
Securing the 802.11 MAC in MANETs: A 
Specification-based Intrusion Detection Engine 

 

Christoforos Panos, Ioannis Stavrakakis 
Department of Informatics & Telecommunications 

University of Athens 
Athens, Greece 

cpanos@di.uoa.gr, ioannis@di.uoa.gr 

Platon Kotzias, Christos Xenakis 
Department of Digital Systems 

University of Piraeus 
Piraeus, Greece 

mte0912@webmail.unipi.gr, xenakis@unipi.gr
 
 

Abstract—Specification-based detection engines share the 
advantages of signature-based and anomaly-based detection, 
since they can detect unknown attacks, without the side effects of 
high rates of false positives. However, such solutions for 
MANETs have seen limited use. This paper introduces a 
specification-based detection engine that is built upon the 
functionality and limitations of the 802.11 MAC protocol, 
expanding the detection range of such engines in MANETs. The 
proposed detection engine is deployed at each node and performs 
detection using a set of specifications, which describe the correct 
operation of the MAC protocol operating at the host node. The 
proposed engine introduces a number of significant advantages 
since it can effectively detect both known and unknown attacks in 
real time and with minimum overhead. Moreover, it is resilient to 
the dynamic topologies that are common in MANETs and its 
deployment requires no protocol modifications. 
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intrusion detection engine; mobile ad hoc networks; MANET 
security; data-link layer attacks; 802.11 vulnerabilities; security 
vulnerabilities 

I.  INTRODUCTION 
The wireless - mobile nature of MANETs in conjunction 

with the absence of access points, providing access to a 
centralized authority, make them susceptible to a variety of 
attacks. An effective way to identify the occurrence of such 
attacks is through the deployment of Intrusion Detection 
Systems (IDSs). An IDS utilizes one or more intrusion 
detection engines, which can be classified into three main 
categories [1]: (i) signature-based engines, which rely on a 
predefined set of patterns to identify attacks; (ii) anomaly-
based engines, which rely on particular models of nodes’ 
behavior (i.e., normal profiles) and mark nodes that deviate 
from these models as malicious; and (iii) specification-based 
engines, which rely on a set of constrains (i.e., description of 
the correct operation of programs and protocols) and monitor 
the execution of programs and protocols with respect to these 
constraints.  

Signature-based engines offer low rates of false positives, 
but they are not effective against new types of attacks, which 
are not included in the signatures’ databases. Furthermore, 
maintaining and updating a signature database in a MANET 
environment is difficult to achieve. Anomaly-based detection 

engines are capable of detecting unknown attacks and alleviate 
the need for a signature database. However, they typically 
require the use of complex detection algorithms, generate high 
percentages of false alarms, and their performance is further 
reduced when dynamic network conditions (such as high 
node’s mobility) occur. Specification-based engines can detect 
both known and unknown attacks. Moreover, they avoid high 
rates of false alarms, since they do not rely on normal profiles, 
as happens in anomaly detection. In general, the development 
of specifications for a specification-based engine might be a 
lengthy and convoluted process, since the developer has to 
determine what is the expected behavior of each individual 
application or protocol, and then establish constrains that 
characterize this behavior. However, this is not the case of the 
802.11 MAC protocol, which incorporates a well-defined 
functionality and parameters that are involved in its operation.  

Currently, specification-based engines for MANETs have 
seen limited use, focusing mainly on detecting attacks that 
target the network layer. Tseng et al. [2], Hassan et al. [7], and 
Huang et al. [5] have proposed specification-based engines that 
monitor the Ad-Hoc On Demand Routing protocol (AODV) 
[8] for attacks, while Orset et al. [6] and Cheng et al. [3] have 
focused on developing specifications for the Optimized Link 
State Routing protocol (OLSR) [9]. These engines monitor 
only the particular routing protocols, and thus, they are only 
capable of detecting attacks that target the routing mechanisms 
of MANETs. Song et al. [4] have proposed a specification-
based engine that monitors the Dynamic Registration and 
Configuration Protocol (DRCP) [10] for attacks that alter 
configuration information in MANETs. Finally, Raya et al. 
[12] have proposed a mechanism for detecting misbehaviors in 
wireless networks relying on the 802.11 MAC [11] protocol. 
However, this mechanism requires the existence of trusted 
access points that execute it and monitor connected nodes for 
malicious behaviors. Furthermore, this mechanism relies on 
thresholds to detect several attacks, where malicious nodes 
may attempt to exploit them by performing sporadic attacks 
considering not exceeding the threshold values and raising 
alarms.  

