
Specification aind Analysis of Real-Time Systems in Statecharts

Sung Deok Cha and Hyoung Seok Hong
Department of Computer Science

Korea Advanced Institute of Science and Technology (KAIST)
373-1, Kusong-dong, Yusong-gu, Taejon, Korea

{ cha,hshong}@salmoaa.kaist .ac. kr

Abstract

Increased use of software in controlhg safety-
critical systems produced an urgent need to specify and
analyze behavior of these systems systematically and
rigorously. Statecharts formalism, a popular exten-
sion of conventional finite state machines, has been
successfully used for specifying requirements of many
reactive systems including the TCAS 11, an aircraft
collision avoidance system.

However, little has been published on specific guide-
lines on how one can best specify and analyze re-
quirements in Statecharts. I n this paper, we present
a framework for specifying requirements of real-time
systems in Statecharts and analyzing them for com-
pleteness, consistency, and safety. W e use the require-
ments taken from an emergency shutdown system for
a Korean nuclear power plant, called Wolsung SDS2,
as an example.

1 Introduction

Software controlling safety-critical real-time sys-
tems has already become a part of our society. There
are many examples of such :systems that impact daily
lives of general public. For example, commercial fly-
by-wire jetliners (e.g., Airbus A320 and Boeing 777)
are currently in service. M,any countries operate nu-
clear power plants, and some, including Korea, are de-
veloping software-based emergency shutdown systems.
Should emergency situations such as reactor overheat-
ing occur, software is required to initiate emergency
shutdown procedures while maintaining the plant in a
safe state. Some medical devices depend on software
to control the amount of radiation to deliver for cancer
therapy and to monitor various vital status of patients
in an intensive care unit.

When software is used a s a control agent in such
systems, safety becomes a paramount concern. In the
worst case, computer malfunctions, especially unsafe
software control outputs, could result in serious and
unacceptable consequences such as death, injury, or

environmental damage. Software development process
is known to be a costly and often error-prone activ-
ity, and software quality assurance becomes an essen-
tial concern. Of the several phases involved in typical
software development, requirements specification and
analysis phase is empirically known to play the most
crucial role in determining the overall and final soft-
wizre quality.

There are several attributes desired of high quality
requirements specification including understandabil-
ity, maintainability, analyzability, scalability, unam-
biguity, etc. Many approaches have been suggested
on developing high-quality requirements specification.
Examples include development of formal specification
languages, visual formalisms such as Statecharts[l]
or Modecharts[6], and completeness and consistency
criteriaI51. These approaches are closely related and
tend to be complementary to each other. Formal spec-
ification languages enable automated analysis on the
requirements but might be difficult to understand. On
the other hand, requirements specification in visual
languages, while easily understood, might lack formal
and unambiguous semantics, thereby making the task
of detecting flaws, especially subtle ones, difficult.

Statecharts formalism is a popular language to
specify behavior of reactive systems. RSML, an ex-
tended version of Statecharts, has been successfully
used to specify the behavior of the TCAS I1 whose
logic is very complex[7]. However, there have been few
research efforts on methodologies on how software rei-

quirements should be organized and specified in Stat-
echarts. Note Ghat a specification language in itself
does not provide any methodologies or guidelines. For
example, in Statecharts a state can communicate with
any of the rest states using events, that is, an event is
assumed to be broadcasted to all the states. For an-
other example, the scope of a variable is assumed to be
global in that it can be used and defined in the guard
and action of any transitions. We have found that
uiidisciplined and unrestricted uses of these features
may result in software requirements of poor quality
and erroneous.

In this paper, we propose a framework for devel-

137
0-8186-7570-5/96 $5.00 0 1996 IEEE

oping and analyzing real-time safety-critical systems
in Statecharts. Usefulness of our approach is demon-
strated using an real-world industrial system, called
Wolsung SDS2, a software-based emergency shutdown
system whose functionality is similar to that of the
Darlington plant in Canada[lo].

