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Abstract 

Increased use of software in controlhg safety- 
critical systems produced an  urgent need to  specify and 
analyze behavior of these systems systematically and 
rigorously. Statecharts formalism, a popular exten- 
sion of conventional finite state machines, has been 
successfully used for specifying requirements of many 
reactive systems including the TCAS 11, an aircraft 
collision avoidance system. 

However, little has been published on specific guide- 
lines on how one can best specify and analyze re- 
quirements in Statecharts. I n  this paper, we present 
a framework for  specifying requirements of real-time 
systems in Statecharts and analyzing them for com- 
pleteness, consistency, and safety. W e  use the require- 
ments taken from an emergency shutdown system for  
a Korean nuclear power plant, called Wolsung SDS2, 
as an example. 

1 Introduction 

Software controlling safety-critical real-time sys- 
tems has already become a part of our society. There 
are many examples of such :systems that impact daily 
lives of general public. For example, commercial fly- 
by-wire jetliners (e.g., Airbus A320 and Boeing 777) 
are currently in service. M,any countries operate nu- 
clear power plants, and some, including Korea, are de- 
veloping software-based emergency shutdown systems. 
Should emergency situations such as reactor overheat- 
ing occur, software is required to  initiate emergency 
shutdown procedures while maintaining the plant in a 
safe state. Some medical devices depend on software 
to  control the amount of radiation to deliver for cancer 
therapy and to  monitor various vital status of patients 
in an intensive care unit. 

When software is used a s  a control agent in such 
systems, safety becomes a paramount concern. In the 
worst case, computer malfunctions, especially unsafe 
software control outputs, could result in serious and 
unacceptable consequences such as death, injury, or 

environmental damage. Software development process 
is known to be a costly and often error-prone activ- 
ity, and software quality assurance becomes an essen- 
tial concern. Of the several phases involved in typical 
software development, requirements specification and 
analysis phase is empirically known to play the most 
crucial role in determining the overall and final soft- 
wizre quality. 

There are several attributes desired of high quality 
requirements specification including understandabil- 
ity, maintainability, analyzability, scalability, unam- 
biguity, etc. Many approaches have been suggested 
on developing high-quality requirements specification. 
Examples include development of formal specification 
languages, visual formalisms such as Statecharts[l] 
or Modecharts[6], and completeness and consistency 
criteriaI51. These approaches are closely related and 
tend to be complementary to  each other. Formal spec- 
ification languages enable automated analysis on the 
requirements but might be difficult to understand. On 
the other hand, requirements specification in visual 
languages, while easily understood, might lack formal 
and unambiguous semantics, thereby making the task 
of detecting flaws, especially subtle ones, difficult. 

Statecharts formalism is a popular language to  
specify behavior of reactive systems. RSML, an ex- 
tended version of Statecharts, has been successfully 
used to specify the behavior of the TCAS I1 whose 
logic is very complex[7]. However, there have been few 
research efforts on methodologies on how software rei- 

quirements should be organized and specified in Stat- 
echarts. Note Ghat a specification language in itself 
does not provide any methodologies or guidelines. For 
example, in Statecharts a state can communicate with 
any of the rest states using events, that is, an event is 
assumed to  be broadcasted to  all the states. For an- 
other example, the scope of a variable is assumed to be 
global in that it can be used and defined in the guard 
and action of any transitions. We have found that 
uiidisciplined and unrestricted uses of these features 
may result in software requirements of poor quality 
and erroneous. 

In this paper, we propose a framework for devel- 
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oping and analyzing real-time safety-critical systems 
in Statecharts. Usefulness of our approach is demon- 
strated using an real-world industrial system, called 
Wolsung SDS2, a software-based emergency shutdown 
system whose functionality is similar to that of the 
Darlington plant in Canada[ lo]. 

Our paper is organized as follows: Section 2 briefly 
reviews Staterharts formalism. Section 3 proposes a 
framework for specifying and analyzing real-time sys- 
tems using Statecharts. Additionally, a set of criteria 
to statically analyze Statecharts is proposed. In Sec- 
tion 4, si afety analysis method for Statecharts, based 
on forward and backward simulation, is presented. Fi- 
nally, Section 5 concludes the paper. 

Controller 
Inputs 

2 Statecharts 

outputs 

Statecharts, proposed by D. Hare1 for specifying 
complex reactive systems[l], consists of <S, T ,  E ,  V> 
where S i s  a set of states, T is a set of transitions, E 
is a set of events, and V is a set of variables. 

