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Abstract 
Persistent object stores provide uniform management 

of short-term and long-term objects.  Such stores ensure 
the integrity of the data even after occurrence of a failure, 
by guaranteeing the existence of some previous self-
consistent stable state at each point in time.  Maintaining 
a consistent state of a persistent store necessitates 
recording of inter-object dependencies and checkpointing 
of each object together with all its dependent objects.  
Directed graphs may be used to describe such 
dependencies.  In this paper we describe eager and lazy 
construction of dependency graphs.  We then address 
operating system and hardware support for management 
of dependencies. 
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1  Introduction 
Persistent systems support mechanisms to allow the 

creation and manipulation of arbitrary data structures 
which survive in their original form even after the 
termination of the program that created them [2].  As a 
result, programmers are not required to flatten data 
structures in order to store them permanently.  In this 
sense a persistent system provides an alternative to a 
conventional file system for the storage of permanent 
data.  This alternative is far more flexible as it allows both 
the data and its interrelationships to be stored in their 
original form.  Achievement of this requires a uniform 
storage abstraction which is often called a persistent store. 

A persistent store supports mechanisms for the uniform 
management of objects and their interrelationships 
regardless of their lifetime.  Therefore, the distinction 
between primary and secondary storage has been 
abstracted over in persistent stores.  The state of the store 
at any instant is a combination of the data held in main 
memory (RAM) and the more stable data held in 
secondary memory (disk).  When a failure unexpectedly 
occurs, the contents of main memory are typically lost.  
As a result, the data stored in secondary memory may be 
inconsistent or unreachable.  The abstraction over storage 

should include transparent recovery from such store 
failures so that the store contents are guaranteed to be 
consistent despite unexpected store failure.  Stores 
supporting such a property are referred to as stable stores, 
and advancement of permanent and consistent state of the 
store is achieved through a sequence of operations called 
checkpoints [12]. 

The benefits of support for dual object sizes, providing 
both small objects corresponding to the logical units of 
data manipulated by programs (structures etc) and paged 
large objects comprising collections of logically related 
small objects, has been considered elsewhere [6].  In this 
paper we assume that either: 
• the object store supports both small and large objects, 

with stability being implemented at the large object 
level, or 

• the object store supports only paged objects. 
We consider paged objects as the granularity of 
stabilisation and thus express dependencies in terms of 
these objects and processes.  In the remainder of this 
paper we use the term object to refer to such paged 
objects and the term entities to refer to objects or 
processes.  We assume that processes are persistent as 
their state is kept in the persistent store.  Accordingly, by 
checkpoint and roll-back of a process, we mean the 
checkpoint and roll-back of its state.  We also refer to 
data as being modified if it has been changed or created 
since the last time the object containing the data was 
checkpointed. 

In section 2 of this paper we examine techniques used 
in the implementation of stable stores and introduce the 
concept of object level checkpoints.  In section 3 we show 
that such checkpoints must consider logical relationships 
between objects (dependencies), and describe a scheme 
for expressing inter-entity dependencies using directed 
graphs.  In section 4 we show how operating system 
support facilitates the implementation of stable stores 
based on this scheme.  In sections 5 and 6, we describe 
eager and lazy construction of directed dependency 
graphs.  Finally, in section 7, we describe the role of disk 
directories and the operating system kernel itself as 



  

special objects in the process of managing dependencies. 

2  Provision of stability 
A persistent store is said to be stable if it automatically 

recovers to a consistent state after a failure which has 
prevented orderly system shutdown.  Stability in 
persistent stores is typically provided using operations 
called checkpoints which flush all modified data currently 
held in main memory to disk, and atomically create a 
snapshot of the store at that moment.  Processing usually 
ceases on the store during such a checkpoint operation.  
Between checkpoint operations on a store, the state of the 
store is represented by the contents of disk plus the 
contents of modified data held in main memory.  As the 
management of the store requires that from time to time a 
main memory page frame is re-assigned, modified data in 
such a page frame must be saved before the page frame 
can be re-used.  Writing such page data back to its 
original location on disk potentially leads to the disk 
representation of the store being inconsistent and 
therefore unstable.  Shadow paging [10] is a technique 
that allows modified pages to be discarded without 
causing an inconsistent disk version of the store.  The 
atomicity of checkpoint operations may be guaranteed 
using Challis' algorithm [3]. 