Our paper is organized as follows: Section 2 briefly
reviews Staterharts formalism. Section 3 proposes a
framework for specifying and analyzing real-time sys-
tems using Statecharts. Additionally, a set of criteria
to statically analyze Statecharts is proposed. In Sec-
tion 4, si afety analysis method for Statecharts, based
on forward and backward simulation, is presented. Fi-
nally, Section 5 concludes the paper.

Controller
Inputs

2 Statecharts

outputs

Statecharts, proposed by D. Hare1 for specifying
complex reactive systems[l], consists of <S, T , E , V>
where S i s a set of states, T is a set of transitions, E
is a set of events, and V is a set of variables.

States are either B A S I C , OR, or A N D states:
B A S I C states have no substates. O R states have sub-
states that are related to each other by an exclusive-
or relation. Being in an OR state implies being in
only one of its substates. A N D states have substates,
called orthogonal components, that are related by an
and relation. Being in an A N D state implies that
being in all of its orthogonal components.

Changes among states are represented by a transi-
tion whose format is

event [condition] f action

An event is an instantaneous occurrence of a stim-
ulus (trigger), a condition is a predicate which should
be satisfied for a transition to occur and an action may
generate other events or perform computations.

In summary, we can say[l]:

Statecharts = finite state machine + depth
+- orthogonality + broadcast

The concept of depth is achieved by OR states, and or-
thogonality is achieved by A N D states. Broadcast are
used for communications between states. The com-
munication is achieved by an action of a transition.
That is, when a transition triggered, an action gener-
ates an event and this event is assumed to be globally
broadcast,ed.

I

amework for Real-Time Sys-

Plant A

A real-time system consists of the four basic compo-
nents: plant, sensors, actuators, and controller (Fig 1).

The plant is a physical, mechanical, or electrical pro-
cess. As far as the controller is concerned, the plant
represents the external environment with which the
controller interacts. Sensors measure the plant’s cur-
rent state and provide inputs to the controller. Based
on the sensor’s inputs, the controller performs a set
of computations to determine how the current state
of the plant should be changed. The controller’s deci-
sions are then passed back to the plant by actuators
via controlled variables.

Sensors 0 0 Actuators

Figure I: The structure of real-time systems

There is an important distinction to be made be-
tween the plant and the controller. The plant is usu-
ally “given” in that the developer of the controller may
not change characteristics of the plant. In contrast,
there is usually more freedom in the development of
the controller. In fact, the controller is often imple-
mented by real-time software so that the controller
logic can be changed easily if desired. Furthermore,
the behavior of the controller cannot be developed un-
less that of the the plant is first specified.

The controller must regulate the plant’s behavior
with respect to a set of pre-defined physical laws,
objectives, and constraints required of the system.
Therefore, requirements of real-time systems should
be expressed in terms of not only the controller’s
functionality but also the plant’s behavior. Several
methodologies that explicitly take into account these
characteristics of real-time systems have been pro-
posed. Examples include the SCR method[ll], Heit-
meyer and Labaw’s method[2]. and TTL/RTTL[S].

However, none of those methodologies supports the
use of Statecharts. Several features of Statecharts for-
malism, when used in unrestricted and ill-disciplined
manners, can result in erroneous or in the worst cases,
unrealistic requirements specifications. Especially, we
have found that the following features of Statecharts
can potentially cause ill-disciplined requirements spec-
ifications:

0 Every event is assumed to be broadcasted to all
the states. Therefore, every state can communi-
cate with each other using broadcasted events.

138

0 Every variable is assumed to be global in that it
can be used and defined in the guard and action
of any transitions.

It should be emphasized that Statecharts in itself
do not enforce restrictions or provide guidelines on
how various states and transitions should be orga-
nized. While one may argue that such complete free-
dom provides maximum flexibility to the developers,
it is often the case that sulbtle errors caused by the
ill-disciplined uses can be quite difficult to detect.

