
Securing the 802.11 MAC in MANETs: A
Specification-based Intrusion Detection Engine

Christoforos Panos, Ioannis Stavrakakis
Department of Informatics & Telecommunications

University of Athens
Athens, Greece

cpanos@di.uoa.gr, ioannis@di.uoa.gr

Platon Kotzias, Christos Xenakis
Department of Digital Systems

University of Piraeus
Piraeus, Greece

mte0912@webmail.unipi.gr, xenakis@unipi.gr

Abstract—Specification-based detection engines share the
advantages of signature-based and anomaly-based detection,
since they can detect unknown attacks, without the side effects of
high rates of false positives. However, such solutions for
MANETs have seen limited use. This paper introduces a
specification-based detection engine that is built upon the
functionality and limitations of the 802.11 MAC protocol,
expanding the detection range of such engines in MANETs. The
proposed detection engine is deployed at each node and performs
detection using a set of specifications, which describe the correct
operation of the MAC protocol operating at the host node. The
proposed engine introduces a number of significant advantages
since it can effectively detect both known and unknown attacks in
real time and with minimum overhead. Moreover, it is resilient to
the dynamic topologies that are common in MANETs and its
deployment requires no protocol modifications.

Keywords-intrusion detection system; IDS; specification-based
intrusion detection engine; mobile ad hoc networks; MANET
security; data-link layer attacks; 802.11 vulnerabilities; security
vulnerabilities

I. INTRODUCTION
The wireless - mobile nature of MANETs in conjunction

with the absence of access points, providing access to a
centralized authority, make them susceptible to a variety of
attacks. An effective way to identify the occurrence of such
attacks is through the deployment of Intrusion Detection
Systems (IDSs). An IDS utilizes one or more intrusion
detection engines, which can be classified into three main
categories [1]: (i) signature-based engines, which rely on a
predefined set of patterns to identify attacks; (ii) anomaly-
based engines, which rely on particular models of nodes’
behavior (i.e., normal profiles) and mark nodes that deviate
from these models as malicious; and (iii) specification-based
engines, which rely on a set of constrains (i.e., description of
the correct operation of programs and protocols) and monitor
the execution of programs and protocols with respect to these
constraints.

Signature-based engines offer low rates of false positives,
but they are not effective against new types of attacks, which
are not included in the signatures’ databases. Furthermore,
maintaining and updating a signature database in a MANET
environment is difficult to achieve. Anomaly-based detection

engines are capable of detecting unknown attacks and alleviate
the need for a signature database. However, they typically
require the use of complex detection algorithms, generate high
percentages of false alarms, and their performance is further
reduced when dynamic network conditions (such as high
node’s mobility) occur. Specification-based engines can detect
both known and unknown attacks. Moreover, they avoid high
rates of false alarms, since they do not rely on normal profiles,
as happens in anomaly detection. In general, the development
of specifications for a specification-based engine might be a
lengthy and convoluted process, since the developer has to
determine what is the expected behavior of each individual
application or protocol, and then establish constrains that
characterize this behavior. However, this is not the case of the
802.11 MAC protocol, which incorporates a well-defined
functionality and parameters that are involved in its operation.

Currently, specification-based engines for MANETs have
seen limited use, focusing mainly on detecting attacks that
target the network layer. Tseng et al. [2], Hassan et al. [7], and
Huang et al. [5] have proposed specification-based engines that
monitor the Ad-Hoc On Demand Routing protocol (AODV)
[8] for attacks, while Orset et al. [6] and Cheng et al. [3] have
focused on developing specifications for the Optimized Link
State Routing protocol (OLSR) [9]. These engines monitor
only the particular routing protocols, and thus, they are only
capable of detecting attacks that target the routing mechanisms
of MANETs. Song et al. [4] have proposed a specification-
based engine that monitors the Dynamic Registration and
Configuration Protocol (DRCP) [10] for attacks that alter
configuration information in MANETs. Finally, Raya et al.
[12] have proposed a mechanism for detecting misbehaviors in
wireless networks relying on the 802.11 MAC [11] protocol.
However, this mechanism requires the existence of trusted
access points that execute it and monitor connected nodes for
malicious behaviors. Furthermore, this mechanism relies on
thresholds to detect several attacks, where malicious nodes
may attempt to exploit them by performing sporadic attacks
considering not exceeding the threshold values and raising
alarms.