Shadow paging maintains two copies of modified data 
between checkpoint operations; a copy of the stable data 
as it existed at the last checkpoint (shadow version data) 
and a copy of the latest version of the data (current 
version data).  The scheme may be implemented for 
individual objects, but is more typically applied at the 
virtual page level.  In a paged store, implementation of 
shadowing at the virtual page level minimises 
fragmentation by allowing more than one object to reside 
in the same page, and improves the efficiency of 
shadowing for objects that span multiple pages.  A new 
disk block is allocated per modified page to store either 
the shadow version or the current version of the page 
depending on the method of implementation.  System data 
structures are provided to point to disk blocks containing 
both the shadow version and the current version of the 
store.  Occurrence of a failure may make the current 
version of the pages useless, but in such circumstances the 
shadow version of pages is still accessible. 

Ensuring the consistency of a persistent store requires 
that checkpoint operations are atomic.  Since writing to 
disk is a sequential operation, it is impossible to write a 
set of disk blocks in a single operation.  Even the write of 
a single disk block may not be atomic in the case of 
failure.  Challis [3] proposed an algorithm to make the 
update of a disk block appears to be a single action.  
Using Challis' algorithm, it is possible to achieve 

atomicity of checkpoint operations by committing them 
through the update of a single disk block.  This requires 
that all virtual pages forming a distinct state of the store 
are ultimately accessible from this disk block.  Viewing 
the store as a tree structure of pages and maintaining the 
information about its root entry in the disk block satisfies 
this requirement.  We refer to the disk block as the root 
block and provide its update atomicity according to 
Challis' algorithm.  By maintaining two root blocks 
referring to different states of the store, it is possible to 
preserve the consistency of the store even if some failure 
occurs while a root page is being written to disk [12]. 

The problem with the stability scheme as described is 
that the entire store must be checkpointed at the same 
time.  Such operation requires processing either to be 
ceased or severely restricted during the checkpoint.  In a 
multi-user store involving multiple nodes this would 
result in unacceptable degradation of performance.  
Accordingly, systems have been developed which 
checkpoint parts of the store independently [8, 13].  The 
stable state of such a store is the collection of these stable 
parts.  Checkpointing parts of the store independently 
however, creates the possibility of logical inconsistencies 
between data.  Modified data from one object may 
influence the way a process modifies data in some other 
object.  As a result the two objects have a dependency 
relationship which must be considered when 
checkpointing either of them.  Such dependencies have 
been described using sets of clients in Casper [13], and 
more recently using directed graphs of entities [9]. 

3  Object dependencies in persistent stores 
Accessing of data objects by processes in a store may 

result in dependencies being created between the 
processes and the objects.  Such dependencies are 
established as a result of write operations which modify 
data, and subsequent read operations on the modified 
data.  It is important to note that data objects cannot 
become directly inter-dependent without processes, and 
that processes cannot become directly inter-dependent 
without data objects.  Nevertheless, dependencies may be 
recorded on a per process (client) basis; a set of modified 
pages is associated with each set of dependent clients.  It 
should also be noted that read operations on unmodified 
data do not create dependencies. 

Ideally dependencies should be established based on 
knowledge of access to data at the basic unit of data 
reference (e.g. byte, word).  In a paged store, however, it 
is excessively expensive to monitor access behaviour at 
this level.  The basic unit of transfer of data between 
secondary and primary storage and of virtual to physical 
address mapping is the virtual page.  Accordingly, a 



  

virtual memory system is required to maintain access 
behaviour knowledge at, and hardware support is 
optimised to, the virtual page level.  It is prudent, 
therefore, to use the same granularity in determining inter-
object dependencies.  Such dependencies, while detected 
at the virtual page level, result in dependencies at the 
objects1 level.  Thus dependency information either is 
maintained at the object level, in object-based stores, or is 
maintained at the client level, in client-server models of 
the store.  Dependencies are used to control checkpoint 
and roll-back operations and may be represented using a 
set called an association [13]. 