In this paper, we propose a specification-based detection 
engine that is built upon the functionality and vulnerable points 
of the 802.11 MAC protocol. The engine is deployed using a 
generic, host-based IDS architecture, where each node 
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implements an instance of the engine. The engine performs 
detections using a set of specifications, which describe the 
correct operation of the MAC protocol operating at the host 
node. These specifications are expressed through the use of a 
Finite State Machine (FSM). Each state of FSM corresponds to 
either a legitimate or malicious behavior of the monitored node 
and a transition from one state to another is triggered by the 
node’s operations and actions. The proposed engine introduces 
a number of significant advantages (elaborated in detail in 
section 4), since it can effectively detect all the types of attacks 
(both known and unknown) that occur at the 802.11 MAC 
layer in real time and with minimum overhead. Moreover, it is 
resilient to the dynamic network topologies that are common in 
MANETs and its deployment requires no protocol 
modifications.  

The rest of this article is organized as follows. Section 2 
analyzes the functionality of the 802.11 MAC protocol, 
focusing on its vulnerable points. Section 3 presents and 
analyses the proposed detection engine. Section 4 evaluates the 
engine elaborating on its advantages and limitations. Finally, 
section 5 contains the conclusions. 

II. THE 802.11 MAC PROTOCOL 
A part of the data-link layer, the 802.11 Medium Access 

Control (MAC) protocol is responsible for the coordination of 
transmissions on a common communication medium and thus 
plays an integral role in one-hop connectivity between 
neighboring nodes. A malicious node(s) could modify or 
circumvent standard protocol operations in order to gain an 
advantage over network resources or hinder the operation of a 
MANET, since the affected set of nodes may become unable to 
communicate with neighboring nodes [16]. In order to 
safeguard the 802.11 MAC protocol, we first analyze its 
functionality, security requirements and possible attack 
methods. The aim of such analysis is to develop a set of 
specifications that capture the correct operation of a node 
carrying out the aforementioned protocol. These specifications 
will be utilized by the proposed detection engine in order to 
distinguish legitimate and malicious behavior.  

The 802.11 MAC protocol supports two different MAC 
schemes, the Distributed Coordination Function (DCF) and the 
Point Coordination Function (PCF). In DCF, nodes have to 
check if the channel is clear before transmitting any data, while 
in PCF, a point coordinator (i.e., access point) is responsible 
for coordinating which node to transmit next. We will be 
focusing on the DCF scheme since in MANETs; there are no 
centralized access points to act as point coordinators. 

In DCF all nodes with data to transmit have an equally fair 
chance of accessing the network. DCF employs a Carrier Sense 
Multiple Access with Collision Avoidance access method 
(CSMA/CA) used to minimize collisions (supplemented by the 
802.11 RTS/CTS mechanism). In this method, when a node 
wants to transmit data, it initiates the process by sending a 
request to send (RTS) frame, and the destination node replies 
with a clear to send (CTS) frame. Any other node receiving the 
RTS or CTS frames retreats from transmitting any data for 
some random backoff time. In order to prioritize access to the 
wireless medium, DCF specifies three time windows, the Short 

InterFrame Space (SIFS), the DCF InterFrame Space (DIFS) 
and the Extended InterFrame Space (EIFS). The DCF scheme 
is designed based on the assumption that all of the participating 
nodes are well behaved and thus, it does not incorporate any 
security precautions. Furthermore, the implementation of the 
MAC protocol is done in software rather than hardware and 
thus, modification of the network parameters is possible [11]. 
When a node wants to transmit data, one of the following three 
scenarios takes place. 

