champion team (the
champion solution) will be determined from two teams (solutions) based on the results in 7 games (sample-
paths). The champion solution is the team (solution) that wins more games (performs better in more sample-
paths). Ideally, if there is an infinite number of games (sample-paths), then the champion solution is the team
with winning ratio of more than 50%.

For cases with more than two solutions, we interpret the champion solution through the example of presidential
elections originally used for Arrow’s Impossibility Theorem in social choice theory [1]. Imagine we have three
candidates (solutions) A, B and C. Each voter (sample-path) will rank the three candidates according to his or her
own preference. Now, we randomly pick three voters’ preference lists (sample-paths) as shown in the following
table, where A � B means A is preferred over B.

Voter 1 Voter 2 Voter 3

Preference A � B � C B � C � A C � B � A

Based on the the three voters’ preferences, we can estimate that
• A : Pr[A � B] = 33%, Pr[A � C] = 33%;
• B : Pr[B � A] = 67%, Pr[B � C] = 67%;
• C : Pr[C � A] = 67%, Pr[C � B] = 33%.

Clearly, B should be the president (the champion solution) because B gets a higher preference (performs better)
than all the other candidates (solutions) from the majority of voters (sample-paths).

A. Optimality in Expectation vs. Optimality in Probability

The champion solution favors the winning ratio instead of the winning scale. That is why we call it “Champion
Solution”. We can still use the example of NBA Finals. Imagine it was finished in 6 games and the results are
shown in the following table.

Game 1 Game 2 Game 3 Game 4 Game 5 Game 6

A 107 103 84 106 90 98

B 100 97 103 104 101 95

Team A is the champion (the champion solution) because Team A won more games than Team B. However,
we can also find out that the average score of Team B, 100, is higher than 98, the one of Team A, which implies
that Team B is actually better than Team A in the sense of “Optimality in Expectation” commonly adopted in
the literature.



Clearly, the champion solution is the best solution in a different sense of optimality, termed “Optimality in
Probability” here, which may be a better optimality sense than the traditional “Optimality in Expectation” in
some applications, such as the NBA Finals.

Generally, the champion solution and the traditional optimal solution are not the same, but they coincide under
the following “Non-singularity Condition” as shown in [16]:

Pr
[
J(u′, ω) ≤ J(u′′, ω)

]
≥ 0.5

=⇒ E
[
J(u′, ω)

]
≤ E

[
J(u′′, ω)

]
, ∀u′, u′′ ∈ Φ

The interpretation of the Non-singularity Condition is that if u′ is more likely better than u′′ (in the sense of
resulting in lower cost), then the expected cost under u′ will be lower than the one under u′′. This is consistent
with common sense in that any solution A more likely better than B should result in A’s expected performance
being better than B’s. Only “singularities” such as J(u′, ω) � J(u′′, ω) with an unusually low probability for
some (u′, u′′) can affect the corresponding expectations so that this condition may be violated. It is straightforward
to verify this Non-singularity Condition for several common cases; for example, consider minxE(x−Y )2, where
Y is a uniform random variable over [a, b]. The optimal solution (a+b)/2 satisfies the Non-singularity Condition.

In addition, even though decision makers may prefer “optimality in expectation” in their applications, the
champion solution still has a very promising performance if the corresponding problem is not that singular
because it can beat all the other solutions with a probability greater than 0.5.

B. Sufficient Existence Condition of Champion Solution

A champion solution may not always exist for a general stochastic optimization problem. If there are only two
feasible solutions, as in the NBA Finals, a champion solution can be obviously guaranteed. However, this is not
the case even for as few as three feasible solutions. Recalling the example of presidential elections, what if Voter
3 changes his or her preference as shown in the following table?

Voter 1 Voter 2 Voter 3

Preference A � B � C B � C � A C � A � B

This time we have
• A : Pr[A � B] = 67%, Pr[A � C] = 33%;
• B : Pr[B � A] = 33%, Pr[B � C] = 67%;
• C : Pr[C � A] = 67%, Pr[C � B] = 33%.