In this paper, we propose a specification-based detection
engine that is built upon the functionality and vulnerable points
of the 802.11 MAC protocol. The engine is deployed using a
generic, host-based IDS architecture, where each node

This work has been supported in part by the European Commission under the
Network of Excellence in Internet Science project EINS (FP7-IST- 288021)

implements an instance of the engine. The engine performs
detections using a set of specifications, which describe the
correct operation of the MAC protocol operating at the host
node. These specifications are expressed through the use of a
Finite State Machine (FSM). Each state of FSM corresponds to
either a legitimate or malicious behavior of the monitored node
and a transition from one state to another is triggered by the
node’s operations and actions. The proposed engine introduces
a number of significant advantages (elaborated in detail in
section 4), since it can effectively detect all the types of attacks
(both known and unknown) that occur at the 802.11 MAC
layer in real time and with minimum overhead. Moreover, it is
resilient to the dynamic network topologies that are common in
MANETs and its deployment requires no protocol
modifications.

The rest of this article is organized as follows. Section 2
analyzes the functionality of the 802.11 MAC protocol,
focusing on its vulnerable points. Section 3 presents and
analyses the proposed detection engine. Section 4 evaluates the
engine elaborating on its advantages and limitations. Finally,
section 5 contains the conclusions.

II. THE 802.11 MAC PROTOCOL
A part of the data-link layer, the 802.11 Medium Access

Control (MAC) protocol is responsible for the coordination of
transmissions on a common communication medium and thus
plays an integral role in one-hop connectivity between
neighboring nodes. A malicious node(s) could modify or
circumvent standard protocol operations in order to gain an
advantage over network resources or hinder the operation of a
MANET, since the affected set of nodes may become unable to
communicate with neighboring nodes [16]. In order to
safeguard the 802.11 MAC protocol, we first analyze its
functionality, security requirements and possible attack
methods. The aim of such analysis is to develop a set of
specifications that capture the correct operation of a node
carrying out the aforementioned protocol. These specifications
will be utilized by the proposed detection engine in order to
distinguish legitimate and malicious behavior.

The 802.11 MAC protocol supports two different MAC
schemes, the Distributed Coordination Function (DCF) and the
Point Coordination Function (PCF). In DCF, nodes have to
check if the channel is clear before transmitting any data, while
in PCF, a point coordinator (i.e., access point) is responsible
for coordinating which node to transmit next. We will be
focusing on the DCF scheme since in MANETs; there are no
centralized access points to act as point coordinators.

In DCF all nodes with data to transmit have an equally fair
chance of accessing the network. DCF employs a Carrier Sense
Multiple Access with Collision Avoidance access method
(CSMA/CA) used to minimize collisions (supplemented by the
802.11 RTS/CTS mechanism). In this method, when a node
wants to transmit data, it initiates the process by sending a
request to send (RTS) frame, and the destination node replies
with a clear to send (CTS) frame. Any other node receiving the
RTS or CTS frames retreats from transmitting any data for
some random backoff time. In order to prioritize access to the
wireless medium, DCF specifies three time windows, the Short

InterFrame Space (SIFS), the DCF InterFrame Space (DIFS)
and the Extended InterFrame Space (EIFS). The DCF scheme
is designed based on the assumption that all of the participating
nodes are well behaved and thus, it does not incorporate any
security precautions. Furthermore, the implementation of the
MAC protocol is done in software rather than hardware and
thus, modification of the network parameters is possible [11].
When a node wants to transmit data, one of the following three
scenarios takes place.

A. First scenario: the wireless medium is idle
The node will first sense the network for a DIFS period of

time in order to resolve if the medium is idle. If it stays idle for
such a period, the node can send an RTS message to the
receiver. The receiver then has to reply with a CTS message,
after sensing the network for a SIFS period of time. RTS/CTS
messages inform any node that hears the exchange, the
duration of the entire data frame transmission. A node that
overhears the exchange of RTS/CTS messages has to adjust its
network allocation vector (NAV) field, which indicates the
amount of time that the node should wait before sensing the
medium again. Finally, a receiver that successfully receives a
DATA frame has to reply with an Acknowledgement (ACK)
message.

A malicious node may take advantage of RTS/CTS
messages in order to misbehave. Firstly, it can assert larger
transmission duration while advertising its RTS packet, gaining
an advantage in recapturing the channel over other well-
behaved nodes (i.e., NAV attack). Another way to gain
advantage in recapturing the channel is by decreasing the DIFS
parameter, thus waiting less than other nodes before sensing
the channel. Finally, a malicious node might frequently
transmit RTS/CTS packets even without the need to send any
data, resulting in a denial-of-service attack.