A. First scenario: the wireless medium is idle 
The node will first sense the network for a DIFS period of 

time in order to resolve if the medium is idle. If it stays idle for 
such a period, the node can send an RTS message to the 
receiver. The receiver then has to reply with a CTS message, 
after sensing the network for a SIFS period of time. RTS/CTS 
messages inform any node that hears the exchange, the 
duration of the entire data frame transmission. A node that 
overhears the exchange of RTS/CTS messages has to adjust its 
network allocation vector (NAV) field, which indicates the 
amount of time that the node should wait before sensing the 
medium again. Finally, a receiver that successfully receives a 
DATA frame has to reply with an Acknowledgement (ACK) 
message.  

A malicious node may take advantage of RTS/CTS 
messages in order to misbehave. Firstly, it can assert larger 
transmission duration while advertising its RTS packet, gaining 
an advantage in recapturing the channel over other well-
behaved nodes (i.e., NAV attack). Another way to gain 
advantage in recapturing the channel is by decreasing the DIFS 
parameter, thus waiting less than other nodes before sensing 
the channel. Finally, a malicious node might frequently 
transmit RTS/CTS packets even without the need to send any 
data, resulting in a denial-of-service attack.  

B. Second scenario: the wireless medium is busy  
The CSMA/CA also adopts a backoff mechanism to resolve 

channel contention. A node that wishes to transmit and senses 
that the channel is busy during the DIFS period will use its 
backoff mechanism. After the expiration of the NAV period of 
time, the transmitter has to sense the medium for DIFS time 
plus a random backoff time from the range of [0, CW], where 
CW is the contention window size, maintained by each node. 
The backoff timer decreases as long as the medium remains 
idle. If the channel becomes busy during the backoff time, the 
node must sense the channel for an additional DIFS/EIFS time, 
before it can decrease the backoff timer again. Once the 
backoff timer reaches zero, the node can transmit RTS to the 
receiver and follow the standard procedure. To guarantee fair 
access to the shared medium, a node that has just transmitted a 
packet and has another packet ready for transmission must 
perform the backoff mechanism before initiating the second 
transmission. 

The backoff mechanism can be manipulated by a malicious 
node, since the later may choose not to comply with protocol 
rules and select a small backoff interval in order to gain a 
significant advantage in capturing the channel over well-
behaved nodes. The manipulation of the backoff mechanism 
can be achieved in the following ways: 



• Alter the CWmin value in order to select a CW value 
from a smaller span of values. 

• Avoid doubling the CW value after every collision (see 
sect. 2.3).  

• Bypass the random selection of the CW value and 
force a smaller CW value. 

C. Third scenario: No CTS from receiving node  
If the transmitter sends an RTS message but does not 

receive the corresponding CTS, then the protocol assumes that 
a collision has occurred at the receiving end. In this scenario 
the transmitter will perform the backoff mechanism after 
doubling its CW, thus choosing a value between [0, 2CW]. CW 
duplication occurs until CW reaches a maximum value 
CWmax and remains until the packet is finally transmitted or 
discarded. In both cases CW is reset. Finally, the transmitter 
follows the same procedure if an ACK message is not received.  

A malicious node at the receiving end can disrupt the 
normal communication by forcing a victim node to retransmit 
its data resulting in delays, communication overhead, and 
resource consumption. The malicious can achieve such an 
attack by avoiding the transmission of CTS or ACK messages. 
In this case, the sender node (i.e., victim) assumes that 
collisions have occurred and thus, double its CW, executes the 
backoff mechanism and then attempt to retransmit its DATA 
packet. Apart from imposing delays in the victim node, the 
malicious node (i.e., by dropping a percentage of CTS/ACK 
messages) may gain a significant advantage in capturing the 
channel, because adjoining nodes are forced into the backoff 
stage. This behavior can also disrupt the route discovery 
process; forcing packets through non-optimal routes. If the 
malicious node continually forces a transmitting node to 
timeout its transmission, the later will eventually drop the data 
packet and report a link breakage to the network layer. 