No candidate can be elected as president (the champion solution) because no one can be preferred over all the
other candidates (solutions) from the majority of voters (sample-paths); this is in fact the case addressed in
Arrow’s paradox [1].

In the following, we will establish a sufficient existence condition, which can be utilized later in the inventory
problem considered in the next section. To accomplish that, we first define the concepts of “ω-problem”, “ω-
solution” and “ω-median” for the class of stochastic optimization problems in (1). (As these definitions are based
on or related to single sample-path ω, we name their initials as ω-.)

Definition 2: An ω-problem is the deterministic optimization problem defined over a single sample-path ω,
i.e.,

min
u∈Φ

J(u, ω).

Definition 3: An ω-solution is the optimal solution of the corresponding ω-problem, i.e., the solution uω such
that

uω = arg min
u∈Φ

J(u, ω).

Definition 4: The ω-median is the median of the probability distribution of ω-solution uω, i.e., the solution
um such that

Pr[uω ≤ um] ≥ 0.5 and Pr[uω ≥ um] ≥ 0.5 (5)



Remark: uω is a random variable related to sample-path ω. The two probabilities in (5) are the cumulative
distribution function (cdf ) and complementary cumulative distribution function (ccdf ) of uω respectively. Both
probabilities can be strictly more than 0.5 at the same time if uω is not continuous.

Theorem 1: If J(u, ω) is a scalar unimodal function in u for any ω, then the ω-median is a champion solution.
Proof: Since J(u, ω) is a scalar unimodal function in u for any ω, we have

J(u′, ω) ≤ J(u′′, ω), for any u′′ < u′ < uω; (6)

and
J(u′, ω) ≤ J(u′′, ω), for any uω < u′ < u′′. (7)

Assume um is the ω-median. For any solution u > um, we have

Pr[J(um, ω) ≤ J(u, ω)] = Pr[J(um, ω) ≤ J(u, ω)|uω ≤ um] Pr[uω ≤ um]

+ Pr[J(um, ω) ≤ J(u, ω)|uω > um] Pr[uω > um]
(8)

From (7), if u > um and um ≥ uω, then J(um, ω) ≤ J(u, ω), which implies that

Pr[J(um, ω) ≤ J(u, ω)|uω ≤ um] = 1 (9)

Since um is the ω-median, we have Pr[uω ≤ um] ≥ 0.5. Combining it with (8) and (9), we have

Pr[J(um, ω) ≤ J(u, ω)] ≥ 0.5 + Pr[J(um, ω) ≤ J(u, ω)|uω > um] Pr[uω > um]

≥ 0.5

The case of u < um can be similarly proved. Therefore, um satisfies the definition of champion solution

Pr[J(um, ω) ≤ J(u, ω)] ≥ 0.5, for any u ∈ Φ.

which implies um is a champion solution.

C. Omega Median Algorithm

Theorem 1 provides a sufficient existence condition for a champion solution for a class of simulation-based
optimization problems. If it is satisfied, then a champion solution is guaranteed and can be efficiently obtained
by computing the ω-median. We can efficiently obtain an estimate of the ω-median using the Omega Median
Algorithm (OMA) in Table I even though the closed form of the cdf and ccdf of uω cannot be derived in the
class of stochastic optimization problems in (1).

TABLE I
OMEGA MEDIAN ALGORITHM

Step 1: Randomly generate M sample-paths ω1, ..., ωM ;

Step 2: Obtain the ω-solutions, uωi , by solving the ω-
problems minu∈Φ J(u, ωi) for i = 1, ...,M ;

Step 3: Find the median solution ûm from uω1 , ..., uωM .

The median solution ûm derived in Step 3 of OMA is an unbiased estimator of the ω-median. Let 1(·) denote
an indicator function and

GM (u) ≡ 1

M

∑M

j=1
1(uωj ≤ u);

ḠM (u) ≡ 1

M

∑M

j=1
1(uωj ≥ u).