The main purpose of the framework is to properly
specify the requirements of the software in real-time
systems in a systematic and disciplined manner us-
ing Statecharts. The software in real-time systems
interacts with the plant, i.e, its environment via in-
put and output variables. ‘The requirements for the
software are, therefore, described by specifying the re-
quired characteritics of output variables as a response
to the observed input variables. In our framework,
the software is represented as an AND state which
has three orthogonal components: Inputs, Functions,
Outputs (Fig 2).

Figure 2: A framework for real-time systems

The first step in our framework is to identify all
relevant input and output variables to the software.
The behavior of input and output variables is speci-
fied by the orthogonal components of Inputs and Out-
puts, respectively. Then, the required behavior of the
software is identified as a slet of functions which are
specified by the orthogonal components of Functions.
We use the prefix “i-”, “f-” and “o-” for the orthogonal
components states, triggering events, and variables in
Inputs, Functions and Outputs, respectively.

We propose several criteria on how to use State-
charts constructs and semantics for specifying the be-

havior of input, output variables and functions in a
disciplined way. After the behavior of all input, out-
put variables and functions are specified, the next step
is to statically analyze Statecharts using the following
criteria.

C.l The orthogonal components of Inputs and Out-
puts should have a default state specified with a condi-
tional connective. In contrast, the orthogonal compo-
nents of Functions should have a deterministic default
state.

Default states of the orthogonal components of In-
puts, and Outputs represent the state of the plant at
the time of software initialization. No assumptions
can be made about the default state of the plant, be-
cause the changes of states of the plant may occur
independently on the software. Therefore, when the
software is initialized, every state in the orthogonal
components of Inputs and Outputs may be a possible
default state. In contrast, default states in Functions,
should be designed to have a predefined deterministic
value, because they represent the initial configuration
of the real-time control software.

C.2 The format of transitions in Inputs must be

i-e [true] / f-e

Transitions in Inputs represent a change of values of
input variables. The triggering events in Inputs are ex-
ternal events which are generated outside the software,
i.e., in the plant. Therefore they should not directly
trigger other transitions in Functions or Outputs. Note
that it is enforced by the naming conventions because
only the events whose prefix is “i-” can trigger tran-
sitions in Inputs. The guard of transitions should be
true because Transitions in Inputs is triggered uncon-
ditionally when an external event occurs. The action
should generate one and only one event which triggers
transitions in Functions. In our framework, the be-
hawior of input variables should be specified without
any considerations of how they will be used in Func-
tions. That is, the logic of the software should be
confined in Functions for the modularity of the entire
specificat ions.

C.3 The format of transitions in Functions must be

[Le I f - e I t imeout I A] [condition] / [A 1 f-e I o-e]

where A is a null event.

A transition in Functions represents certain com-
putation taking place by the software. Therefore, the
triggering event must have been generated externally
by Inputs (L e) , internally by other parts of the Func-
tions (f - e) , or implicitly by the timeout event and A
event. When the computation is completed, it can

139

optionally trigger transitions in Functions or Outputs.
The latter models the generation of external output to
the plant. However, generated events may not trigger
a transitions in Inputs.

C.4 The format of transitions in Outputs must be

o-e [true] / X

Transitions in Outputs represent a change of values
of output variables. The triggering events for transi-
tions in Outputs should be generated only by transi-
tions in Functions. Because the actuators are passive
in nature, transitions in Outputs should be triggered
unconditionally (i.e., the gaurd is t rue) and should
not perform any computation or generate any events
on its own.

The criteria C.2, C.3, C.4 can be summarized
as follows: only three types of communications, i.e.,
broadcasting of events, between states are allowed:

b from Inputs to Functions,

0 from Functions to Functions, and

0 from Functions to Outputs.

All other types of communication are to be prohib-
ited.

C.5 Each input variable should be used at least once
in the software and each output variable should be
defined at least once by the software.

If an input variable is not used at all in Functions,
then it is an indication of a missing functionality in the
software. Similarly, there is a missing functionality in
the software if an output variable is not defined at all
in Functions.

C.6 Every state must have a transition defined for
every possible event, i.e., conditions of outgoing tran-
sitions should be complete.