III. THE PROPOSED SPECIFICATION-BASED DETECTION 
ENGINE 

The proposed specification-based detection engine is 
deployed using a generic, host-based IDS architecture, where 
each node implements an instance of the engine. The engine 
performs detection by monitoring the activities that take place 
locally at the 802.11 MAC protocol of the hosting node and 
comparing them with the pre-defined set of specifications. This 
can be achieved by implementing the detection engine at the 
network interface card driver level (see fig. 1). The 
implementation can be performed by utilizing a number of 
APIs such as the Network Driver Interface Specification 
(NDIS) [13] interface or the Open Data-Link Interface (ODI) 
[14], depending on the platform in which the detection engine 
will be deployed.  

The pre-defined set of specifications is built upon the 
functionality and vulnerable points of the 802.11 MAC 
protocol, which are analyzed in section 2. In order to present 
them, we use an FSM. Formally, specifications are defined as a 
tuple (S, NO, S0, δ, F), where S is the set of all possible states; 
NO is the set of node operations; S0 is the initial state; δ is a 
function that maps node operations from a previous state to the 

current state; and F is the set of final states that correspond to 
malicious behaviors. In the remainder of this section we 
exemplify the specifications that describe the correct operation 
of the 802.11 MAC protocol. In order to simplify the 
presentation of the proposed engine, we divided the 
specifications into three set according to the node’s 
communication condition: (a) idle, (b) transmitting, or (c) 
receiving data. Nevertheless, the detection engine can be 
expressed inclusively as one FSM.  

 

Figure 1.  Architecture of the proposed detection engine.  

A. Idle node specifications 
These specifications describe the operation of the 802.11 

MAC protocol when the monitored node is in an idle condition 
(i.e., the node is not receiving or transmitting any packet). It is 
presented for the sake of completeness since at this condition, 
there are no final states designating malicious behaviors. The 
engine initializes at state S0 and begins monitoring the host 
node for any new packets that are ready for transmission or for 
incoming RTS packets. If the monitored node assembles a 
packet for transmission, then the engine moves to S1 (see sect. 
3.2). On the other hand, if an RTS packet is received by the 
node then, the engine moves to S2 (see sect. 3.3).  

B. Transmitter specifications 
These specifications exemplify the operation of the 802.11 

MAC protocol when the monitored node is attempting to 
transmit data to another node. The engine starts at state S1, 
while the host node has assembled a new packet, which is 
ready for transmission. At this state, the engine checks if the 
communication channel is idle or busy. If the channel is idle, 
then the engine moves to S3; otherwise, if the channel is busy, 
the engine moves to S12. In S3, the expected behavior of the 
protocol is to transmit an RTS packet (see sect. 3.2.1), while in 
S12 the protocol must call the backoff mechanism (see sect. 
3.2.3). An attempt to transmit any data when the channel is 
busy leads to the final state S4, which designates a malicious 
behavior.  

1) RTS specifications 
The RTS specifications exemplify the correct operation of 

the protocol during the transmission of an RTS packet by the 
monitored node. As illustrated in figure 2, the engine first 
retrieves the DIFS parameter from the physical layer and 
remains at S3 until the DIFS timer, feed by the DIFS parameter, 



expires. If the node attempts to transmit an RTS before the 
expiration of DIFS, the engine reaches the final state S5, which 
designates a malicious behavior. Otherwise, it moves to S6. In 
this state, the engine checks if the frame duration field 
advertized by the RTS packet corresponds to the actual size of 
the data to be transmitted. If not, the engine moves to the final 
state S7, which designates a malicious behavior. Otherwise, the 
monitored node transmits the RTS packet and the engine 
moves to S8. At this state, the monitored node has successfully 
transmitted an RTS and awaits for a CTS (see sect. 3.2.2).  