B. Second scenario: the wireless medium is busy
The CSMA/CA also adopts a backoff mechanism to resolve

channel contention. A node that wishes to transmit and senses
that the channel is busy during the DIFS period will use its
backoff mechanism. After the expiration of the NAV period of
time, the transmitter has to sense the medium for DIFS time
plus a random backoff time from the range of [0, CW], where
CW is the contention window size, maintained by each node.
The backoff timer decreases as long as the medium remains
idle. If the channel becomes busy during the backoff time, the
node must sense the channel for an additional DIFS/EIFS time,
before it can decrease the backoff timer again. Once the
backoff timer reaches zero, the node can transmit RTS to the
receiver and follow the standard procedure. To guarantee fair
access to the shared medium, a node that has just transmitted a
packet and has another packet ready for transmission must
perform the backoff mechanism before initiating the second
transmission.

The backoff mechanism can be manipulated by a malicious
node, since the later may choose not to comply with protocol
rules and select a small backoff interval in order to gain a
significant advantage in capturing the channel over well-
behaved nodes. The manipulation of the backoff mechanism
can be achieved in the following ways:

• Alter the CWmin value in order to select a CW value
from a smaller span of values.

• Avoid doubling the CW value after every collision (see
sect. 2.3).

• Bypass the random selection of the CW value and
force a smaller CW value.

C. Third scenario: No CTS from receiving node
If the transmitter sends an RTS message but does not

receive the corresponding CTS, then the protocol assumes that
a collision has occurred at the receiving end. In this scenario
the transmitter will perform the backoff mechanism after
doubling its CW, thus choosing a value between [0, 2CW]. CW
duplication occurs until CW reaches a maximum value
CWmax and remains until the packet is finally transmitted or
discarded. In both cases CW is reset. Finally, the transmitter
follows the same procedure if an ACK message is not received.

A malicious node at the receiving end can disrupt the
normal communication by forcing a victim node to retransmit
its data resulting in delays, communication overhead, and
resource consumption. The malicious can achieve such an
attack by avoiding the transmission of CTS or ACK messages.
In this case, the sender node (i.e., victim) assumes that
collisions have occurred and thus, double its CW, executes the
backoff mechanism and then attempt to retransmit its DATA
packet. Apart from imposing delays in the victim node, the
malicious node (i.e., by dropping a percentage of CTS/ACK
messages) may gain a significant advantage in capturing the
channel, because adjoining nodes are forced into the backoff
stage. This behavior can also disrupt the route discovery
process; forcing packets through non-optimal routes. If the
malicious node continually forces a transmitting node to
timeout its transmission, the later will eventually drop the data
packet and report a link breakage to the network layer.

III. THE PROPOSED SPECIFICATION-BASED DETECTION
ENGINE

The proposed specification-based detection engine is
deployed using a generic, host-based IDS architecture, where
each node implements an instance of the engine. The engine
performs detection by monitoring the activities that take place
locally at the 802.11 MAC protocol of the hosting node and
comparing them with the pre-defined set of specifications. This
can be achieved by implementing the detection engine at the
network interface card driver level (see fig. 1). The
implementation can be performed by utilizing a number of
APIs such as the Network Driver Interface Specification
(NDIS) [13] interface or the Open Data-Link Interface (ODI)
[14], depending on the platform in which the detection engine
will be deployed.

The pre-defined set of specifications is built upon the
functionality and vulnerable points of the 802.11 MAC
protocol, which are analyzed in section 2. In order to present
them, we use an FSM. Formally, specifications are defined as a
tuple (S, NO, S0, δ, F), where S is the set of all possible states;
NO is the set of node operations; S0 is the initial state; δ is a
function that maps node operations from a previous state to the

current state; and F is the set of final states that correspond to
malicious behaviors. In the remainder of this section we
exemplify the specifications that describe the correct operation
of the 802.11 MAC protocol. In order to simplify the
presentation of the proposed engine, we divided the
specifications into three set according to the node’s
communication condition: (a) idle, (b) transmitting, or (c)
receiving data. Nevertheless, the detection engine can be
expressed inclusively as one FSM.

Figure 1. Architecture of the proposed detection engine.