C.7 Every state should have one and only one cor-
responding transition for every possible event. That
is, conditions of outgoing transitions should be deter-
ministic to be considered consistent.

Jaffe et al. discussed completeness and consis-
tency equivalent to the criteria C.8 and C.9[5] in
terms of conventional finite state machines. Recently,
Heimdahl and Leveson proposed similar concepts for
RSML[3] and developed an analysis method for these
properties.

3.1 A Case Study: Wolsung SDS2

To demonstrate our framework and analysis meth-
ods, we use a real-world application, Shutdown System
Number 2 (SDS2) of Wolsung Nuclear Power Plant. as
an example. The SDS2 monitors the state of the nu-
clear reactor states such as pressure and power and
generates a trip signal if the nuclear reactor becomes
unsafe, i.e., the pressure is too high or too low. There
are several trip parameters in SDS2 and we describe
only the PDL delayed trip parameter' as follows:

If i-Pressure 5 950 kPa (delayed trip setpoint)
and i P m e r >_ 80%FP, then continue normal
operation without opening o-PDLTr ip for three
seconds.

0 After three seconds has expired, the value of
o P D L T r i p becomes Open, if LPower 2 80%FP.
Otherwise, the value of o-PDLTr ip becomes
Close.

Once o P D L T r i p has been opened, keep it Open
for 1 seconds.

Then the value of o-PDLTrip becomes Close
once i P r e s s u r e > 950 kPa or i P o w e r is <
80%FP.

In this example, there are two input vari-
ables: i-Pressure, i-Power and one output variable:
0-PDLTrip and one function: f-PDLDebayedBap.
Fig 3 shows a Statechart for the PDL delayed trip
parameter part of the SDS2.

Transitions in Inputs are triggered by the external
events and generate events which are broadcasted into
only Functions. The default state of iPressureState
is determined by a conditional connective which con-
tains predicates over the corresponding input variable,
i-Pressure. The Outputs consists of a-PDLTrip which
represents whether the trip parameter is open or close.
Note that the events 0-open, o-close should be gener-
ated only by transitions in Functions. The behavior
of f-PDLDelayedTrip is as follows: the default state is
SI which represent that the controller is idle and in
waiting state. Once the state Sz is entered, the soft-
ware waits for three seconds. After three seconds the
software checks the current values of a-Pressure and
i-Power and determines whether or not to generate a
trip signal.

4 Safety Analysis of Statecharts

Safety analysis techniques often employ backward
analysis approach where a hazardous system state

'For simplicity, we have slightly simplified the actual
requirement.

140

f software -7

Figure 3: A Statechart for Wolsung SDS2

is assumed to have occurred and where the credible
causes and their relationships (when applicable) are
explored. When performing fault tree analysis, back-
ward analysis is usually performed manually without
any assistance of automated tools. Therefore, the ef-
fectiveness of the FTA method depends heavily on the
capability of system safety analysts.

An alternative is a model-based backward analy-
sis approach using Petri nets[8] or other state-based
models. Backward step-by-step simulation can pro-
vide analysts with deeper understanding of if and how
the hazardous system states might occur. Once event
sequences leading to hazards are identified, they can
be eliminated or risks minimized by introducing addi-
tional safety requirements.

4.1 Forward Simulation

external event arrives at the system, causing a cascade
of subsequent internal events. A micro-step is com-
pleted when no more internal events are generated or
there are no more transitions triggered by the events
that were previously generated.

Unfortunately, when applying forward simulation
to verify safety property of complex systems, state ex-
plosion problem is encountered. While our framework
does not completely solve the state explosion problem,
various restrictions on the transition formats may re-
duce the complexity of forward simulation consider-
ably. In order to further simplify the forward simula-
tion process, we distinguish the two types of events:

Spontaneous events refer to the events “Le” in In-
puts and t imeout, X in Functions. The occurrence
of these events does not depend on any other com-
ponent in S t atecharts.