Then, GM (u) and ḠM (u) are the estimates of the cdf and ccdf of uω respectively. It can be easily verified that
the median solution ûm is the solution that satisfies

GM (ûm) ≥ 0.5 and ḠM (ûm) ≥ 0.5 .



For any given u, based on the strong law of large numbers, GM (u) and ḠM (u) converge to Pr[uω ≤ u] and
Pr[uω ≥ u] respectively w.p.1 (with probability 1) as M → +∞. Thus, ûm also converges to the ω-median um

w.p.1 as M → +∞.
Furthermore, ûm can approach the ω-median um exponentially fast as M increases as shown in Theorems 2

and 3 below, which enables us to estimate the ω-median with a smaller number M of sample paths.
Theorem 2: If Pr(uω = um) > 0, then there always exists some constant C such that

Pr[ûm = um] ≥ 1− 2e−CM

Proof: Without loss of generality, assume Pr(uω = um) = c > 0, Pr(uω < um) = p1 and Pr(uω > um) =
p2. From the definition of ω-median, we have p1 + c ≥ 0.5 and p2 + c ≥ 0.5. Combining it with p1 + c+ p2 = 1
and c > 0, we have

p1 < 0.5, p2 < 0.5.

The event [ûm = um] is equivalent to the event [GM (um) ≥ 0.5 and ḠM (um) ≥ 0.5], which can be further
equivalently reduced to [LM (ûm) < 0.5 and L̄M (ûm) < 0.5], where

LM (u) =
1

M

M∑
j=1

1(uωj < u), L̄M (u) =
1

M

M∑
j=1

1(uωj > u).

Therefore, we have

Pr[ûm = um] = Pr[LM (ûm) < 0.5 and L̄M (ûm) < 0.5]

= 1− Pr[LM (um) > 0.5 or L̄M (um) > 0.5]

= 1−
(

Pr[LM (um) > 0.5] + Pr[L̄M (um) > 0.5]
) (10)

Clearly, 1(uωj < um), j = 1, ...,M are i.i.d. 0-1 random variables and E[1(uωj < um)] = p1. Then based on
Chernoff-Hoeffding Theorem [13], we have for any ε > 0

Pr[LM (um) ≥ p1 + ε] ≤ e−D(p1+ε||p1)M

where D(x||y) = x log x
y + (1− x) log 1−x

1−y . Similarly, we can also have

Pr[L̄M (um) ≥ p2 + ε] ≤ e−D(p2+ε||p2)M

Combining the two inequalities above with p1 < 0.5 and p2 < 0.5, we can further have

Pr[LM (um) > 0.5] ≤ Pr[LM (um) ≥ 0.5] ≤ e−D(0.5||p1)M

Pr[L̄M (um) > 0.5] ≤ Pr[L̄M (um) ≥ 0.5] ≤ e−D(0.5||p2)M

Combining them with (10), we can finally have

Pr[ûm = um] ≥ 1− e−D(0.5||p1)M − e−D(0.5||p2)M ≥ 1− 2e−CM

where C = min
(
D(0.5||p1), D(0.5||p2)

)
Theorem 3: If Pr(uω = um) = 0, then for any ε > 0, there always exists C > 0 such that

Pr
[
|GM (um)− 0.5| < ε

]
≥ 1− 2e−CM ,

Pr
[
|ḠM (um)− 0.5| < ε

]
≥ 1− 2e−CM .

