
Published in: Proceedings, International Workshop on Object-Oriented Real-Time Dependable Systems, IEEE, Dana
Point, California, U.S.A., pp. 21-29, 1994

Operating System Support for Object Dependencies in Persistent Object Stores
*Rasool Jalili, *Frans A. Henskens, †David. M. Koch & *John Rosenberg

*Department of Computer Science
University of Sydney, N.S.W., 2006, Australia

{rasool,frans,johnr}@cs.su.oz.au

†Department of Computer Science
University of Newcastle, N.S.W., 2308, Australia

dmk@cs.newcastle.edu.au

Abstract
Persistent object stores provide uniform management

of short-term and long-term objects. Such stores ensure
the integrity of the data even after occurrence of a failure,
by guaranteeing the existence of some previous self-
consistent stable state at each point in time. Maintaining
a consistent state of a persistent store necessitates
recording of inter-object dependencies and checkpointing
of each object together with all its dependent objects.
Directed graphs may be used to describe such
dependencies. In this paper we describe eager and lazy
construction of dependency graphs. We then address
operating system and hardware support for management
of dependencies.

Keywords: Dependency, Stability, Persistent Systems,
Fault-tolerant Systems, Checkpoint, Roll-back.

1 Introduction
Persistent systems support mechanisms to allow the

creation and manipulation of arbitrary data structures
which survive in their original form even after the
termination of the program that created them [2]. As a
result, programmers are not required to flatten data
structures in order to store them permanently. In this
sense a persistent system provides an alternative to a
conventional file system for the storage of permanent
data. This alternative is far more flexible as it allows both
the data and its interrelationships to be stored in their
original form. Achievement of this requires a uniform
storage abstraction which is often called a persistent store.

A persistent store supports mechanisms for the uniform
management of objects and their interrelationships
regardless of their lifetime. Therefore, the distinction
between primary and secondary storage has been
abstracted over in persistent stores. The state of the store
at any instant is a combination of the data held in main
memory (RAM) and the more stable data held in
secondary memory (disk). When a failure unexpectedly
occurs, the contents of main memory are typically lost.
As a result, the data stored in secondary memory may be
inconsistent or unreachable. The abstraction over storage

should include transparent recovery from such store
failures so that the store contents are guaranteed to be
consistent despite unexpected store failure. Stores
supporting such a property are referred to as stable stores,
and advancement of permanent and consistent state of the
store is achieved through a sequence of operations called
checkpoints [12].

The benefits of support for dual object sizes, providing
both small objects corresponding to the logical units of
data manipulated by programs (structures etc) and paged
large objects comprising collections of logically related
small objects, has been considered elsewhere [6]. In this
paper we assume that either:
• the object store supports both small and large objects,

with stability being implemented at the large object
level, or

• the object store supports only paged objects.
We consider paged objects as the granularity of
stabilisation and thus express dependencies in terms of
these objects and processes. In the remainder of this
paper we use the term object to refer to such paged
objects and the term entities to refer to objects or
processes. We assume that processes are persistent as
their state is kept in the persistent store. Accordingly, by
checkpoint and roll-back of a process, we mean the
checkpoint and roll-back of its state. We also refer to
data as being modified if it has been changed or created
since the last time the object containing the data was
checkpointed.

In section 2 of this paper we examine techniques used
in the implementation of stable stores and introduce the
concept of object level checkpoints. In section 3 we show
that such checkpoints must consider logical relationships
between objects (dependencies), and describe a scheme
for expressing inter-entity dependencies using directed
graphs. In section 4 we show how operating system
support facilitates the implementation of stable stores
based on this scheme. In sections 5 and 6, we describe
eager and lazy construction of directed dependency
graphs. Finally, in section 7, we describe the role of disk
directories and the operating system kernel itself as

special objects in the process of managing dependencies.