The semantics of Statecharts [4, 121 are based on
the synchrony hypothesis which assumes that the sys-
tem is infinitely faster than the environment. Hence,
the response to an external events is always generated
in the same time when the event is introduced. The
semantic description of Statecharts is based on the no-
tion of micro-step. A micro-step is initiated when an

e Non-Spontaneous events refer to the events “f-e”
in Functions and “0-e” in Outputs These events
may be generated only as a consequence of actions
associated with events triggered by spontaneous
events.

For example, in Fig. 4, ibelovl is a spontaneous

14 1

event and f -below is a non-spontaneous event.

CI c2
i-below / f-below,
f-below [in High]

Figure 4:
spontaneous events

An example of spontaneous and non-

In summary, every event in Inputs is sponta-
neous and every event in Outputs is non-spontaneous.
Events in Functions can be either spontaneous or
not. Transitions in Functions whose triggering event is
t imeout or X represent a spontaneous function. Tran-
sitions whose triggering event is f -e represent a non-
spontaneous computation initiated by the sensor or by
other function of the controller.

We note that any changes in the Statecharts config-
uration can be initiated only by a spontaneous event
and forward simulation can be conducted by identi-
fying all spontaneous events in the current configura-
tion. Note that this forward simulation procedure is
different from that of pure Statecharts where there is
no notion of spontaneous or non-spontaneous events.

An example of forward simulation is shown in
Fig. 5. Assume that the current configuration is CO

= (A , L, 5’1, C)2 There are two spontaneous events
which trigger outgoing transitions from CO: i - b e l m
and i-high. Secondly, we generate the next config-
urations based on the micro-step semantics for each
event.

4.2 Backward Simulation

In contrast to forward simulation that usually starts
from a initial system configuration, backward analysis
typically starts from the system configuration that is
assumed to be hazardous. For example, a configura-
tion (B, H , *, C) means that whenever the system is
in the states B , H , and C , it is hazardous regardless
of the states of the f-PDLDelayedTrip. Note that the
states in Functions need not necessarily be included in
the definition of the hazardous system state because
the system could be in the hazardous state regardless
of the software’s state. In this case, the configuration
should be regarded as follows:

(B , H , * , C) = { (B , H , S , , C) I 1 I 5 5)

Once the hazardous system configuration is de-
fined, backward analysis can proceed by considering
~

2For notational convenience, we denote states in Fig 3,
AboveSp, BelowSp, Low, High, Close, Open w i t h A , B , L ,
H , C , 0, respectively.

i-below / f-below

i-below,
i-low

J

i-below / f-below,
f-below [in High]

/

\
i-lowif low

time-out(3)

\

Figure 5 : An example of forward simulation

only spontaneous events. As an example, let’s assume
that the hazardous configuration from which back-
ward analysis begins as CO = (B , H , 5’5, C) which
means that “trip signal is not generated when the
value of i-Pressure 5 950 kPa, i P o w e r 2 80 %FP
and the software is in the state S517 (Fig. 6). There are
three spontaneous events which trigger incoming tran-
sitions to CO: m-below, m-high and t imeout(1) . For
each event, the preceding configuration can be gener-
ated. For example, taking a step backwards following
the event i-below, e1 = (A , H , Sg, C) is obtained.

To demonstrate how the X event can be properly
handled, let’s take a step backward from the configu-
ration cg. Brute-force and reverse application of the
micro-step semantics would result the configuration c3
= (B , H , S3, C). However, this path is infeasible be-
cause the transition [in Nigh] / o-open would result
in a configuration (B , H , Sq, 0), not cg, due to the
action of the transition, o-open. Hence, we need not
further continue the backward analysis from (B , H ,
S3, C). In Fig 6, infeasible paths are shown in dashed
line.

5 Conclusions

In this paper, we have proposed a framework to
specify and analyze the behavior of real-time systems
in Statecharts and demonstrated its effectiveness us-
ing Wolsung SDS2 shutdown system. It should be

142

timeout(1) h .
[in High] / o-open .

timeout(3)

Figure 6: An example of backward simulation

emphasized again that Statecharts formalism does not
provide any guidelines or restrictions on how one can
properly specify and analyze the behavior of real-time
systems. In our framework, we provide several guide-
lines and enforce several restrictions on how the fea-
tures of Statecharts are used. It is important t o note
that such restrictions have been introduced for sys-
tematic specifications of software requirements based
on the inherent characteristics of real-time systems.