3.1  Describing dependencies using associations  
As defined for Casper, associations are sets of 

dependent clients (processes) [13].  After it has been 
checkpointed, a process belongs to an association of 
which it is the only member.  Over time processes access 
pages which have been modified by other processes 
causing their respective associations to merge.  To ensure 
logical consistency it is necessary to checkpoint all 
members of an association together in an atomic 
operation.  If such a checkpoint operation fails, or a 
system failure occurs, all members of an association roll 
back by reverting to their last stable states.  The use of 
associations guarantees that such reversion results in 
processes with no inconsistent inter-relationships.  It is 
apparent, however, that the lack of the consideration of 
behaviour of operations in describing dependencies often 
results in unnecessarily large checkpoint and roll-back 
operations.  Moreover checkpoint operations are 
expensive and roll-back operations may result in 
unnecessary loss of data modifications.  The use of 
directed graphs reduces the extent of checkpoint and roll-
back operations. 

3.2  Describing dependencies using directed 
graphs 

The efficiency of checkpoint and roll-back operations 
can be improved by reducing the cascade of such 
operations.  This can be achieved by separately 
representing the checkpoint and roll-back dependencies 
between entities and also exploiting operation behaviour 
to represent inter-entity dependencies.  When a process 
reads a modified page of an object, its state will depend 
on the state of the object.  Any write operation on a page 
of an object makes the object and the writer process 
dependent on each other. 

By considering read and write as the two main 
                                                           

1As mentioned earlier, we suppose that objects (as used in this 
discussion) are page aligned. 

operations on pages of objects, dependency can be 
expressed according to the interaction between processes 
and pages of objects.  Operations which may be 
performed on a page by a process can be categorised as 
one of the following: 
1) A process may read an unmodified page of an object.  

This results in no dependency between the reading 
process and the object. 

2) A process may read a modified page of an object.  
This results in a unidirectional dependency between 
the reading process and the object.  This is because 
the data which is read is unstable at the time of the 
read operation.  The direction of the dependency 
depends on the type of cascadable operation 
(checkpoint or roll-back) which propagates to other 
entities.  Only the checkpoint of a process P which 
has read a modified page of an object O should 
propagate to O, not vice versa.  Similarly a roll-back 
of O would result in an inconsistency with P and thus 
necessitates a roll-back of P; a roll-back of P does not 
affect O.  Thus, the direction of dependency in the 
case of checkpoint is from P to O, while it is from O 
to P in the case of roll-back. 

3) A process may modify a page of an object.  This 
results in a pair of unidirectional dependencies 
between the modifying process and the modified 
object (i.e. the process is dependent on the object and 
vice-versa). 

Directed graphs are used to represent such dependencies 
[9].  The → edge is used to specify the dependency 
between two entities.  E1 → E2 means that E1 depends on 
E2.  → is transitive, but not symmetric, i.e. if E1 depends 
on E2 (E1 → E2) then E2 does not necessarily have the 
same relationship with E1.  The relationship E1 → E2 is 
established if E1 reads modified data from E2.  Write 
operations lead to a pair of dependencies; instead of 
indicating two unidirectional arrows (E1 → E2 and 
E2 → E1), the notation E1 ↔ E2 is used.  We refer to the 
resultant graph as a directed dependency graph or DDG. 

Each entity is associated with one and only one DDG.  
After creation of an entity and after each checkpoint for 
the entity, its corresponding DDG contains the entity itself 
as the root and the only vertex.  A DDG is extended and 
merged with other DDGs as objects are modified or 
accessed.  The creation and maintenance of DDGs is 
integrated into virtual memory management and is 
achieved either eagerly or lazily.  In eager management of 
dependencies, the operating system kernel updates DDGs 
as soon as a clean page is modified or a modified page is 
accessed.  Lazy management of DDGs delays recording 
of dependencies and requires some hardware support. 



  

4  Kernel support for dependency detection 
As mentioned above, modifying a page or accessing a 

modified page results in dependencies between entities.  
To record dependencies, it is required to detect which 
virtual memory pages have been modified by some 
process since the last checkpoint.  Completion of access to 
an object by a process may require further accesses to 
system-related data such as the disk directory and the 
table of free disk blocks.  Identification of such accesses 
at the time of accessing the pure data would cause an 
unacceptable deterioration in system performance and 
thus we do not consider them explicitly.  Instead, we 
implicitly include some system-related objects with all 
DDGs as described in section 7. 