2 Provision of stability
A persistent store is said to be stable if it automatically

recovers to a consistent state after a failure which has
prevented orderly system shutdown. Stability in
persistent stores is typically provided using operations
called checkpoints which flush all modified data currently
held in main memory to disk, and atomically create a
snapshot of the store at that moment. Processing usually
ceases on the store during such a checkpoint operation.
Between checkpoint operations on a store, the state of the
store is represented by the contents of disk plus the
contents of modified data held in main memory. As the
management of the store requires that from time to time a
main memory page frame is re-assigned, modified data in
such a page frame must be saved before the page frame
can be re-used. Writing such page data back to its
original location on disk potentially leads to the disk
representation of the store being inconsistent and
therefore unstable. Shadow paging [10] is a technique
that allows modified pages to be discarded without
causing an inconsistent disk version of the store. The
atomicity of checkpoint operations may be guaranteed
using Challis' algorithm [3].

Shadow paging maintains two copies of modified data
between checkpoint operations; a copy of the stable data
as it existed at the last checkpoint (shadow version data)
and a copy of the latest version of the data (current
version data). The scheme may be implemented for
individual objects, but is more typically applied at the
virtual page level. In a paged store, implementation of
shadowing at the virtual page level minimises
fragmentation by allowing more than one object to reside
in the same page, and improves the efficiency of
shadowing for objects that span multiple pages. A new
disk block is allocated per modified page to store either
the shadow version or the current version of the page
depending on the method of implementation. System data
structures are provided to point to disk blocks containing
both the shadow version and the current version of the
store. Occurrence of a failure may make the current
version of the pages useless, but in such circumstances the
shadow version of pages is still accessible.

Ensuring the consistency of a persistent store requires
that checkpoint operations are atomic. Since writing to
disk is a sequential operation, it is impossible to write a
set of disk blocks in a single operation. Even the write of
a single disk block may not be atomic in the case of
failure. Challis [3] proposed an algorithm to make the
update of a disk block appears to be a single action.
Using Challis' algorithm, it is possible to achieve

atomicity of checkpoint operations by committing them
through the update of a single disk block. This requires
that all virtual pages forming a distinct state of the store
are ultimately accessible from this disk block. Viewing
the store as a tree structure of pages and maintaining the
information about its root entry in the disk block satisfies
this requirement. We refer to the disk block as the root
block and provide its update atomicity according to
Challis' algorithm. By maintaining two root blocks
referring to different states of the store, it is possible to
preserve the consistency of the store even if some failure
occurs while a root page is being written to disk [12].

The problem with the stability scheme as described is
that the entire store must be checkpointed at the same
time. Such operation requires processing either to be
ceased or severely restricted during the checkpoint. In a
multi-user store involving multiple nodes this would
result in unacceptable degradation of performance.
Accordingly, systems have been developed which
checkpoint parts of the store independently [8, 13]. The
stable state of such a store is the collection of these stable
parts. Checkpointing parts of the store independently
however, creates the possibility of logical inconsistencies
between data. Modified data from one object may
influence the way a process modifies data in some other
object. As a result the two objects have a dependency
relationship which must be considered when
checkpointing either of them. Such dependencies have
been described using sets of clients in Casper [13], and
more recently using directed graphs of entities [9].

3 Object dependencies in persistent stores
Accessing of data objects by processes in a store may

result in dependencies being created between the
processes and the objects. Such dependencies are
established as a result of write operations which modify
data, and subsequent read operations on the modified
data. It is important to note that data objects cannot
become directly inter-dependent without processes, and
that processes cannot become directly inter-dependent
without data objects. Nevertheless, dependencies may be
recorded on a per process (client) basis; a set of modified
pages is associated with each set of dependent clients. It
should also be noted that read operations on unmodified
data do not create dependencies.