Proof: From Pr(uω = um) = 0 and the definition of um, we have

Pr[uω ≤ um] = 1− Pr[uω ≥ um] = 0.5

which implies that
E
[
GM (um)

]
= 0.5



Since 1(uωj ≤ um), j = 1, ...,M are i.i.d. 0-1 random variables and E[1(uωj < um)] = 0.5, based on Chernoff-
Hoeffding Theorem [13], we have for any ε > 0

Pr[GM (um) ≥ 0.5 + ε] ≤ e−D(0.5+ε||0.5)M and

Pr[GM (um) ≤ 0.5− ε] ≤ e−D(0.5−ε||0.5)M

where D(x||y) = x log x
y + (1− x) log 1−x

1−y . Therefore, we have

Pr
[
|GM (um)− 0.5| < ε

]
= 1− Pr[GM (um) ≥ 0.5 + ε]− Pr[GM (um) ≤ 0.5− ε]
≥ 1− e−D(0.5+ε||0.5)M − e−D(0.5−ε||0.5)M

≥ 1− 2e−CM .

where C = min
(
D(0.5 + ε||0.5), D(0.5− ε||0.5)

)
.

It can be similarly proved that

Pr
[
|ḠM (um)− 0.5| < ε

]
≥ 1− 2e−CM .

Theorem 2 corresponds to the case that u is discrete and Theorem 3 is mainly for the case that u is continuous.
Theorem 2 has a stronger sense of convergence than Theorem 3, which implies that ûm converges faster in discrete
cases than in continuous ones.

III. AN EXAMPLE: INVENTORY CONTROL WITH NONSTATIONARY DEMAND

To illustrate and interpret the use of the Omega Median Algorithm, we consider an on-line periodic review
inventory control problem with nonstationary demand as depicted in Figure 1 as a discrete event system (DES),
in which fixed setup cost and full backlogging are adopted. The following notation will be used in the rest of
the paper:
• xi = Inventory level in period i;
• di = Demand in period i;
• ui = Order quantity in period i;
• h = Holding cost rate for inventory;
• p = Penalty cost rate for backlog;
• K = Fixed setup cost per order;

• δ(ui) =

{
1 ui > 0
0 ui = 0

.

The one-period demand di is nonstationary, i.e., its corresponding probability distribution is arbitrary and allowed
to vary and correlate over periods i.

Fig. 1. On-line Inventory Control Process



An ordering event may be triggered at the beginning of a period, namely, an order of ui items may be placed in
period i. A fixed setup cost K will be triggered if ui > 0. The inventory level xi is counted after the one-period
demand di, i.e., xi = xi−1 +ui−di, which results in the maintenance cost of period i (either holding or shortage
cost) defined below,

H(xi) = h ·max(xi, 0) + p ·max(−xi, 0). (11)

The average operating cost in each period, including both maintenance cost and setup cost, determines the system
performance.

The static (s, S) policy is an optimal policy for the cases with stationary demands using optimality in
expectation. Once the two thresholds (s, S) are optimally determined, the corresponding optimal ordering quantity
can be simply derived as ui = S − xi−1 if xi−1 ≤ s and ui = 0 otherwise. However, the static (s, S) policy is
not optimal for nonstationary demands [3]: the optimal order decisions cannot be simply derived by optimizing
the two thresholds (s, S), as in the algorithm in [20] that requires integer-valued and i.i.d. (independent and
identical distributed) one-period demands. Some efforts have been made towards the nonstationary inventory
control problem with fixed setup cost [2], [5]. A heuristic similar to Silver-Meal heuristics is proposed in [2]
and requires to explicitly compute the probability distributions of cumulative demands, which is not plausible for
general nonstationary demands with complicated patterns. In [5], nonstationary demands are approximated by
averaging demands over periods and then a stationary policy is computed by utilizing the algorithm in [20], which
will be benchmarked against the proposed Omega Median Algorithm in the numerical results section below.

Although general simulation-based methods can still be utilized to determine the best order decision using
optimality in expectation, it is computationally intensive or even intractable as analyzed in Section III-C. Instead,
we pursue the best solution in the sense of optimality in probability, namely, the “Champion Solution”, which is
a very good alternative when facing a nonstationary environment.