There are two cases to consider concerning 
construction of DDGs: pages not in main memory and 
pages which are memory resident at the time of access.  
Pages which are not in main memory and have not been 
modified since the last checkpoint are of no interest.  
Pages which are not in main memory and have been 
modified (and subsequently discarded to disk) can result 
in dependencies.  Accessing of such pages results in a 
page fault and subsequent page retrieval.  As a part of 
handling the page fault, it can be determined that the page 
has been modified since the last checkpoint and that 
therefore, the access should result in a new dependency.  
Pages resident in main memory at the time of access can 
be classified as belonging to one of the following groups. 
1) Clean/unmodified pages which have remained in 

main memory from previous time-slices. 
2) Dirty pages which have been modified in previous 

time-slices and have remained in main memory or 
have been modified in this time-slice. 

3) Clean/modified pages which have been modified and 
subsequently flushed to disk prior to this time-slice. 

We assume that conventional address translation 
hardware supports mechanisms to apply access protection 
over pages.  This is typically provided through the 
allocation of two status bits (read-only and dirty) per entry 
in the hardware-supported Address Translation Unit 
(ATU).  We use these facilities to determine whether a 
memory-resident page is modified.  For pages not in main 
memory, a separate mechanism is required to specify if a 
page has been modified since the last checkpoint. 

Corresponding to the above groups of pages in main 
memory, detection of dependencies are discussed. 

Access to clean/unmodified pages is unimportant for 
the management of dependencies.  Modification of such 
pages results in a write fault exception; the page is then 
marked as a dirty page in main memory. 

Access to dirty pages inherited from previous time-

slices and even modification of such pages does not result 
in any kernel interference.  This means that no record is 
made of a dependency between the current process and 
the object containing the page.  Suppose that a virtual 
page V1 was modified by a process P1 in a previous time 
slice and it has not been discarded from main memory.  
The page has remained in main memory as dirty.  Access 
by the current process (P2) to such a page, as well as its 
modification, is achieved without raising of any access 
violation or page fault.  As a result, the dependency 
remains undetected and this potentially results in an 
inconsistent state.  A possible solution is to force all dirty 
pages to be discarded as a part of a context-switch 
operation.  Further access to such pages in later time-
slices would then result in page faults so that 
dependencies could be managed.  This is, however, 
inefficient as a considerable amount of CPU time is 
consumed for unnecessary page swapping. 

An optimisation to this approach is to invalidate all 
dirty pages in the ATU as a part of context-switch 
operations.  Further access to such pages in subsequent 
time slices results in a dummy page fault which requires 
no page retrieval.  Handling of a dummy page fault 
includes only validating the entry in the ATU and re-
mapping the page in as read-only.  Management of 
dependencies can also be achieved as a part of handling 
the dummy page faults.  Conventional architectures which 
utilise Translation Lookahead Buffers (TLBs) [5], have 
been equipped with such facility, as all entries in a TLB 
are usually cleared as a part of context-switch.  In 
architectures without such a facility (e.g. Monads [1, 11]), 
invalidation of dirty pages during a context-switch may be 
achieved through a simple loop over dirty pages. 

Access to dirty pages modified in the current time-slice 
is unimportant as the dependency would already have 
been recorded in the time slice. 

Clean/modified pages are normally mapped in main 
memory as clean read-only.  Conventional computers 
typically consider a page as dirty only if it has been 
modified since the most recent time it was mapped into 
main memory.  Later modification of such pages results in 
write faults and thus detection and record of dependencies 
can take place.  If no modification occurs for pages which 
were modified on previous occasions when they were in 
main memory, all read accesses on the pages will be 
considered incorrectly identical to accessing of 
clean/unmodified pages and therefore the dependency 
between the process and the modifier becomes 
transparent.  This problem is due to  
• the lack of difference between disk blocks containing 

modified and unmodified virtual pages in typical 
computer systems which overwrite a modified page 
on its original disk location at discard time, and also 



  

• the lack of difference between unmodified pages and 
modified/discarded pages prior to this time-slice, in 
main memory. 