States are either B A S I C ,  OR,  or A N D  states: 
B A S I C  states have no substates. O R  states have sub- 
states that  are related to each other by an exclusive- 
or relation. Being in an OR state implies being in 
only one of its substates. A N D  states have substates, 
called orthogonal components, that are related by an 
and relation. Being in an A N D  state implies that 
being in all of its orthogonal components. 

Changes among states are represented by a transi- 
tion whose format is 

event [condition] f action 

An event is an instantaneous occurrence of a stim- 
ulus (trigger), a condition is a predicate which should 
be satisfied for a transition to occur and an action may 
generate other events or perform computations. 

In summary, we can say[l]: 

Statecharts = finite state machine + depth 
+- orthogonality + broadcast 

The concept of depth is achieved by OR states, and or- 
thogonality is achieved by A N D  states. Broadcast are 
used for communications between states. The com- 
munication is achieved by an action of a transition. 
That is, when a transition triggered, an action gener- 
ates an event and this event is assumed to be globally 
broadcast,ed. 

I 

amework for Real-Time Sys- 

Plant A 

A real-time system consists of the four basic compo- 
nents: plant, sensors, actuators, and controller (Fig 1). 

The plant is a physical, mechanical, or electrical pro- 
cess. As far as the controller is concerned, the plant 
represents the external environment with which the 
controller interacts. Sensors measure the plant’s cur- 
rent state and provide inputs to  the controller. Based 
on the sensor’s inputs, the controller performs a set 
of computations to determine how the current state 
of the plant should be changed. The controller’s deci- 
sions are then passed back to the plant by actuators 
via controlled variables. 

Sensors 0 0 Actuators 

Figure I: The structure of real-time systems 

There is an important distinction to  be made be- 
tween the plant and the controller. The plant is usu- 
ally “given” in that the developer of the controller may 
not change characteristics of the plant. In contrast, 
there is usually more freedom in the development of 
the controller. In fact, the controller is often imple- 
mented by real-time software so that the controller 
logic can be changed easily if desired. Furthermore, 
the behavior of the controller cannot be developed un- 
less that of the the plant is first specified. 

The controller must regulate the plant’s behavior 
with respect to a set of pre-defined physical laws, 
objectives, and constraints required of the system. 
Therefore, requirements of real-time systems should 
be expressed in terms of not only the controller’s 
functionality but also the plant’s behavior. Several 
methodologies that explicitly take into account these 
characteristics of real-time systems have been pro- 
posed. Examples include the SCR method[ll], Heit- 
meyer and Labaw’s method[2]. and TTL/RTTL[S]. 

However, none of those methodologies supports the 
use of Statecharts. Several features of Statecharts for- 
malism, when used in unrestricted and ill-disciplined 
manners, can result in erroneous or in the worst cases, 
unrealistic requirements specifications. Especially, we 
have found that the following features of Statecharts 
can potentially cause ill-disciplined requirements spec- 
ifications: 

0 Every event is assumed to be broadcasted to  all 
the states. Therefore, every state can communi- 
cate with each other using broadcasted events. 
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0 Every variable is assumed to  be global in that it 
can be used and defined in the guard and action 
of any transitions. 

It should be emphasized that Statecharts in itself 
do not enforce restrictions or provide guidelines on 
how various states and transitions should be orga- 
nized. While one may argue that such complete free- 
dom provides maximum flexibility to the developers, 
it is often the case that sulbtle errors caused by the 
ill-disciplined uses can be quite difficult to detect. 

The main purpose of the framework is to properly 
specify the requirements of the software in real-time 
systems in a systematic and disciplined manner us- 
ing Statecharts. The software in real-time systems 
interacts with the plant, i.e, its environment via in- 
put and output variables. ‘The requirements for the 
software are, therefore, described by specifying the re- 
quired characteritics of output variables as a response 
to  the observed input variables. In our framework, 
the software is represented as an AND state which 
has three orthogonal components: Inputs, Functions, 
Outputs (Fig 2). 

Figure 2: A framework for real-time systems 

The first step in our framework is to  identify all 
relevant input and output variables to  the software. 
The behavior of input and output variables is speci- 
fied by the orthogonal components of Inputs and Out- 
puts, respectively. Then, the required behavior of the 
software is identified as a slet of functions which are 
specified by the orthogonal components of Functions. 
We use the prefix “i-”, “f-” and “o-” for the orthogonal 
components states, triggering events, and variables in 
Inputs, Functions and Outputs, respectively. 