A. Idle node specifications
These specifications describe the operation of the 802.11

MAC protocol when the monitored node is in an idle condition
(i.e., the node is not receiving or transmitting any packet). It is
presented for the sake of completeness since at this condition,
there are no final states designating malicious behaviors. The
engine initializes at state S0 and begins monitoring the host
node for any new packets that are ready for transmission or for
incoming RTS packets. If the monitored node assembles a
packet for transmission, then the engine moves to S1 (see sect.
3.2). On the other hand, if an RTS packet is received by the
node then, the engine moves to S2 (see sect. 3.3).

B. Transmitter specifications
These specifications exemplify the operation of the 802.11

MAC protocol when the monitored node is attempting to
transmit data to another node. The engine starts at state S1,
while the host node has assembled a new packet, which is
ready for transmission. At this state, the engine checks if the
communication channel is idle or busy. If the channel is idle,
then the engine moves to S3; otherwise, if the channel is busy,
the engine moves to S12. In S3, the expected behavior of the
protocol is to transmit an RTS packet (see sect. 3.2.1), while in
S12 the protocol must call the backoff mechanism (see sect.
3.2.3). An attempt to transmit any data when the channel is
busy leads to the final state S4, which designates a malicious
behavior.

1) RTS specifications
The RTS specifications exemplify the correct operation of

the protocol during the transmission of an RTS packet by the
monitored node. As illustrated in figure 2, the engine first
retrieves the DIFS parameter from the physical layer and
remains at S3 until the DIFS timer, feed by the DIFS parameter,

expires. If the node attempts to transmit an RTS before the
expiration of DIFS, the engine reaches the final state S5, which
designates a malicious behavior. Otherwise, it moves to S6. In
this state, the engine checks if the frame duration field
advertized by the RTS packet corresponds to the actual size of
the data to be transmitted. If not, the engine moves to the final
state S7, which designates a malicious behavior. Otherwise, the
monitored node transmits the RTS packet and the engine
moves to S8. At this state, the monitored node has successfully
transmitted an RTS and awaits for a CTS (see sect. 3.2.2).

Figure 2. RTS specification diagram.

2) CTS specifications
The CTS specifications exemplify the correct operation of

the protocol during the reception of a CTS packet by the
monitored node. As we can see in figure 3, while in S8, the
engine monitors for incoming CTS packets. If a CTS packet is
received before the CTS timer expires, the engine moves to S9.
In this state, the engine retrieves the SIFS parameter from the
physical layer and remains at this state until the SIFS timer,
feed by SIFS parameter, expires. Subsequently, the engine
checks for the transmission of the actual data by the monitored
node. If the node does not transmit any data or attempts to
transmit them before the SIFS timer expires, then the engine
moves to the final state S10, which designates a malicious
behavior. Otherwise, it moves to S11, which is the last state of
the CTS specifications. The engine remains at this state and
awaits for an ACK packet, until the ACK timer expires or the
ACK packet is received. Then, it moves to S12 (see sect. 3.2.3).

Figure 3. CTS specification diagram.

3) Backoff specifications
At state S12 the engine monitors for the valid operation of

the backoff mechanism. This state can be reached following
one of the three scenarios below:

• The communication channel is busy and thus, the
transmitting node cannot send its data.

• Either the CTS or ACK timer expired before the
corresponding packets arrived at the destination. In this
scenario, a collision at the receiver is likely to have
occurred.

• The node has successfully transmitted a packet and it
must now backoff before transmitting a new one.

The engine retrieves CWmin from the physical layer and a
random backoff is generated by the protocol. After that, in the
first and third scenario the engine moves to S13, while in the
second scenario moves to S14. In S13, if the random backoff is
not within the range of [0, CWmin], then the engine moves to
S15, which designates a malicious behavior. On the other hand,
if the value of the backoff timer is within the expected range,
the engine moves to S16 and awaits until the backoff plus the
DIFS timers expire (the backoff timer is decreased as long as
the channel is idle). An attempt by the node to transmit
beforehand leads to the final state S15. After the expiration of
the timers, if the channel is still busy, the engine returns to S12.
Otherwise, it returns to S6 and the node transmits its RTS
packet. Figure 3 illustrates the operation of the engine during
this backoff scenario.