Ideally dependencies should be established based on
knowledge of access to data at the basic unit of data
reference (e.g. byte, word). In a paged store, however, it
is excessively expensive to monitor access behaviour at
this level. The basic unit of transfer of data between
secondary and primary storage and of virtual to physical
address mapping is the virtual page. Accordingly, a

virtual memory system is required to maintain access
behaviour knowledge at, and hardware support is
optimised to, the virtual page level. It is prudent,
therefore, to use the same granularity in determining inter-
object dependencies. Such dependencies, while detected
at the virtual page level, result in dependencies at the
objects1 level. Thus dependency information either is
maintained at the object level, in object-based stores, or is
maintained at the client level, in client-server models of
the store. Dependencies are used to control checkpoint
and roll-back operations and may be represented using a
set called an association [13].

3.1 Describing dependencies using associations
As defined for Casper, associations are sets of

dependent clients (processes) [13]. After it has been
checkpointed, a process belongs to an association of
which it is the only member. Over time processes access
pages which have been modified by other processes
causing their respective associations to merge. To ensure
logical consistency it is necessary to checkpoint all
members of an association together in an atomic
operation. If such a checkpoint operation fails, or a
system failure occurs, all members of an association roll
back by reverting to their last stable states. The use of
associations guarantees that such reversion results in
processes with no inconsistent inter-relationships. It is
apparent, however, that the lack of the consideration of
behaviour of operations in describing dependencies often
results in unnecessarily large checkpoint and roll-back
operations. Moreover checkpoint operations are
expensive and roll-back operations may result in
unnecessary loss of data modifications. The use of
directed graphs reduces the extent of checkpoint and roll-
back operations.

3.2 Describing dependencies using directed
graphs

The efficiency of checkpoint and roll-back operations
can be improved by reducing the cascade of such
operations. This can be achieved by separately
representing the checkpoint and roll-back dependencies
between entities and also exploiting operation behaviour
to represent inter-entity dependencies. When a process
reads a modified page of an object, its state will depend
on the state of the object. Any write operation on a page
of an object makes the object and the writer process
dependent on each other.

By considering read and write as the two main

1As mentioned earlier, we suppose that objects (as used in this
discussion) are page aligned.

operations on pages of objects, dependency can be
expressed according to the interaction between processes
and pages of objects. Operations which may be
performed on a page by a process can be categorised as
one of the following:
1) A process may read an unmodified page of an object.

This results in no dependency between the reading
process and the object.

2) A process may read a modified page of an object.
This results in a unidirectional dependency between
the reading process and the object. This is because
the data which is read is unstable at the time of the
read operation. The direction of the dependency
depends on the type of cascadable operation
(checkpoint or roll-back) which propagates to other
entities. Only the checkpoint of a process P which
has read a modified page of an object O should
propagate to O, not vice versa. Similarly a roll-back
of O would result in an inconsistency with P and thus
necessitates a roll-back of P; a roll-back of P does not
affect O. Thus, the direction of dependency in the
case of checkpoint is from P to O, while it is from O
to P in the case of roll-back.

3) A process may modify a page of an object. This
results in a pair of unidirectional dependencies
between the modifying process and the modified
object (i.e. the process is dependent on the object and
vice-versa).

Directed graphs are used to represent such dependencies
[9]. The → edge is used to specify the dependency
between two entities. E1 → E2 means that E1 depends on
E2. → is transitive, but not symmetric, i.e. if E1 depends
on E2 (E1 → E2) then E2 does not necessarily have the
same relationship with E1. The relationship E1 → E2 is
established if E1 reads modified data from E2. Write
operations lead to a pair of dependencies; instead of
indicating two unidirectional arrows (E1 → E2 and
E2 → E1), the notation E1 ↔ E2 is used. We refer to the
resultant graph as a directed dependency graph or DDG.

Each entity is associated with one and only one DDG.
After creation of an entity and after each checkpoint for
the entity, its corresponding DDG contains the entity itself
as the root and the only vertex. A DDG is extended and
merged with other DDGs as objects are modified or
accessed. The creation and maintenance of DDGs is
integrated into virtual memory management and is
achieved either eagerly or lazily. In eager management of
dependencies, the operating system kernel updates DDGs
as soon as a clean page is modified or a modified page is
accessed. Lazy management of DDGs delays recording
of dependencies and requires some hardware support.