We propose several criteria on how to use State- 
charts constructs and semantics for specifying the be- 

havior of input, output variables and functions in a 
disciplined way. After the behavior of all input, out- 
put variables and functions are specified, the next step 
is to statically analyze Statecharts using the following 
criteria. 

C.l  The orthogonal components of Inputs and Out- 
puts should have a default state specified with a condi- 
tional connective. In contrast, the orthogonal compo- 
nents of Functions should have a deterministic default 
state. 

Default states of the orthogonal components of In- 
puts, and Outputs represent the state of the plant at 
the time of software initialization. No assumptions 
can be made about the default state of the plant, be- 
cause the changes of states of the plant may occur 
independently on the software. Therefore, when the 
software is initialized, every state in the orthogonal 
components of Inputs and Outputs may be a possible 
default state. In contrast, default states in Functions, 
should be designed to  have a predefined deterministic 
value, because they represent the initial configuration 
of the real-time control software. 

C.2 The format of transitions in Inputs must be 

i-e [true] / f-e 

Transitions in Inputs represent a change of values of 
input variables. The triggering events in Inputs are ex- 
ternal events which are generated outside the software, 
i.e., in the plant. Therefore they should not directly 
trigger other transitions in Functions or Outputs. Note 
that it is enforced by the naming conventions because 
only the events whose prefix is “i-” can trigger tran- 
sitions in Inputs. The guard of transitions should be 
true because Transitions in Inputs is triggered uncon- 
ditionally when an external event occurs. The action 
should generate one and only one event which triggers 
transitions in Functions. In our framework, the be- 
hawior of input variables should be specified without 
any considerations of how they will be used in Func- 
tions. That is, the logic of the software should be 
confined in Functions for the modularity of the entire 
specificat ions. 

C.3 The format of transitions in Functions must be 

[Le I f - e  I t imeout I A] [condition] / [ A  1 f-e I o-e] 

where A is a null event. 

A transition in Functions represents certain com- 
putation taking place by the software. Therefore, the 
triggering event must have been generated externally 
by Inputs ( L e ) ,  internally by other parts of the Func- 
tions ( f - e ) ,  or implicitly by the timeout event and A 
event. When the computation is completed, it can 
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optionally trigger transitions in Functions or Outputs. 
The latter models the generation of external output to 
the plant. However, generated events may not trigger 
a transitions in Inputs. 

C.4 The format of transitions in Outputs must be 

o-e [true] / X 

Transitions in Outputs represent a change of values 
of output variables. The triggering events for transi- 
tions in Outputs should be generated only by transi- 
tions in Functions. Because the actuators are passive 
in nature, transitions in Outputs should be triggered 
unconditionally (i.e., the gaurd is t rue)  and should 
not perform any computation or generate any events 
on its own. 

The criteria C.2, C.3, C.4 can be summarized 
as follows: only three types of communications, i.e., 
broadcasting of events, between states are allowed: 

b from Inputs to Functions, 

0 from Functions to  Functions, and 

0 from Functions to  Outputs. 

All other types of communication are to be prohib- 
ited. 

C.5 Each input variable should be used at  least once 
in the software and each output variable should be 
defined at  least once by the software. 

If an input variable is not used at  all in Functions, 
then it is an indication of a missing functionality in the 
software. Similarly, there is a missing functionality in 
the software if an output variable is not defined at all 
in Functions. 

C.6 Every state must have a transition defined for 
every possible event, i.e., conditions of outgoing tran- 
sitions should be complete. 

C.7 Every state should have one and only one cor- 
responding transition for every possible event. That 
is, conditions of outgoing transitions should be deter- 
ministic to be considered consistent. 

Jaffe et al. discussed completeness and consis- 
tency equivalent to  the criteria C.8 and C.9[5] in 
terms of conventional finite state machines. Recently, 
Heimdahl and Leveson proposed similar concepts for 
RSML[3] and developed an analysis method for these 
properties. 

3.1 A Case Study: Wolsung SDS2 

To demonstrate our framework and analysis meth- 
ods, we use a real-world application, Shutdown System 
Number 2 (SDS2) of Wolsung Nuclear Power Plant. as 
an example. The SDS2 monitors the state of the nu- 
clear reactor states such as pressure and power and 
generates a trip signal if the nuclear reactor becomes 
unsafe, i.e., the pressure is too high or too low. There 
are several trip parameters in SDS2 and we describe 
only the PDL delayed trip parameter' as follows: 

If i-Pressure 5 950 kPa (delayed trip setpoint) 
and i P m e r  >_ 80%FP, then continue normal 
operation without opening o-PDLTr ip  for three 
seconds. 