Similarly, in S14, if the random backoff is not within the
range of [0, 2xCW], then the engine moves to S15, which
designates a malicious behavior. On the other hand, if the value
of the backoff timer is within the expected range, the engine
moves to S17 and awaits until the backoff plus the EIFS timers
expire. Any attempt by the node to transmit beforehand will
lead to the final state S15. After the expiration of the timers, if
the channel is still busy, the engine returns to S12. Otherwise, it
returns to S6 and the node transmits its RTS packet.

Figure 4. A backoff specification diagram.

C. Reciever specifications
These specifications exemplify the operation of the 802.11

MAC protocol when the monitored node attempts to receive
data from another node. As we have seen in section 3.1, if the

monitored node receives an RTS packet, the engine moves to
S2. At this state, the engine retrieves the SIFS parameter from
the physical layer and remains at S2 until the SIFS timer
expires. If the node attempts to transmit a CTS before the
expiration of SIFS, the engine reaches the final state S18, which
designates a malicious behavior. Otherwise, it moves to S19. At
this state, the expected behavior of the node is to transmit a
CTS packet. If the node transmits a CTS, then the engine
moves to S20; otherwise, it moves to the final state S18
designating a malicious behavior. At S20, the monitored node is
waiting for the actual data packets and thus, the engine will
remain in this state until the data timeout timer expires or data
are received. In this state the following scenarios are possible:

• No data are received and the data timeout timer
expires. In this case the engine returns to the initial
state S0.

• The data timeout timer is expired before it reaches
zero. The engine moves to the final state S18
designating a malicious behavior.

• Data are received before the data timeout timer expires.
The engine moves to S21.

In state S21 the engine once again retrieves the SIFS
parameter from the physical layer and remains at S21 until the
SIFS timer expires. If the node attempts to transmit an ACK
before the expiration of SIFS, the engine reaches the final state
S18 which designates a malicious behavior. Otherwise, it moves
to S22. At this state, the expected behavior of the node is to
transmit an ACK packet. If the node transmits an ACK, then
the transmission is completed successfully and the engine
returns to the initial state S0; otherwise it moves to the final
state S18 designating a malicious behavior.

Figure 5. Receiver specification diagram.

IV. EVALUATION OF THE PROPOSED DETECTION ENGINE
AND FUTURE WORK

In this section the proposed detection engine is
comparatively evaluated with existing engines for MANETs, in
order to ascertain its advantages and limitations. The
advantages can help illustrate the contribution of the proposed
detection engine, while the limitations can drive future
enhancements and optimizations.

A. Advantages of the proposed detection engine
The proposed engine introduces a number of significant

advantages over existing detection engines for MANETs,
which are analyzed below. First off, the proposed detection
engine resolves malicious behaviors in real time. As we have
seen in section 3, every protocol operation is monitored by the
engine and any activity that results in malicious behavior leads
to an immediate breach of the specifications. This advantage is
very important since it minimizes the time in which a malicious
node can induce damage onto the network. Anomaly-based
intrusion detection engines typically resolve attacks in non-real
time, since they have to collect audit data for some
predetermined time frame, preprocess them, run the detection
algorithm and then resolve if a malicious activity takes place
[15]. As a result, the detection of an attack takes at least:

 TF + P + D (1)

TF is the time frame, P the preprocessing time, and D the time
it takes for the engine to analyze the audit data.

The proposed detection engine can effectively detect all of
the attacks (both known and unknown) that target the operation
of the 802.11 MAC protocol. This is achieved by relying on
operational constrains (established by the specifications) rather
than either focusing on particular attacks (i.e., signature-based
detection) or models that statistically characterize the
protocols’ behavior (i.e., anomaly-based detection). These
operational constrains accurately express the expected protocol
behavior and thus, any activity that does not act in accordance
with these constrains is detected. Signature-based detection
engines monitor for predefined patterns of attacks and thus, are
unable to detect unknown attacks. On the other hand, in
anomaly-based detection, attacks that do not generate a
statistical variation greater than some predefined threshold are
not detected (i.e., false negatives).

The proposed detection engine is not prone to high rates of
false positives, in cases that dynamic changes occur in the
network (i.e., churn, changes in the topology, high node’s
mobility, etc.). These dynamic changes can typically cause
detection engines to rely on outdated information and thus
falsely consider legitimate behaviors as malicious. Anomaly-
based detection engines are prone to such a limitation [15], due
to their reliance on a normal profile; which, under dynamic
network conditions can become outdated. On the other hand,
the proposed engine is not affected by such network conditions
because node activities are monitored in real time.