4 Kernel support for dependency detection
As mentioned above, modifying a page or accessing a

modified page results in dependencies between entities.
To record dependencies, it is required to detect which
virtual memory pages have been modified by some
process since the last checkpoint. Completion of access to
an object by a process may require further accesses to
system-related data such as the disk directory and the
table of free disk blocks. Identification of such accesses
at the time of accessing the pure data would cause an
unacceptable deterioration in system performance and
thus we do not consider them explicitly. Instead, we
implicitly include some system-related objects with all
DDGs as described in section 7.

There are two cases to consider concerning
construction of DDGs: pages not in main memory and
pages which are memory resident at the time of access.
Pages which are not in main memory and have not been
modified since the last checkpoint are of no interest.
Pages which are not in main memory and have been
modified (and subsequently discarded to disk) can result
in dependencies. Accessing of such pages results in a
page fault and subsequent page retrieval. As a part of
handling the page fault, it can be determined that the page
has been modified since the last checkpoint and that
therefore, the access should result in a new dependency.
Pages resident in main memory at the time of access can
be classified as belonging to one of the following groups.
1) Clean/unmodified pages which have remained in

main memory from previous time-slices.
2) Dirty pages which have been modified in previous

time-slices and have remained in main memory or
have been modified in this time-slice.

3) Clean/modified pages which have been modified and
subsequently flushed to disk prior to this time-slice.

We assume that conventional address translation
hardware supports mechanisms to apply access protection
over pages. This is typically provided through the
allocation of two status bits (read-only and dirty) per entry
in the hardware-supported Address Translation Unit
(ATU). We use these facilities to determine whether a
memory-resident page is modified. For pages not in main
memory, a separate mechanism is required to specify if a
page has been modified since the last checkpoint.

Corresponding to the above groups of pages in main
memory, detection of dependencies are discussed.

Access to clean/unmodified pages is unimportant for
the management of dependencies. Modification of such
pages results in a write fault exception; the page is then
marked as a dirty page in main memory.

Access to dirty pages inherited from previous time-

slices and even modification of such pages does not result
in any kernel interference. This means that no record is
made of a dependency between the current process and
the object containing the page. Suppose that a virtual
page V1 was modified by a process P1 in a previous time
slice and it has not been discarded from main memory.
The page has remained in main memory as dirty. Access
by the current process (P2) to such a page, as well as its
modification, is achieved without raising of any access
violation or page fault. As a result, the dependency
remains undetected and this potentially results in an
inconsistent state. A possible solution is to force all dirty
pages to be discarded as a part of a context-switch
operation. Further access to such pages in later time-
slices would then result in page faults so that
dependencies could be managed. This is, however,
inefficient as a considerable amount of CPU time is
consumed for unnecessary page swapping.

An optimisation to this approach is to invalidate all
dirty pages in the ATU as a part of context-switch
operations. Further access to such pages in subsequent
time slices results in a dummy page fault which requires
no page retrieval. Handling of a dummy page fault
includes only validating the entry in the ATU and re-
mapping the page in as read-only. Management of
dependencies can also be achieved as a part of handling
the dummy page faults. Conventional architectures which
utilise Translation Lookahead Buffers (TLBs) [5], have
been equipped with such facility, as all entries in a TLB
are usually cleared as a part of context-switch. In
architectures without such a facility (e.g. Monads [1, 11]),
invalidation of dirty pages during a context-switch may be
achieved through a simple loop over dirty pages.

Access to dirty pages modified in the current time-slice
is unimportant as the dependency would already have
been recorded in the time slice.