 

Figure 2.  RTS specification diagram.  

2) CTS specifications 
The CTS specifications exemplify the correct operation of 

the protocol during the reception of a CTS packet by the 
monitored node. As we can see in figure 3, while in S8, the 
engine monitors for incoming CTS packets. If a CTS packet is 
received before the CTS timer expires, the engine moves to S9. 
In this state, the engine retrieves the SIFS parameter from the 
physical layer and remains at this state until the SIFS timer, 
feed by SIFS parameter, expires. Subsequently, the engine 
checks for the transmission of the actual data by the monitored 
node. If the node does not transmit any data or attempts to 
transmit them before the SIFS timer expires, then the engine 
moves to the final state S10, which designates a malicious 
behavior. Otherwise, it moves to S11, which is the last state of 
the CTS specifications. The engine remains at this state and 
awaits for an ACK packet, until the ACK timer expires or the 
ACK packet is received. Then, it moves to S12 (see sect. 3.2.3). 

 
Figure 3.  CTS specification diagram.  

3) Backoff specifications 
At state S12 the engine monitors for the valid operation of 

the backoff mechanism. This state can be reached following 
one of the three scenarios below:  

• The communication channel is busy and thus, the 
transmitting node cannot send its data.  

• Either the CTS or ACK timer expired before the 
corresponding packets arrived at the destination. In this 
scenario, a collision at the receiver is likely to have 
occurred. 

• The node has successfully transmitted a packet and it 
must now backoff before transmitting a new one. 

The engine retrieves CWmin from the physical layer and a 
random backoff is generated by the protocol. After that, in the 
first and third scenario the engine moves to S13, while in the 
second scenario moves to S14. In S13, if the random backoff is 
not within the range of [0, CWmin], then the engine moves to 
S15, which designates a malicious behavior. On the other hand, 
if the value of the backoff timer is within the expected range, 
the engine moves to S16 and awaits until the backoff plus the 
DIFS timers expire (the backoff timer is decreased as long as 
the channel is idle). An attempt by the node to transmit 
beforehand leads to the final state S15. After the expiration of 
the timers, if the channel is still busy, the engine returns to S12. 
Otherwise, it returns to S6 and the node transmits its RTS 
packet. Figure 3 illustrates the operation of the engine during 
this backoff scenario.  

Similarly, in S14, if the random backoff is not within the 
range of [0, 2xCW], then the engine moves to S15, which 
designates a malicious behavior. On the other hand, if the value 
of the backoff timer is within the expected range, the engine 
moves to S17 and awaits until the backoff plus the EIFS timers 
expire. Any attempt by the node to transmit beforehand will 
lead to the final state S15. After the expiration of the timers, if 
the channel is still busy, the engine returns to S12. Otherwise, it 
returns to S6 and the node transmits its RTS packet. 

 

Figure 4.  A backoff specification diagram.  

C. Reciever specifications 
These specifications exemplify the operation of the 802.11 

MAC protocol when the monitored node attempts to receive 
data from another node. As we have seen in section 3.1, if the 



monitored node receives an RTS packet, the engine moves to 
S2. At this state, the engine retrieves the SIFS parameter from 
the physical layer and remains at S2 until the SIFS timer 
expires. If the node attempts to transmit a CTS before the 
expiration of SIFS, the engine reaches the final state S18, which 
designates a malicious behavior. Otherwise, it moves to S19. At 
this state, the expected behavior of the node is to transmit a 
CTS packet. If the node transmits a CTS, then the engine 
moves to S20; otherwise, it moves to the final state S18 
designating a malicious behavior. At S20, the monitored node is 
waiting for the actual data packets and thus, the engine will 
remain in this state until the data timeout timer expires or data 
are received. In this state the following scenarios are possible:  

• No data are received and the data timeout timer 
expires. In this case the engine returns to the initial 
state S0.  