The proposed engine induces limited computational
overhead, since the computational complexity of the proposed
engine is linear, compared to the state-of-the-art anomaly-
based detection engines, which induce polynomial-time
complexity [15]. In addition, the induced overhead is uniformly
distributed among all the network nodes and thus, there is no
unfair distribution of detection responsibilities among the
network nodes. The utilization of a host-based architecture also
alleviates the need for either audit data exchange or packet
monitoring. This advantage not only eliminates any
communication overheads, but also a number of security
weaknesses, since the exchanged or monitored information

might be captured, modified, and retransmitted by a malicious
node, in order to mislead the detection engine. Most state-of-
the-art detection engines for MANETs (including existing
specification-based detection engines) rely on either packet
monitoring or audit data exchange and are thus prone to these
limitations and weaknesses.

Implementing the engine at the driver level offers two
additional advantages: (a) the engine has direct access to both
the MAC protocol and the underlying hardware eliminating the
existence of any intermediate module or process that may
tamper the monitored data; and (b) the detection engine
operates as a privileged process (i.e., running on a kernel
mode) and thus it cannot be easily circumvented by a malicious
process. Furthermore, the implementation does not require any
protocol modifications, as it happens in [5]. Monitoring is
limited on the 802.11 MAC protocol, and thus, the overhead
typically associated with the development of specifications is
greatly reduced. Finally, the proposed detection does not
require any trusted centralized authorities in order to operate,
as happens with DOMINO [12].

B. Limitations of the proposed detection engine
The proposed engine has a number of limitations, which are

analyzed below. The detection engine can only resolve attacks
that target the operation of the 802.11 MAC protocol. Attacks
at higher layers such as a routing table poison attack or a syn
flood attack cannot be detected. Furthermore, the detection
engine at its presented state is prone to false positives when
hardware failures occur. In particular, if a hardware failure
occurs at the network interface card, it is likely that the
detection engine will pick it up as a malicious behavior.
Another limitation is the security of the proposed engine itself.
Each engine is responsible for monitoring its host node. If the
host node is malicious, it might attempt to disable the detection
engine. Finally, the host-based architecture of the engine
requires the operation of a detection engine in every node on
the network, and thus, nodes are encumbered with intrusion
detection responsibilities regardless of their amount of
resources.

C. Future work
In future work, the specifications of the proposed engine

will be further elaborated and extended in order to: (a) enable
the detection of all the attacks that target the critical protocols
employed at the transport, network, and data-link layers of
MANETs, and (b) distinguish attacks and hardware failures.
Moreover, the detection engine will be provided with a more
sophisticated IDS architecture, in order to alleviate the need of
operating a detection engine at each individual network node.

Additional mechanisms can be utilized to strengthen the
security of the detection engine itself. For instance, trusted
computing techniques [18], which employ special hardware
(i.e., Trusted Platform Modules) to enforce policies, can be
applied to safeguard against unauthorized modifications of the
detection engine and provide remote attestation. Moreover,
reputation based mechanisms [17][19][20] can provide an
incentive for nodes to operate the detection engine in order to
use the network’s resources. Similar techniques applied in
malware such as polymorphism, obfuscation, and encryption

can also be employed to protect the detection engine from
removal or disabling [21].

Finally, simulation studies will be performed to measure
the validity of the proposed engine’s advantages, and compare
it to other existing solutions. More specifically, the proposed
engine will be evaluated regarding: (a) the provided detection
accuracy, (b) the rate of false positives, (c) the resilience to
attacks, and (d) the capability of detecting various attacks at
multiple layers.

V. CONCLUSIONS
MANETs are susceptible to a variety of attacks that

primarily target the protocols of the transport, network, and
data-link layers. Currently, a large number of detection engines
have been proposed for MANETs; however, the majority of
them present a number of limitations and weaknesses.
Furthermore, existing specification-based detection engines for
MANETs have only focused on monitoring the network layer
and thus, are only capable of detecting routing attacks. The
proposed detection engine aims to address these limitations and
expand the range of attacks detected by specification-based
detection engines. Furthermore, it introduces a number of
significant advantages since it can effectively detect both
known and unknown attacks in real time and without any
communication overhead, it is resilient to the dynamic
topologies that are common in MANETs, and its deployment
requires no protocol modifications.

REFERENCES
[1] C. Xenakis, C. Panos, I. Stavrakakis, “A comparative evaluation of

intrusion detection architectures for mobile ad hoc networks,”
Computers & Security, Volume 30, Issue 1, January 2011.