In the on-line inventory control process depicted in Fig 1, we make an order decision at the beginning of each
period. The rolling horizon method can be applied, in which we look ahead N periods and the actual performance
over a specific N -period sample path ω = {d1, d2, ..., dN} can be defined as the total cost:

JN (u1, u2, ..., uN , ω) =
∑N

i=1

(
H(xi) +K · δ(ui)

)
s.t. xi = xi−1 − di + ui, i = 1, ..., N.

(12)

where H(xi) +K · δ(ui) is the operating cost in period i, including maintenance cost and setup cost.
Since only the immediate-period order decision, u1, is required each time, we will focus on u1 and optimally

determine u2, ..., uN based on the choice of u1. Then, the actual performance over a specific N -period sample
path ω becomes solely associated with u1 as follows:

JN (u1, ω) =
(
H(x1) +K · δ(u1)

)
+ min
u2,...,uN

∑N

i=2

(
H(xi) +K · δ(ui)

)
s.t. xi = xi−1 − di + ui, i = 1, ..., N.

(13)

In the ideal case of looking ahead for an infinite horizon, the actual performance over a specific sample path ω
can be formulated as the infinite-horizon average cost:

J(u1, ω) ≡ lim
N→+∞

1

N

{
JN (u1, ω)

}
(14)

We aim at the champion solution using the actual performance function in (14).

A. Existence of Champion Solution

The inventory control problem can be solved by sequentially answering the two questions below.

Question 1: Whether to order (Yes or No);

Question 2: How many items to order if “Yes” to Question 1.



Since Question 1 has only two options, its champion solution can be guaranteed and easily obtained as follows,{
Yes if Pr[uω1 > 0] ≥ 50%
No otherwise.

where uω1 is the ω-solution of minimizing J(u1, ω) in (14) and Pr[uω1 > 0] is the probability to place a positive
order.

Question 2 is conditioned on “Yes” to Question 1, which implies that u1 > 0 in Question 2. In the following,
we will verify the existence of a champion solution for u1 > 0 with the help of the lemma below.

Lemma 1: JN (u1, ω) in (13) is K-convex in u1 for u1 > 0.
Proof: It can be easy to prove that LN (x1, ω) is K-convex in x1 using a similar way as shown in Section

4.2 in [4]. Combining it with x1 = u1 + x0 − d1, LN (u1 + x0 − d1, ω) is also K-convex in u1.
From the definition of H(x) in (11), H(x1) is convex in x1, which implies H(u1 + x0 − d1) is also convex

in u1.
Recalling the definition of JN (u1, ω) in (13). From u1 > 0, we have

JN (u1, ω) = H(u1 + x0 − d1) +K + LN (u1 + x0 − d1, ω)

Combining it with the fact that H(u1 + x0 − d1) is convex in u1 and LN (u1 + x0 − d1, ω) is K-convex in u1,
we have JN (u1, ω) is K-convex in u1 for u1 > 0.

Based on Lemma 1 and the definition of J(u1, ω) in (14), we prove the following theorem.
Theorem 4: J(u1, ω) is convex in u1 for u1 > 0.

Proof: From Lemma 1, JN (u1, ω) is K-convex in u1 for u1 > 0, that is, it satisfies that for any 0 < u1 <
u′1 < u′′1

K + JN (u′′1, ω) ≥ JN (u′1, ω) + (
u′′1 − u′1
u′1 − u1

)(JN (u′1, ω)− JN (u1, ω)).

Then we apply limit operator at both sides and can have

lim
N→+∞

K + JN (u′′1, ω)

N
≥ lim

N→+∞

JN (u′1, ω)

N
+ (

u′′1 − u′1
u′1 − u1

) lim
N→+∞

(JN (u′1, ω)− JN (u1, ω))

N

which implies that for any 0 < u1 < u′1 < u′′1 ,

J(u′′1, ω) ≥ J(u′1, ω) + (
u′′1 − u′1
u′1 − u1

)(J(u′1, ω)− J(u1, ω)).