To overcome the problem, it is required that the virtual 
memory management software be aware of modified 
pages.  Virtual memory page table(s) used to locate pages 
for loading into main memory can be extended to indicate 
whether non-memory-resident pages have been modified 
since the last checkpoint.  Such an extension has been 
already provided in computer systems which implemented 
shadow paging (e.g. [12]) as their method of stability.  In 
Monads, a separate data structure has been used to 
determine if a page has been shadowed (modified) since 
the last checkpoint.  We use this feature to manage 
dependencies in both the eager and lazy methods of 
dependency management described in sections 5 and 6. 

In handling a page fault, the table of modified pages is 
consulted; if the page has been modified, an edge is 
inserted in the DDG.  Then the page is retrieved and 
mapped into the ATU as dirty/read-only.  Mapping a 
modified page into the ATU as dirty has the disadvantage 
of allowing unnecessary page discards. 

Assuming the kernel support for dependency detection, 
dependencies may be recorded eagerly. 

5  Eager dependency graph construction 
In eager construction of DDGs, a DDG is modified as 

soon as the kernel realises that a new dependency is 
created.  In terms of the possible operations which a 
process may perform on a page described in section 3.2, a 
DDG grows or shrinks according to the following criteria. 
• When a process P1 reads a modified page of an object 

O1, the edge P1 →  O1 is inserted into the DDG. 
• When a process P1 modifies a page of the object O1, 

the edge P1 ↔  O1 is inserted into the DDG. 
• When a process in one DDG reads some modified 

page of an object or modifies an object which is 
associated with another DDG, the two DDGs are 
merged using one of the above edges to create a 
single larger DDG. 

• A DDG shrinks when a set of dependent entities is 
checkpointed or entities revert to their last stable 
state. 

At any given time each entity belongs to one and only one 
DDG.  To find the entities dependent on an entity, it is 
sufficient to find the location of the entity in its containing 
DDG and then traverse the directed graph (subject to the 
kind of operation) starting from the entity.  This may be 
different for each entity in the DDG and thus may result 
in a different set of dependent entities. 

We illustrate the construction and reduction of a DDG 
in figure 1.  The figure depicts a sequence of operations 
performed in a store starting from an initial state (e.g. 
after system restart).  We assume that three processes (P1, 
P2, and P3) are accessing four objects (O1, O2, O3, and 
O4).  To demonstrate access to different pages of an 
object, we also assume that O1 and O2 have two pages 
each, O3 has one and O4 has three pages.  Processes are 
shown by circles in the figure, while objects are shown by 
a set of pages; each page is represented by a blank 
(unmodified) or shaded (modified) rectangle.  Each object 
with at least one modified page is considered to be a 
modified object.  For simplicity, we do not consider 
system-related information maintained on a per object 
basis.  Figure 1(a) depicts the resultant DDG. 

Figures 1(b) and 1(c) depict the effect of using DDGs 
on the propagation of checkpoint and roll-back 
operations.  The checkpoint of P1 in the resultant DDG 
only propagated to O1 and O2.  The roll-back of P3 in the 
resultant DDG only propagated to O3.  As read operations 
outnumber write operations in a typical computer system 
[4], the described DDG is normally populated by 
unidirectional edges.  This results in a considerable 
portion of the DDG  being unaffected by the propagation 
of checkpoint and roll-back operations resulting in 
improvement in the system performance.  Our simulation 
results confirm this claim. 

6  Lazy dependency graph construction 
By lazy construction of DDGs, inter-entity 

dependencies made in a time slice are only recorded 
during the process switch at the end of the time slice.  
Accordingly, it is necessary to record the accesses and 
modifications performed by a process during its latest 
activation.  This facility is not supported by conventional 
address translation units.  To enable lazy construction of 
DDGs, it is necessary to be able to detect: 
1) which virtual pages have been modified by some 

process since the objects containing the pages were 
last checkpointed, 

2) which virtual pages have been accessed in this time-
slice by the currently executing process, and 

3) which virtual pages have been modified in this time-
slice by the currently executing process. 

The first requirement is identical to that for eager 
construction of DDGs and may be provided with no 
special hardware support.  Nevertheless, support of 
hardware to detect modified pages results in an efficiency 
improvement in both methods of DDG construction. 