Clean/modified pages are normally mapped in main
memory as clean read-only. Conventional computers
typically consider a page as dirty only if it has been
modified since the most recent time it was mapped into
main memory. Later modification of such pages results in
write faults and thus detection and record of dependencies
can take place. If no modification occurs for pages which
were modified on previous occasions when they were in
main memory, all read accesses on the pages will be
considered incorrectly identical to accessing of
clean/unmodified pages and therefore the dependency
between the process and the modifier becomes
transparent. This problem is due to
• the lack of difference between disk blocks containing

modified and unmodified virtual pages in typical
computer systems which overwrite a modified page
on its original disk location at discard time, and also

• the lack of difference between unmodified pages and
modified/discarded pages prior to this time-slice, in
main memory.

To overcome the problem, it is required that the virtual
memory management software be aware of modified
pages. Virtual memory page table(s) used to locate pages
for loading into main memory can be extended to indicate
whether non-memory-resident pages have been modified
since the last checkpoint. Such an extension has been
already provided in computer systems which implemented
shadow paging (e.g. [12]) as their method of stability. In
Monads, a separate data structure has been used to
determine if a page has been shadowed (modified) since
the last checkpoint. We use this feature to manage
dependencies in both the eager and lazy methods of
dependency management described in sections 5 and 6.

In handling a page fault, the table of modified pages is
consulted; if the page has been modified, an edge is
inserted in the DDG. Then the page is retrieved and
mapped into the ATU as dirty/read-only. Mapping a
modified page into the ATU as dirty has the disadvantage
of allowing unnecessary page discards.

Assuming the kernel support for dependency detection,
dependencies may be recorded eagerly.

5 Eager dependency graph construction
In eager construction of DDGs, a DDG is modified as

soon as the kernel realises that a new dependency is
created. In terms of the possible operations which a
process may perform on a page described in section 3.2, a
DDG grows or shrinks according to the following criteria.
• When a process P1 reads a modified page of an object

O1, the edge P1 → O1 is inserted into the DDG.
• When a process P1 modifies a page of the object O1,

the edge P1 ↔ O1 is inserted into the DDG.
• When a process in one DDG reads some modified

page of an object or modifies an object which is
associated with another DDG, the two DDGs are
merged using one of the above edges to create a
single larger DDG.

• A DDG shrinks when a set of dependent entities is
checkpointed or entities revert to their last stable
state.

At any given time each entity belongs to one and only one
DDG. To find the entities dependent on an entity, it is
sufficient to find the location of the entity in its containing
DDG and then traverse the directed graph (subject to the
kind of operation) starting from the entity. This may be
different for each entity in the DDG and thus may result
in a different set of dependent entities.

We illustrate the construction and reduction of a DDG
in figure 1. The figure depicts a sequence of operations
performed in a store starting from an initial state (e.g.
after system restart). We assume that three processes (P1,
P2, and P3) are accessing four objects (O1, O2, O3, and
O4). To demonstrate access to different pages of an
object, we also assume that O1 and O2 have two pages
each, O3 has one and O4 has three pages. Processes are
shown by circles in the figure, while objects are shown by
a set of pages; each page is represented by a blank
(unmodified) or shaded (modified) rectangle. Each object
with at least one modified page is considered to be a
modified object. For simplicity, we do not consider
system-related information maintained on a per object
basis. Figure 1(a) depicts the resultant DDG.

Figures 1(b) and 1(c) depict the effect of using DDGs
on the propagation of checkpoint and roll-back
operations. The checkpoint of P1 in the resultant DDG
only propagated to O1 and O2. The roll-back of P3 in the
resultant DDG only propagated to O3. As read operations
outnumber write operations in a typical computer system
[4], the described DDG is normally populated by
unidirectional edges. This results in a considerable
portion of the DDG being unaffected by the propagation
of checkpoint and roll-back operations resulting in
improvement in the system performance. Our simulation
results confirm this claim.

6 Lazy dependency graph construction
By lazy construction of DDGs, inter-entity

dependencies made in a time slice are only recorded
during the process switch at the end of the time slice.
Accordingly, it is necessary to record the accesses and
modifications performed by a process during its latest
activation. This facility is not supported by conventional
address translation units. To enable lazy construction of
DDGs, it is necessary to be able to detect:
1) which virtual pages have been modified by some

process since the objects containing the pages were
last checkpointed,

2) which virtual pages have been accessed in this time-
slice by the currently executing process, and

3) which virtual pages have been modified in this time-
slice by the currently executing process.