The inequality above is equivalent to the definition of convex function, that is, J(u1, ω) is convex in u1 for
u1 > 0.

Theorem 4 implies that J(u1, ω) is unimodal for u1 > 0, which satisfies the sufficient existence condition
identified in Theorem 1. Therefore, a champion solution can be guaranteed to address Question 2 and can be
obtained using OMA.

B. Implementation of OMA

Although di, i = 1, 2, . . ., is nonstationary, we can still estimate their probability distributions based on the
most recently updated information. Sample paths can then be randomly generated in Step 1 of OMA using these
estimates.

Step 2 of OMA determines the major portion of its computational complexity, which can be largely reduced if
we manage to find an efficient algorithm to solve the corresponding ω-problems. In the context of this inventory
control problem, the ω-problem is to find the ω-solution uω1 of minimizing J(u1, ω) in (14). This ω-solution uω1
can be well approximated by minimizing JN (u1, ω) in (13) with a large enough N . Furthermore, it can be easily
verified that, if u∗1, ...u

∗
N can minimize JN (u1, ..., uN , ω) in (12), then u∗1 can also minimize JN (u1, ω) in (13).

Therefore, we can finally obtain the ω-solution uω1 by minimizing JN (u1, ..., uN , ω) in (12) with a sufficiently
large N .



The problem of minimizing JN (u1, ..., uN , ω) in (12) is closely related to the following problem, which is a
dynamic lot-sizing problem with backlogging as defined in the literature [10].

min
u1,...,uN

∑N

i=1

{
H(xi) +K · δ(ui)

}
s.t. xi = xi−1 − di + ui, i = 1, ..., N ;∑N

i=1
ui + x0 =

∑N

i=1
di.

(15)

The only difference between the two problems results from the second constraint, which can be interpreted as the
condition of “zero inventory at last”. Since profits earned from sales are not included in the objective, it would
never be optimal to place a new order at the last period which would mostly end up with a negative inventory
level. The terminal effect of “ordering nothing at last” and “ending with negative inventory” are quite undesirable.
Solving the problem in (15) instead with the extra second constraint can be very helpful in approximating the
ω-solution when using a relatively small N . Since the problem in (15) has been well studied in [10], we can
efficiently solve each ω-problem with complexity O(N logN) for general cases.

The remaining Step 3 of OMA can be trivially fulfilled once we have M ω-solutions.

C. Complexity Analysis

Clearly, the complexities of Step 1 and 3 of OMA are O(MN) and O(M) respectively. With the help of the
algorithm in [10], the complexity of Step 2 is O(M ·N logN). Thus, we can finally efficiently obtain a champion
solution of the nonstationary inventory control problem in complexity O(M ·N logN) by applying OMA.

If we try a general simulation-based optimization method using optimality in expectation, then we need to
solve the following stochastic optimization problem (16) at each decision point,

min
u1

J̄N (u1) = E

{(
H(x1) +K · δ(u1)

)
+ min
µ2,...,µN

E
{∑N

i=2

(
H(xi) +K · δ(ui)

)}}
s.t. xi = xi−1 − di + ui, i = 1, ..., N ;

ui = µi(xi−1), i = 2, ..., N.

(16)

where µi(·) is the feedback control policy to determine ui based on the state xi−1. Clearly, even for a given u1,
computing J̄N (u1) is a notoriously hard dynamic programming problem. Although a heuristic termed “Hindsight
Optimization” [9] can be employed to approximate the second term in the objective of (16) as the expected
hindsight-optimal value below,

E

{
min

u2,...,uN

∑N

i=2

(
H(xi) +K · δ(ui)

)}
,

still requires a complexity of O(M ·N logN) to assess a specific choice of u1. Moreover, it needs to go through
a search process to get a near optimal u1. If there are a total og I solutions explored in the process, then the
total computational complexity is O(M · I ·N logN), which is an order of magnitude higher than that of OMA.