  

6) P1 modifies t he fi rst page of  O1 : P1� O1 is added t o the graph.

2) P2 modifies t he f irst page of O3 : P2 � O3 is added t o t he graph.
1) P1 modifies t he second page of O2 : P1 �  O2 is added t o t he gr aph.

3) P3 reads the first  page of O3 : P3 µ O3 is added to  the graph.
 4) P3 reads t he fi rst page of  O2 : Not hing is added t o the graph.

5) P3 modifies t he second page of O4 : P3 �  O4 is added t o t he gr aph.

7) P2 reads t he fi rst page of  O1 : P2 µ O1 is added to  the graph.
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Figure 1  Construction and reduction of DDGs. 

The requirement of specifying modified pages should 
not be confused with the ability to identify dirty pages 
which is essential to virtual memory management.  
Conventional architectures typically provide that ability 
through the implementation of a dirty bit per entry in their 
ATU.  On page discard the dirty bit is queried and 
accordingly the page-frame is immediately re-allocated if 
clean, or is flushed prior to re-allocation.  Such dirty bits 
are used in exactly the same way for management of the 
proposed store. 

A modified bit per entry in the ATU is proposed to 
indicate that the contents of this page frame have been 
modified by some process since the object containing the 
page was last checkpointed.  As described in section 3, 
subsequent access by another process to such a page 
creates a dependency situation involving the object 
containing the page and the modifying or accessing 
process.  The modified bits for the pages of an object are, 
of course, cleared when the object is checkpointed. 

Determination of dependencies without this bit 
involves using the dirty bit for two purposes: 

1) for virtual memory page discard decisions, and 
2) to detect subsequent accesses to modified pages. 

This is inefficient because a dirty page which is discarded 
as part of virtual memory management and later retrieved 
for read access will be flushed again on its next discard or 
when its object is checkpointed.  It is thus recommended 
that two bits be implemented, one for each function. 

The implementation of the modified bit requires that 
the virtual memory management software distinguishes 
between non-resident modified and unmodified pages as 

described in section 4.  The page table is used to retrieve 
pages and extra information which is used to 
appropriately set the modified bit when the page is 
mapped in to the ATU.  The ATU dirty bit for the page is 
not set, ensuring that the page may be later discarded 
without being flushed to disk (unless, of course, it is 
subsequently further modified).  Subject to the same 
caveat the page will not be flushed when its object is next 
checkpointed. 

There are two additional hardware features which can 
be provided to improve the efficiency of construction of 
DDGs by allowing them to be updated once per process 
time-slice.  These are the m_accessed bit and the written 
bit. 

Pages may remain in main memory for a period 
encompassing many process activations.  The allocation 
of the m_accessed bit per entry in the ATU allows 
detection of a process accessing modified object data 
during the current time slice.  This bit is set for a page if 
the page is accessed while the modified bit for the page is 
set.  Dependencies between a process and the objects 
containing pages with the m_accessed bit set, are 
represented by the addition of appropriate → edges to the 
DDG at the conclusion of the process' period of 
activation.  All m_accessed bits must be cleared at the 
commencement of a process time slice; this may be 
achieved in a single operation using appropriate hardware. 

The inclusion of a written bit per entry in the ATU 
allows detection of object data modifications made by the 
current process.  This bit is distinct from the modified bit 
described above because it describes the modification 



  

behaviour of the current process only rather than the 
status of the virtual page itself.  The written bit is set 
together with the modified and dirty bits, but is cleared as 
part of the DDG update at the conclusion of the process 
time slice.  In contrast the modified bit is cleared at the 
next object checkpoint and the dirty bit is cleared when 
the page is flushed to disk.  Pages with the written bit set 
cause the inclusion of an appropriate ↔ DDG edge. 