The first requirement is identical to that for eager
construction of DDGs and may be provided with no
special hardware support. Nevertheless, support of
hardware to detect modified pages results in an efficiency
improvement in both methods of DDG construction.

6) P1 modifies t he fi rst page of O1 : P1� O1 is added t o the graph.

2) P2 modifies t he f irst page of O3 : P2 � O3 is added t o t he graph.
1) P1 modifies t he second page of O2 : P1 � O2 is added t o t he gr aph.

3) P3 reads the first page of O3 : P3 µ O3 is added to the graph.
 4) P3 reads t he fi rst page of O2 : Not hing is added t o the graph.

5) P3 modifies t he second page of O4 : P3 � O4 is added t o t he gr aph.

7) P2 reads t he fi rst page of O1 : P2 µ O1 is added to the graph.

P1 P2 P3

O1

O2 O4

O3

b) P1 init iat es a checkpoin t: P1, O1 and O2 are af fect ed.

P1 P2 P3

O1

O2 O4

O3

P1 P2 P3

O1

O2 O4

O3

c) P3 ro lls back t o i ts last st able st ate : P3 and O4 are affect ed

a)

Figure 1 Construction and reduction of DDGs.

The requirement of specifying modified pages should
not be confused with the ability to identify dirty pages
which is essential to virtual memory management.
Conventional architectures typically provide that ability
through the implementation of a dirty bit per entry in their
ATU. On page discard the dirty bit is queried and
accordingly the page-frame is immediately re-allocated if
clean, or is flushed prior to re-allocation. Such dirty bits
are used in exactly the same way for management of the
proposed store.

A modified bit per entry in the ATU is proposed to
indicate that the contents of this page frame have been
modified by some process since the object containing the
page was last checkpointed. As described in section 3,
subsequent access by another process to such a page
creates a dependency situation involving the object
containing the page and the modifying or accessing
process. The modified bits for the pages of an object are,
of course, cleared when the object is checkpointed.

Determination of dependencies without this bit
involves using the dirty bit for two purposes:

1) for virtual memory page discard decisions, and
2) to detect subsequent accesses to modified pages.

This is inefficient because a dirty page which is discarded
as part of virtual memory management and later retrieved
for read access will be flushed again on its next discard or
when its object is checkpointed. It is thus recommended
that two bits be implemented, one for each function.

The implementation of the modified bit requires that
the virtual memory management software distinguishes
between non-resident modified and unmodified pages as

described in section 4. The page table is used to retrieve
pages and extra information which is used to
appropriately set the modified bit when the page is
mapped in to the ATU. The ATU dirty bit for the page is
not set, ensuring that the page may be later discarded
without being flushed to disk (unless, of course, it is
subsequently further modified). Subject to the same
caveat the page will not be flushed when its object is next
checkpointed.

There are two additional hardware features which can
be provided to improve the efficiency of construction of
DDGs by allowing them to be updated once per process
time-slice. These are the m_accessed bit and the written
bit.

Pages may remain in main memory for a period
encompassing many process activations. The allocation
of the m_accessed bit per entry in the ATU allows
detection of a process accessing modified object data
during the current time slice. This bit is set for a page if
the page is accessed while the modified bit for the page is
set. Dependencies between a process and the objects
containing pages with the m_accessed bit set, are
represented by the addition of appropriate → edges to the
DDG at the conclusion of the process' period of
activation. All m_accessed bits must be cleared at the
commencement of a process time slice; this may be
achieved in a single operation using appropriate hardware.