• The data timeout timer is expired before it reaches 
zero. The engine moves to the final state S18 
designating a malicious behavior.  

• Data are received before the data timeout timer expires. 
The engine moves to S21.   

In state S21 the engine once again retrieves the SIFS 
parameter from the physical layer and remains at S21 until the 
SIFS timer expires. If the node attempts to transmit an ACK 
before the expiration of SIFS, the engine reaches the final state 
S18 which designates a malicious behavior. Otherwise, it moves 
to S22. At this state, the expected behavior of the node is to 
transmit an ACK packet. If the node transmits an ACK, then 
the transmission is completed successfully and the engine 
returns to the initial state S0; otherwise it moves to the final 
state S18 designating a malicious behavior. 

 

Figure 5.  Receiver specification diagram.   

IV. EVALUATION OF THE PROPOSED DETECTION ENGINE 
AND FUTURE WORK 

In this section the proposed detection engine is 
comparatively evaluated with existing engines for MANETs, in 
order to ascertain its advantages and limitations. The 
advantages can help illustrate the contribution of the proposed 
detection engine, while the limitations can drive future 
enhancements and optimizations.  

A. Advantages of the proposed detection engine 
The proposed engine introduces a number of significant 

advantages over existing detection engines for MANETs, 
which are analyzed below. First off, the proposed detection 
engine resolves malicious behaviors in real time. As we have 
seen in section 3, every protocol operation is monitored by the 
engine and any activity that results in malicious behavior leads 
to an immediate breach of the specifications. This advantage is 
very important since it minimizes the time in which a malicious 
node can induce damage onto the network. Anomaly-based 
intrusion detection engines typically resolve attacks in non-real 
time, since they have to collect audit data for some 
predetermined time frame, preprocess them, run the detection 
algorithm and then resolve if a malicious activity takes place 
[15]. As a result, the detection of an attack takes at least: 

  TF + P + D (1)           

TF is the time frame, P the preprocessing time, and D the time 
it takes for the engine to analyze the audit data.  

The proposed detection engine can effectively detect all of 
the attacks (both known and unknown) that target the operation 
of the 802.11 MAC protocol. This is achieved by relying on 
operational constrains (established by the specifications) rather 
than either focusing on particular attacks (i.e., signature-based 
detection) or models that statistically characterize the 
protocols’ behavior (i.e., anomaly-based detection). These 
operational constrains accurately express the expected protocol 
behavior and thus, any activity that does not act in accordance 
with these constrains is detected. Signature-based detection 
engines monitor for predefined patterns of attacks and thus, are 
unable to detect unknown attacks. On the other hand, in 
anomaly-based detection, attacks that do not generate a 
statistical variation greater than some predefined threshold are 
not detected (i.e., false negatives).  

The proposed detection engine is not prone to high rates of 
false positives, in cases that dynamic changes occur in the 
network (i.e., churn, changes in the topology, high node’s 
mobility, etc.). These dynamic changes can typically cause 
detection engines to rely on outdated information and thus 
falsely consider legitimate behaviors as malicious. Anomaly-
based detection engines are prone to such a limitation [15], due 
to their reliance on a normal profile; which, under dynamic 
network conditions can become outdated. On the other hand, 
the proposed engine is not affected by such network conditions 
because node activities are monitored in real time.  

The proposed engine induces limited computational 
overhead, since the computational complexity of the proposed 
engine is linear, compared to the state-of-the-art anomaly-
based detection engines, which induce polynomial-time 
complexity [15]. In addition, the induced overhead is uniformly 
distributed among all the network nodes and thus, there is no 
unfair distribution of detection responsibilities among the 
network nodes. The utilization of a host-based architecture also 
alleviates the need for either audit data exchange or packet 
monitoring. This advantage not only eliminates any 
communication overheads, but also a number of security 
weaknesses, since the exchanged or monitored information 



might be captured, modified, and retransmitted by a malicious 
node, in order to mislead the detection engine. Most state-of-
the-art detection engines for MANETs (including existing 
specification-based detection engines) rely on either packet 
monitoring or audit data exchange and are thus prone to these 
limitations and weaknesses.  