[2] C.-Y. Tseng. et al., “A specification-based intrusion detection system
for AODV,” in proceedings Of 1st ACM Workshop on Security of ad
hoc and sensor networks, Fairfax, Virginia, USA, 2003.

[3] C. H. Tseng, T. Song, P. Balasubramanyam, C. Ko, K. Levitt, “A
Specification-based Intrusion Detection Model for OLSR”, in
proceedings of the 8th International Symposium, in recent advances
in intrusion detection (RAID 2005), Seattle WA, September 7-9,
2005.

[4] T. Song, C. Ko, C. Tseng, P. Balasubramanyam, A. Chaudhary, K.
Levitt, ”Formal Reasoning about a Specification-based Intrusion
Detection for Dynamic Auto-configuration Protocols in Ad hoc
Networks,” in proceedings of the 3rd international Workshop on
Formal Aspects in Security and Trust (FAST 2005), Newcastle UK,
2005.

[5] Y. Huang and W. Lee, “Attack Analysis and Detection for Ad Hoc
Routing Protocols,” in proceedings of the 7th international
symposium in recent advances in intrusion detection (RAID 2004),
Sophia Antipolis, France, Sept. 2004.

[6] J., Orset, B., Alcalde, A., Cavalli, “An EFSM-based intrusion
detection system for ad hoc networks.” In proceedings of the 3rd
international symposium on automated technology for verification
and analysis, (ATVA 2005),Taipei,Taiwan, 2005.

[7] H.M. Hassan, M. Mahmoud, and S. El-Kassas, “Securing the AODV
Protocol using Specification-based Intrusion Detection,” in
proceedings of the 2nd ACM International Workshop on Quality of
Service & Security for Wireless and Mobile Networks, Torremolinos,
Spain, 2006.

[8] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” Jul. 2003. IETF RFC 3561.

[9] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” IETF, RFC 3626, Oct. 2003.

[10] R. Droms. “Dynamic Host Configuration Protocol.” RFC 2131,
March 1997.

[11] Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Standard 802.11 - 2007.

[12] M. Raya, J. Hubaux, I. Aad, “DOMINO: a System to Detect Greedy
Behavior in IEEE 802.11 Hotspots,” in proceedings of the 2nd
international conference on mobile systems, applications, and
services, , Boston, MA, USA, June, 2004.

[13] NDIS Core Functionality. Retrieved September 29, 2011, from
http://msdn.microsoft.com/en-us/library/ff564881.aspx

[14] S. Bearnson, “Communication Basics and Open Data-Link Interface
Technology” Novell AppNotes, Nov 1992. Retrieved September 29,
2011, from
http://support.novell.com/techcenter/articles/ana19921103.html

[15] C. Panos, C. Xenakis, I. Stavrakakis, “An evaluation of anomaly-
based intrusion detection engines for mobile ad hoc networks,” in
proceedings of the 8th International Conference on Trust Privacy and
Security in Digital Business (TrustBus 2011), Toulouse, August
2011.

[16] B. Wu, J. Chen, J. Wu, and M. Cardei, “A Survey of Attacks and
Countermeasures in Mobile Ad Hoc Networks” in “Wireless
Network Security”, Y. Xiao, X. Shen, and D. -Z. Du , Springer,
Network Theory and Applications, Vol. 17, 2006.

[17] S. Zhong, Yang Richard Yang, J. Chen; Sprite: “A Simple, Cheat-
Proof, Credit-Based System for Mobile Ad-hoc Networks,” in
proceedings of I NFOCOM 2003, pp. 1987-1997, March 2003.

[18] Gang Xu; Borcea, C.; Iftode, L.; , “A Policy Enforcing Mechanism
for Trusted Ad Hoc Networks,” Dependable and Secure Computing,
IEEE Transactions on , vol.8, no.3, pp.321-336, May-June 2011.

[19] P. Michiardi, R. Molva, “CORE: a Collaborative Reputation
mechanism to enforce node cooperation in mobile ad hoc networks,”
in proceedings of the Communication and Multimedia Security 2002
Conference, September 2002.

[20] S. Buchegger and J.-Y. Le Boudec, “A Robust Reputation System for
Mobile Ad-hoc Networks,” In proceedings of the P2PEcon, June 1-
11, 2003.

[21] Alsagoff, S., “Malware self-protection mechanism,” in proceedings
of ITSim, Kuala Lumpur, 2008.