The inclusion of a written bit per entry in the ATU
allows detection of object data modifications made by the
current process. This bit is distinct from the modified bit
described above because it describes the modification

behaviour of the current process only rather than the
status of the virtual page itself. The written bit is set
together with the modified and dirty bits, but is cleared as
part of the DDG update at the conclusion of the process
time slice. In contrast the modified bit is cleared at the
next object checkpoint and the dirty bit is cleared when
the page is flushed to disk. Pages with the written bit set
cause the inclusion of an appropriate ↔ DDG edge.

Lazy construction of DDGs is more efficient than
eager construction. A process may read a modified page
and later on modify it. In eager construction of DDGs,
this results in two modifications of the DDG. First an
edge is inserted into the DDG and then the edge is
upgraded. Lazy construction of DDGs reduces this to the
insertion of only one (upgraded) edge. Nevertheless,
with the lazy method of constructing DDGs, initialisation
of a checkpoint or roll-back operation in multi-processor
machines potentially misses some unrecorded
dependencies which have been created since the start of
the respective current time-slices. Discard of a page
whose corresponding m_accessed or written bit is set, is
not an issue for single-processor machines as a page
discard is synchronised with process activation. A multi-
processor computer allows several processes to execute
simultaneously, and thus page discard may occur in
parallel with process activation. We described this in [7].

M_accessed and written bits are proposed per page in
main memory. These in fact are required per object.
Support of such bits per object requires further data
structures and mechanisms to be provided by the address
translation unit. Nevertheless, having these bits per object
facilitates invocation of the dependency manager once per
object instead of per page.

7 Critical Objects in DDGs
As mentioned earlier, each normal entity belongs to

one and only one DDG. This results in autonomy of
DDGs in terms of checkpoint and roll-back. However,
there are special entities which belong to more than one
DDG.

The kernel in each node can be considered as an object
including data structures, manipulated frequently to
record the system state. Accordingly, the current user
process and the kernel are made dependent on each other.
This in turn leads to the dependency of all entities on the
kernel and vice versa. For simplicity, we refer to the
entire kernel as a single entity which belongs to all DDGs.

Due to the lack of a one-to-one correspondence
between virtual address space and physical disk address
space, a mapping is required to translate object identifiers
into their physical addresses. We assume that a mapping
table exists per disk to perform such mapping for all

objects on the same disk. We refer to this mapping table
as the disk directory and allocate a special object with a
well-known address per disk. The object is called the root
object for the disk and contains all information required
for management of the disk, including the disk directory
and the disk free-list. Each access to an object located on
a disk requires some references and probably modification
to the root object. For example, any disk page allocation
requires the modification of the disk free-list.

Each object necessarily depends on the root object of
its accommodating disk and vice versa. Therefore, each
network-wide DDG may contain one or more kernel
entities and also one or more disk root objects. Disk root
objects and kernel entities are called critical objects as
they can broadcast each checkpoint or roll-back operation
through the whole store if they are considered as normal
entities.

To improve efficiency, however, critical objects are
considered differently from normal entities and are not
necessarily included in DDGs. They are considered as
permanent entities of each DDG and are restricted in
propagation of operations. Critical objects act as
obstacles in propagation of checkpoint and roll-back
operations. Otherwise at each point in time all entities
would belong to the only DDG in the system.

As an example, consider the three DDGs spread over
two disks D1 and D2 shown in figure 2. All DDGs on a
node depends on the kernel object and also all DDGs with
entities belonging to a disk depend on the disk root object.
To provide autonomy of DDGs, critical entities are
assumed to have an instance per DDG. Moreover, critical
objects should be checkpointed such that the possibility of
the roll-back of other existing non-stable DDGs is
guaranteed.

Disk1 Disk2

Kernel

O
11

O
12

O
13 O

14
O

15

P
11 P

12 P
13

N orma l
ent ity

Criti ca l
e nt ity

Implicit
dependency

Figure 2 Dependency of DDGs on critical entities.

8 Conclusion
Stability of persistent object stores may be achieved by

checkpointing dependent entities together. Dependencies
between entities are created during processing of the data
held in the store, and may be recorded using directed
graphs. It has been shown that different dependencies are
created by read and write accesses to data. Distinguishing
modification of a page from accessing a modified page
allows a reduction in the extent of checkpoint and roll-
back operations.