Implementing the engine at the driver level offers two 
additional advantages: (a) the engine has direct access to both 
the MAC protocol and the underlying hardware eliminating the 
existence of any intermediate module or process that may 
tamper the monitored data; and (b) the detection engine 
operates as a privileged process (i.e., running on a kernel 
mode) and thus it cannot be easily circumvented by a malicious 
process. Furthermore, the implementation does not require any 
protocol modifications, as it happens in [5]. Monitoring is 
limited on the 802.11 MAC protocol, and thus, the overhead 
typically associated with the development of specifications is 
greatly reduced. Finally, the proposed detection does not 
require any trusted centralized authorities in order to operate, 
as happens with DOMINO [12]. 

B. Limitations of the proposed detection engine 
The proposed engine has a number of limitations, which are 

analyzed below. The detection engine can only resolve attacks 
that target the operation of the 802.11 MAC protocol. Attacks 
at higher layers such as a routing table poison attack or a syn 
flood attack cannot be detected. Furthermore, the detection 
engine at its presented state is prone to false positives when 
hardware failures occur. In particular, if a hardware failure 
occurs at the network interface card, it is likely that the 
detection engine will pick it up as a malicious behavior. 
Another limitation is the security of the proposed engine itself. 
Each engine is responsible for monitoring its host node. If the 
host node is malicious, it might attempt to disable the detection 
engine. Finally, the host-based architecture of the engine 
requires the operation of a detection engine in every node on 
the network, and thus, nodes are encumbered with intrusion 
detection responsibilities regardless of their amount of 
resources.  

C. Future work 
In future work, the specifications of the proposed engine 

will be further elaborated and extended in order to: (a) enable 
the detection of all the attacks that target the critical protocols 
employed at the transport, network, and data-link layers of 
MANETs, and (b) distinguish attacks and hardware failures. 
Moreover, the detection engine will be provided with a more 
sophisticated IDS architecture, in order to alleviate the need of 
operating a detection engine at each individual network node.  

Additional mechanisms can be utilized to strengthen the 
security of the detection engine itself. For instance, trusted 
computing techniques [18], which employ special hardware 
(i.e., Trusted Platform Modules) to enforce policies, can be 
applied to safeguard against unauthorized modifications of the 
detection engine and provide remote attestation. Moreover, 
reputation based mechanisms [17][19][20] can provide an 
incentive for nodes to operate the detection engine in order to 
use the network’s resources. Similar techniques applied in 
malware such as polymorphism, obfuscation, and encryption 

can also be employed to protect the detection engine from 
removal or disabling [21].  

Finally, simulation studies will be performed to measure 
the validity of the proposed engine’s advantages, and compare 
it to other existing solutions. More specifically, the proposed 
engine will be evaluated regarding: (a) the provided detection 
accuracy, (b) the rate of false positives, (c) the resilience to 
attacks, and (d) the capability of detecting various attacks at 
multiple layers.  

V. CONCLUSIONS 
MANETs are susceptible to a variety of attacks that 

primarily target the protocols of the transport, network, and 
data-link layers. Currently, a large number of detection engines 
have been proposed for MANETs; however, the majority of 
them present a number of limitations and weaknesses. 
Furthermore, existing specification-based detection engines for 
MANETs have only focused on monitoring the network layer 
and thus, are only capable of detecting routing attacks. The 
proposed detection engine aims to address these limitations and 
expand the range of attacks detected by specification-based 
detection engines. Furthermore, it introduces a number of 
significant advantages since it can effectively detect both 
known and unknown attacks in real time and without any 
communication overhead, it is resilient to the dynamic 
topologies that are common in MANETs, and its deployment 
requires no protocol modifications. 
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