Lazy construction of DDGs is more efficient than 
eager construction.  A process may read a modified page 
and later on modify it.  In eager construction of DDGs, 
this results in two modifications of the DDG.  First an 
edge is inserted into the DDG and then the edge is 
upgraded.  Lazy construction of DDGs reduces this to the 
insertion of only one (upgraded) edge.  Nevertheless, 
with the lazy method of constructing DDGs, initialisation 
of a checkpoint or roll-back operation in multi-processor 
machines potentially misses some unrecorded 
dependencies which have been created since the start of 
the respective current time-slices.  Discard of a page 
whose corresponding m_accessed or written bit is set, is 
not an issue for single-processor machines as a page 
discard is synchronised with process activation.  A multi-
processor computer allows several processes to execute 
simultaneously, and thus page discard may occur in 
parallel with process activation.  We described this in [7]. 

M_accessed and written bits are proposed per page in 
main memory.  These in fact are required per object.  
Support of such bits per object requires further data 
structures and mechanisms to be provided by the address 
translation unit.  Nevertheless, having these bits per object 
facilitates invocation of the dependency manager once per 
object instead of per page. 

7  Critical Objects in DDGs 
As mentioned earlier, each normal entity belongs to 

one and only one DDG.  This results in autonomy of 
DDGs in terms of checkpoint and roll-back.  However, 
there are special entities which belong to more than one 
DDG. 

The kernel in each node can be considered as an object 
including data structures, manipulated frequently to 
record the system state.  Accordingly, the current user 
process and the kernel are made dependent on each other.  
This in turn leads to the dependency of all entities on the 
kernel and vice versa.  For simplicity, we refer to the 
entire kernel as a single entity which belongs to all DDGs. 

Due to the lack of a one-to-one correspondence 
between virtual address space and physical disk address 
space, a mapping is required to translate object identifiers 
into their physical addresses.  We assume that a mapping 
table exists per disk to perform such mapping for all 

objects on the same disk.  We refer to this mapping table 
as the disk directory and allocate a special object with a 
well-known address per disk.  The object is called the root 
object for the disk and contains all information required 
for management of the disk, including the disk directory 
and the disk free-list.  Each access to an object located on 
a disk requires some references and probably modification 
to the root object.  For example, any disk page allocation 
requires the modification of the disk free-list. 

Each object necessarily depends on the root object of 
its accommodating disk and vice versa.  Therefore, each 
network-wide DDG may contain one or more kernel 
entities and also one or more disk root objects.  Disk root 
objects and kernel entities are called critical objects as 
they can broadcast each checkpoint or roll-back operation 
through the whole store if they are considered as normal 
entities. 

To improve efficiency, however, critical objects are 
considered differently from normal entities and are not 
necessarily included in DDGs.  They are considered as 
permanent entities of each DDG and are restricted in 
propagation of operations.  Critical objects act as 
obstacles in propagation of checkpoint and roll-back 
operations.  Otherwise at each point in time all entities 
would belong to the only DDG in the system. 

As an example, consider the three DDGs spread over 
two disks D1 and D2 shown in figure 2.  All DDGs on a 
node depends on the kernel object and also all DDGs with 
entities belonging to a disk depend on the disk root object.  
To provide autonomy of DDGs, critical entities are 
assumed to have an instance per DDG.  Moreover, critical 
objects should be checkpointed such that the possibility of 
the roll-back of other existing non-stable DDGs is 
guaranteed. 
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Figure 2   Dependency of DDGs on critical entities. 

8  Conclusion 
Stability of persistent object stores may be achieved by 

checkpointing dependent entities together.  Dependencies 
between entities are created during processing of the data 
held in the store, and may be recorded using directed 
graphs.  It has been shown that different dependencies are 
created by read and write accesses to data.  Distinguishing 
modification of a page from accessing a modified page 
allows a reduction in the extent of checkpoint and roll-
back operations. 

Maintaining dependency information requires 
operating system intervention to detect and update 
dependencies.  This service is integrated with virtual 
memory management and utilises protection mechanisms 
provided by the ATU.  Recording dependencies as soon 
as they happen is possible using the conventional ATU 
services, but it is not very efficient.  By the provision of 
further support in the ATU to determine modified pages, 
modified-accessed pages and written pages in each time-
slice, it is possible to lazily record dependencies at the end 
of each time-slice. 

The techniques described in this paper have been 
evaluated by simulation and shown to result in significant 
stability-related performance improvements.  
Subsequently a new version of the Monads architecture 
which incorporates hardware support for the construction 
of directed dependency graphs has been designed and is 
currently being implemented [7]. 
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