IV. NUMERICAL RESULTS

We illustrate the performance of OMA through a numerical example. The following parameters are identical
to those used in [21],
• Fixed Setup Cost K = 64;
• Holding Cost Rate h = 1;
• Penalty Cost Rate p = 9.

A case of nonstationary demands is considered, in which demand in each period is Poisson distributed and may
has a different mean value µi. The mean value µi will be randomly picked from a set of numbers between 10
an 75 in increments of 5, that is, {10, 15, 20, ..., 70, 75}.



A. ω-median Approximation

An example of estimating the ω-median is shown in Figure 2, in which M = 200 sample-paths are generated.
The ω-solutions are obtained by solving 200 corresponding ω-problems through the algorithm in [10].

The solid line in Figure 2 is the cdf function of the ω-solution constructed based on these sample-paths. The
estimate of the ω-median is um = 78, which is indicated through the dashed line.
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Fig. 2. ω-median Approximation

B. Convergence of ω-median in M

The convergence of the ω-median in the number of sample-paths M is shown in Figure 3, in which M varies
from 10 to 1000 in increments of 10. It can be seen that the estimate of the ω-median quickly converges within
100 replications, which supports the result in Theorem 2.
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Fig. 3. Convergence of ω-median in M

C. Stationary Cases: “Optimality in Expectation” vs. “Optimality in Probability”

The optimal static policies (s∗, S∗) have been exactly derived by using the algorithm in [20] for stationary
cases with different µ. This provides an opportunity to benchmark the performance of the champion solution



against the optimal policy (s∗, S∗), the best solution in the sense of “optimality in expectation”.
We set µ = 20 in the following experiment, in which 20 instances with N = 50 periods are randomly generated,

and we compare the two methods below:
1) Method SS: Order decisions are directly obtained according to the optimal static policy (s∗ = 14, S∗ = 62)

as obtained in [20];
2) Method CS: Order decisions are obtained by using the ω-median approximation with M = 100 sample

paths at the beginning of each period, namely, the estimates of champion solutions.
The performance comparison results are listed in Table II, in which the first column is the instance index, the

second column is the cost Css of using method SS, the third column is the cost Ccs of using method CS, the
fourth column is the difference between the two costs and the fifth column is the fractional improvement defined
as (Ccs−Css)

Css
.

TABLE II
STATIONARY DEMANDS

Cost of SS Cost of CS Difference Improvement
Css Ccs Css − Ccs

(Ccs−Css)
Css

1 2401 2439 -38 -1.58%
2 2710 2590 120 4.43%
3 2525 2561 -36 -1.43%
4 2612 2574 38 1.45%
5 2450 2700 -250 -10.20%
6 2390 2724 -334 -13.97%
7 2401 2552 -151 -6.29%
8 2711 2516 195 7.19%
9 2410 2670 -260 -10.79%

10 2598 2454 144 5.54%
11 2563 2559 4 0.16%
12 2441 2570 -129 -5.28%
13 2530 2469 61 2.41%
14 2419 2446 -27 -1.12%
15 2571 2488 83 3.23%
16 2365 2599 -234 -9.89%
17 2622 2542 80 3.05%
18 2672 2502 170 6.36%
19 2480 2372 108 4.35%
20 2543 2608 -65 -2.56%

Mean 2520.7 2546.75 -26.05 -1.03%

From Table II, the average operating cost of SS is slightly less than the one of CS, which confirms that the
order decisions based on the optimal policy (s∗, S∗) are truly the best in the sense of optimality in expectation.

We can also observe that the order decisions based on the estimated champion solutions perform better than
the ones based on the optimal policy (s∗, S∗) in 10 instances, i.e., instances 2, 4, 8, 10, 11, 13, 15, 17, 18 and
19. CS has a winning ratio of 50% against SS based on these 20 instances, which implies that the estimated
champion solutions perform as well as the exact optimal policy in the sense of optimality in probability in this
numerical experiment. Besides, the estimated champion solutions are not the exact champion solutions and we
can further improve the performance by increasing the sample size M .