Maintaining dependency information requires
operating system intervention to detect and update
dependencies. This service is integrated with virtual
memory management and utilises protection mechanisms
provided by the ATU. Recording dependencies as soon
as they happen is possible using the conventional ATU
services, but it is not very efficient. By the provision of
further support in the ATU to determine modified pages,
modified-accessed pages and written pages in each time-
slice, it is possible to lazily record dependencies at the end
of each time-slice.

The techniques described in this paper have been
evaluated by simulation and shown to result in significant
stability-related performance improvements.
Subsequently a new version of the Monads architecture
which incorporates hardware support for the construction
of directed dependency graphs has been designed and is
currently being implemented [7].

Acknowledgment
This research has been supported by the Ministry of

Culture and Higher Educations, the Government of the
I. R. of Iran.

References
[1] Abramson, D. A. and Rosenberg, J. “The Micro-

Architecture of Capability-Based Computer”, Proceedings
of the 19th workshop on microprogramming (MICRO.19),
pp. 138-145, 1986.

[2] Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott,
P. W. and Morrison, R. “An Approach to Persistent
Programming”, The Computer Journal, 26(4):360-365,
1983.

[3] Challis, M. F. “Database Consistency and Integrity in a
Multi-User Environment”, Databases: Improving
Usability and Responsiveness, Academic Press, pp. 245-
270, 1978.

[4] Cvetanovic, Z. and Bhandarkar, D. “Characterization of
Alpha AXP Performance Using TP and Spec Workloads”,
IEEE Computer Architecture News, 22(2):60-70, 1994.

[5] Hennessy, J. L. and Patterson, D. A. “Computer
Architecture: A Quantitative Approach”, Morgan
Kaufmann Publishers, Inc., 1990.

[6] Henskens, F. A., Brossler, P., Keedy, J. L. and Rosenberg,
J. “Coarse and Fine Grain Objects in a Distributed
Persistent Store”, Processings of the Third International
Workshop on Object Orientation in Operating Systems,
IEEE Computer Society Press, Ashville, North Carolina,
1993.

[7] Henskens, F. A., Koch, D. M., Jalili, R. and Rosenberg, J.
“Hardware Support for Stability in a Persistent
Architecture”, Preceedings of the 6th International
Workshop on Persistent Object Stores, Tarascon, France,
pp. 381-393, 1994.

[8] Henskens, F. A., Rosenberg, J. and Hannaford, M. R.
“Stability in a Network of MONADS-PC Computers”,
Proceedings of the International Workshop on Computer
Architectures to support Security and Persistence of
Information, Springer-Verlag and British Computer
Society, pp. 246-256, 1990.

[9] Jalili, R. and Henskens, F. A. “Reducing the Extent of
Cascadable Operations in Stable Distributed Persistent
Stores”, In Proceedings of the 18th Australian Computer
Science Conference (ACSC’95), to appear, Adelaide,
Australia, 1995.

[10] Lorie, R. A. “Physical Integrity in a Large Segmented
Database”, ACM Transactions on Database Systems,
2(1):91-104, 1977.

[11] Rosenberg, J. and Abramson, D. “Monads-PC: A
Capability-Based Workstation to Support Software
Engineering”, Proceeding of the 18th Annual Hawaii
International Conference on System Sciences, pp. 222-231,
1985.

[12] Rosenberg, J., Henskens, F. A., Brown, A. L., Morrison,
R. and Munro, D. “Stability in a Persistent Store Based on
a Large Virtual Memory”, Springer-Verlag and British
Computer Society, pp. 229-245, 1990.

[13] Vaughan, F., Basso, T. L., Dearle, A., Marlin, C. and
Barter, C. “Casper: a Cached Architecture Supporting
Persistence”, Computing Systems, 5(3):337-359, 1992.