In our framework, software requirements are de-
scribed by specifying the belhavior of output variables
in terms of input variables using three orthogonal com-
ponents: Inputs, Functions, and Outputs. Briefly re-
viewed, Statecharts are developed and analyzed as fol-
lows:

1. Identify all the relevant input and output vari-
ables of the plant. The behavior of each input
and output variable is specified by the orthogo-
nal components of Inputs or Outputs, respectively.
A set of functions representing the required be-
havior of the controller is specified next as the
orthogonal components of Functions.

2. Statecharts are statically analyzed for several cri-
teria such as consistency and completeness crite-
ria. Restrictions enforced on states and transi-
tions reduce the possibility of introducing flaws
in the model.

3. Statecharts that have passed the static analysis
are then dynamically analyzed. We have demon-
strated how forward and backward simulations
can be performed in Statecharts. Specific guide-
lines on formulating the definition of hazardous
system states are also suggested.

References

[l] D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems,” Science of Computer Programming, 8,

[Z!] C. Heitmeyer and B. Labaw, “Requirements Specifi-
cation of Hard Real-Time Systems: Experience with
a Language and a Verifier,” In Foundations of Real-
Time Computing: Formal Specification and Methods,
Kluwer Academic Publishers, pp. 291-313, 1991.

[?I] M.P.E. Heimdahl and N.G. Leveson, “Completeness
and Consistency Analysis of State-Based Require-
ments,” in Proceedings of the 17th Interna,tional Con-
ference on Software Engineering, Seattle, pp. 3-14,
Apr. 1995.

[4L] D. Harel, A. Pnueli, J.P. Schmidt and R. Sherman,
“On the Formal Semantics of Statecharts,” in Pro-
ceedings of Symposium on Logic in Computer Science,

[5] M.S. Jaffe, N.G. Leveson, M.P.E. Heirndahl, and R.E.
Melhart, “Software Requirements Analysis for Real-
Time Process-Control Systems,” IEEE Transactions
on Software Engineering, Vol. 17, No. 2, pp. 241-258,
Mar. 1991.

[6] F. Jahanian, and A.K. Mok, “Modechart: A Spec-
ification Language for Real-Time Systems,” IEEE
Transactions on Software Engineering, Vol. 20, No.
12, pp. 933-947, Dec. 1994.

[i‘] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and
J.D. Reese, “Requirements Specification for Process-
Control Systems,” IEEE Transaction,s on Software
Engineering, Vol. 30, No. 9, pp. 684-707, Sept. 1994.

[8] N.G. Leveson and J.L. Stolzy, “Safety Analysis Us-
ing Petri Nets,” IEEE Transactions on Software En-
gineering, Vol. 13, No. 6, pp. 386-397, Mar. 1987.

[9] J.S. Ostroff, “Verification of Safety Critical Systems
Using TTL/RTTL,” Proceedings of the REX Work-
shop on Real-Time: Theory in Practice, LNCS 600,
Springer-Verlag, 1991.

[lo] D.L. Parnas, G.J.K. Asmis, and J. Madey, lLAssess-
ment of Safety-Critical Software in Nuclear Power
Plants,” Nuclear Safety, Vol. 32, No. 2, pp. 189-198,
April-June, 1991.

[ll] D.L. Parnas and J. Madey, “Functional Documen-
tation for Computer Systems Engineering,” CRL
Report 237, Faculty of Eng. McMaster University,
Hamilton, Ontario, Sept. 1991.

[l2] A. Pnueli and M. Shalev, “What is in a Step: On
the Semantics of Statecharts,” Theoretical Aspects of
Computer Science, LNCS 298, Springer-Verlag, pp.

pp. 231-274, 1987.

pp. 54-64, 1987.

244-264, 1991.

143