Even though decision makers may prefer the sense of optimality in expectation, the estimated champion
solutions are near-optimal, since their corresponding average cost is only 1.03% worse than the one of the
optimal policy in expectation.

D. Nonstationary Cases

In the following experiments of nonstationary cases, we set different µi for each period, which are randomly
selected from the values listed in {10, 15, 20, ..., 70, 75}.



TABLE III
NONSTATIONARY DEMANDS

Cost of SS Cost of CS Difference Improvement
Css Ccs Css − Ccs

(Css−Ccs)
Css

1 3506 2908 598 17.06%
2 3642 2938 704 19.33%
3 3467 3073 394 11.36%
4 3611 3022 589 16.31%
5 3540 3004 536 15.14%
6 3519 3092 427 12.13%
7 3516 3033 483 13.74%
8 3782 3096 686 18.14%
9 3440 2989 451 13.11%

10 3567 2907 660 18.50%
11 3846 2992 854 22.20%
12 3251 2918 333 10.24%
13 3388 2750 638 18.83%
14 2990 2807 183 6.12%
15 3434 2868 566 16.48%
16 3633 3167 466 12.83%
17 3643 2984 659 18.09%
18 3535 3038 497 14.06%
19 3456 3192 264 7.64%
20 3251 3071 180 5.54%

Mean 3500.85 2992.45 508.4 14.52%

We again generate 20 instances with N = 50 periods and compare two methods below:
1) Method SS: Order decisions are directly obtained according to a heuristic nonstationary policy (si, Si) for

each period i. A common heuristic method is to determine (si, Si) according to µi in the corresponding
period i as if demands are stationary with the mean value of µi. For example, if µ1 = 15, µ2 = 30, µ3 =
20, ..., then we can look up the table obtained in [20] to find their corresponding optimal values, choose
(s1 = 10, S1 = 49), (s2 = 23, S2 = 66), (s3 = 14, S3 = 62), ..., to apply in period 1, 2, 3, ..., respectively.
Clearly, this heuristic (si, Si) policy is not optimal for the nonstationary case.

2) Method CS: Order decisions are still obtained by using the ω-median approximation with M = 100 sample
paths at the beginning of each period, namely, the estimates of champion solutions.

The performance comparison results are listed in Table III that shares a similar organization with Table II.
It can be easily seen that the estimated champion solutions result in a 14.52% lower average cost and perform
better than the heuristic (si, Si) policy in all 20 instances.

V. CONCLUSION

An alternate optimality sense, optimality in probability, is proposed in this paper. The best solution using
optimality in probability is termed a “Champion Solution” whose actual performance is more likely better than
that of any other solution. A sufficient existence condition for the champion solution is proved for a class
of simulation-based optimization problems. A highly efficient method, the Omega Median Algorithm (OMA),
is developed to compute the champion solution without iteratively exploring better solutions based on sample
average approximations. OMA can reduce the computational complexity by orders of magnitude compared to
general simulation-based optimization methods using optimality in expectation.

The champion solution becomes particularly meaningful when facing a nonstationary environment. As shown
in the example of inventory control with nonstationary demand, the solution using optimality in expectation is
not necessarily optimal and is computationally intractable in a dynamic environment. The champion solution is
a good alternative and computationally promising. Its corresponding solution algorithm, OMA, can fully utilize
the efficiency of those well-developed off-line algorithms to further facilitate timely decision making, which
is preferable in a dynamic environment with limited computing resources. Moreover, even for some stationary
scenarios as shown in the numerical results, the “Champion Solution” can still achieve a performance comparable
to the one using optimality in expectation.

Future work is aiming at generalizing the sufficient existence condition and extending the idea of champion
solution to a wider class of stochastic optimization problems.
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