0 After three seconds has expired, the value of 
o P D L T r i p  becomes Open, if LPower 2 80%FP. 
Otherwise, the value of o-PDLTr ip  becomes 
Close. 

Once o P D L T r i p  has been opened, keep it Open 
for 1 seconds. 

Then the value of o-PDLTrip becomes Close 
once i P r e s s u r e  > 950 kPa or i P o w e r  is < 
80%FP. 

In this example, there are two input vari- 
ables: i-Pressure, i-Power and one output variable: 
0-PDLTrip and one function: f-PDLDebayedBap. 
Fig 3 shows a Statechart for the PDL delayed trip 
parameter part of the SDS2. 

Transitions in Inputs are triggered by the external 
events and generate events which are broadcasted into 
only Functions. The default state of iPressureState 
is determined by a conditional connective which con- 
tains predicates over the corresponding input variable, 
i-Pressure. The Outputs consists of a-PDLTrip which 
represents whether the trip parameter is open or close. 
Note that the events 0-open, o-close should be gener- 
ated only by transitions in Functions. The behavior 
of f-PDLDelayedTrip is as follows: the default state is 
SI which represent that the controller is idle and in 
waiting state. Once the state Sz is entered, the soft- 
ware waits for three seconds. After three seconds the 
software checks the current values of a-Pressure and 
i-Power and determines whether or not to  generate a 
trip signal. 

4 Safety Analysis of Statecharts 

Safety analysis techniques often employ backward 
analysis approach where a hazardous system state 

'For simplicity, we have slightly simplified the actual 
requirement. 
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f software -7 

Figure 3: A Statechart for Wolsung SDS2 

is assumed to  have occurred and where the credible 
causes and their relationships (when applicable) are 
explored. When performing fault tree analysis, back- 
ward analysis is usually performed manually without 
any assistance of automated tools. Therefore, the ef- 
fectiveness of the FTA method depends heavily on the 
capability of system safety analysts. 

An alternative is a model-based backward analy- 
sis approach using Petri nets[8] or other state-based 
models. Backward step-by-step simulation can pro- 
vide analysts with deeper understanding of if and how 
the hazardous system states might occur. Once event 
sequences leading to hazards are identified, they can 
be eliminated or risks minimized by introducing addi- 
tional safety requirements. 

4.1 Forward Simulation 

external event arrives at  the system, causing a cascade 
of subsequent internal events. A micro-step is com- 
pleted when no more internal events are generated or 
there are no more transitions triggered by the events 
that were previously generated. 

Unfortunately, when applying forward simulation 
to verify safety property of complex systems, state ex- 
plosion problem is encountered. While our framework 
does not completely solve the state explosion problem, 
various restrictions on the transition formats may re- 
duce the complexity of forward simulation consider- 
ably. In order to  further simplify the forward simula- 
tion process, we distinguish the two types of events: 

Spontaneous events refer to  the events “Le” in In- 
puts and t imeout,  X in Functions. The occurrence 
of these events does not depend on any other com- 
ponent in S t atecharts. 

The semantics of Statecharts [4, 121 are based on 
the synchrony hypothesis which assumes that the sys- 
tem is infinitely faster than the environment. Hence, 
the response to  an external events is always generated 
in the same time when the event is introduced. The 
semantic description of Statecharts is based on the no- 
tion of micro-step. A micro-step is initiated when an 

e Non-Spontaneous events refer to  the events “f-e” 
in Functions and “0-e” in Outputs These events 
may be generated only as a consequence of actions 
associated with events triggered by spontaneous 
events. 

For example, in Fig. 4, ibelovl is a spontaneous 
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event and f -below is a non-spontaneous event. 

CI  c2 
i-below / f-below, 
f-below [in High] 

Figure 4: 
spontaneous events 

An example of spontaneous and non- 

In summary, every event in Inputs is sponta- 
neous and every event in Outputs is non-spontaneous. 
Events in Functions can be either spontaneous or 
not. Transitions in Functions whose triggering event is 
t imeout or X represent a spontaneous function. Tran- 
sitions whose triggering event is f -e represent a non- 
spontaneous computation initiated by the sensor or by 
other function of the controller. 

We note that any changes in the Statecharts config- 
uration can be initiated only by a spontaneous event 
and forward simulation can be conducted by identi- 
fying all spontaneous events in the current configura- 
tion. Note that this forward simulation procedure is 
different from that of pure Statecharts where there is 
no notion of spontaneous or non-spontaneous events. 

An example of forward simulation is shown in 
Fig. 5. Assume that the current configuration is CO 

= ( A ,  L,  5’1, C)2  There are two spontaneous events 
which trigger outgoing transitions from CO: i - b e l m  
and i-high. Secondly, we generate the next config- 
urations based on the micro-step semantics for each 
event. 

4.2 Backward Simulation 

In contrast to  forward simulation that usually starts 
from a initial system configuration, backward analysis 
typically starts from the system configuration that is 
assumed to  be hazardous. For example, a configura- 
tion (B, H ,  *, C) means that whenever the system is 
in the states B ,  H ,  and C ,  it is hazardous regardless 
of the states of the f-PDLDelayedTrip. Note that the 
states in Functions need not necessarily be included in 
the definition of the hazardous system state because 
the system could be in the hazardous state regardless 
of the software’s state. In this case, the configuration 
should be regarded as follows: 

( B , H , * , C )  = { ( B , H , S , , C )  I 1 I 5 5 )  

Once the hazardous system configuration is de- 
fined, backward analysis can proceed by considering 
~ 

2For notational convenience, we denote states in Fig 3, 
AboveSp, BelowSp, Low, High,  Close, Open w i t h  A ,  B ,  L ,  
H ,  C ,  0, respectively. 

i-below / f-below 

i-below, 
i-low 

J 

i-below / f-below, 
f-below [in High] 

/ 

\ 
i-lowif low 

time-out(3) 

\ 

Figure 5 :  An example of forward simulation 

only spontaneous events. As an example, let’s assume 
that the hazardous configuration from which back- 
ward analysis begins as CO = ( B ,  H ,  5’5, C) which 
means that “trip signal is not generated when the 
value of i-Pressure 5 950 kPa, i P o w e r  2 80 %FP 
and the software is in the state S517 (Fig. 6). There are 
three spontaneous events which trigger incoming tran- 
sitions to CO: m-below, m-high and t imeout(1) .  For 
each event, the preceding configuration can be gener- 
ated. For example, taking a step backwards following 
the event i-below, e1 = ( A ,  H ,  Sg, C) is obtained. 

To demonstrate how the X event can be properly 
handled, let’s take a step backward from the configu- 
ration cg. Brute-force and reverse application of the 
micro-step semantics would result the configuration c3 
= ( B ,  H ,  S3, C). However, this path is infeasible be- 
cause the transition [in Nigh] / o-open would result 
in a configuration ( B ,  H ,  Sq, 0), not cg, due to the 
action of the transition, o-open. Hence, we need not 
further continue the backward analysis from ( B ,  H ,  
S3, C). In Fig 6, infeasible paths are shown in dashed 
line. 

5 Conclusions 

In this paper, we have proposed a framework to  
specify and analyze the behavior of real-time systems 
in Statecharts and demonstrated its effectiveness us- 
ing Wolsung SDS2 shutdown system. It should be 
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timeout(1) h . 
[in High] / o-open . 

timeout(3) 

Figure 6: An example of backward simulation 

emphasized again that Statecharts formalism does not 
provide any guidelines or restrictions on how one can 
properly specify and analyze the behavior of real-time 
systems. In our framework, we provide several guide- 
lines and enforce several restrictions on how the fea- 
tures of Statecharts are used. It is important t o  note 
that such restrictions have been introduced for sys- 
tematic specifications of software requirements based 
on the inherent characteristics of real-time systems. 

In our framework, software requirements are de- 
scribed by specifying the belhavior of output variables 
in terms of input variables using three orthogonal com- 
ponents: Inputs, Functions, and Outputs. Briefly re- 
viewed, Statecharts are developed and analyzed as fol- 
lows: 

1. Identify all the relevant input and output vari- 
ables of the plant. The behavior of each input 
and output variable is specified by the orthogo- 
nal components of Inputs or Outputs, respectively. 
A set of functions representing the required be- 
havior of the controller is specified next as the 
orthogonal components of Functions. 

2. Statecharts are statically analyzed for several cri- 
teria such as consistency and completeness crite- 
ria. Restrictions enforced on states and transi- 
tions reduce the possibility of introducing flaws 
in the model. 

3. Statecharts that  have passed the static analysis 
are then dynamically analyzed. We have demon- 
strated how forward and backward simulations 
can be performed in Statecharts. Specific guide- 
lines on formulating the definition of hazardous 
system states are also suggested. 
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