Event-Driven Support of Real-Time Sentient Objects

Paulo Verissimo and Anténio Casimiro
{pjv,casim }@di.fc.ul.pt
Univ. of Lisboa, Portugal*

Abstract

The emergence of applications operating indepen-
dently of direct human control is inevitable. Research
on high-level models for this class of applications—
e.g. on autonomous agents and distributed AI— has
revealed the shortcomings of current architectures and
middleware interaction paradigms. If we focus on com-
plex real-time systems made of embedded components,
that evidence is even more striking. Fvent models have
shown to be quite promising in this arena, but they
often lack one or several of the following key points:
seamless integration with a programming model; ade-
quate layer structure; and the provision of support for
non-functional attributes, such as timeliness or quality
of service, or security. This paper discusses infrastruc-
tural support to construct large-scale proactive applica-
tions based on the use of real-time sentient objects, and
is specially devoted to the latter two points.

1 Introduction

The emergence of applications operating indepen-
dently of direct human control is inevitable. In fact,
with the increasing availability of technologies to sup-
port accurate and trustworthy visual, auditory, and lo-
cation sensing [11] as well as the availability of conve-
nient paradigms for the acquisition of sensor data and
for the actuation on the environment [1], a new class
of large-scale decentralized and proactive applications
can be envisaged.

However, research on high-level models for this class
of applications— e.g. on autonomous agents and dis-
tributed AI— has revealed the shortcomings of current
architectures and middleware interaction paradigms.
Dealing with highly dynamic interactions and con-
tinuously changing environments and, at the same
time, with needs for predictable operation, is still an

*Navigators Home Page: http://www.navigators.di.fc.ul.pt.
This work was partially supported by the EC, through project
IST-FET-2000-26031 (CORTEX), and by the FCT, though the
Large-Scale Informatic Systems Laboratory (LaSIGE).

open challenge. If we focus on complex real-time sys-
tems made of embedded components, then even more
stringent requirements have to be taken into account,
namely to achieve distributed, safe and timely process
control. In this context, the provision of adequate in-
teraction paradigms is a fundamental aspect [2]. Typ-
ical characteristics of this class of applications, such as
autonomy or mobility must be accommodated, while
allowing the possibility to handle non-functional re-
quirements like reliability, timeliness or security.

In contrast with the client/server or RPC based
paradigms supported by current state-of-the-art
object-oriented middleware [13, 8], event models have
shown to be quite promising in this arena [9, 15],
but they often lack one or several of the following
key points: seamless integration with a programming
model; architectures with an adequate layer structure;
and the provision of support for non-functional at-
tributes. This paper is specially devoted to the latter
two points, in the context of the IST CORTEX project
(http://cortex.di.fc.ul.pt), which is concerned with the
infrastructural support to construct large-scale proac-
tive applications based on the use of real-time sen-
tient objects. CORTEX proposes an object-oriented
programming model based on anonymous event-based
communication [16]. In broad terms, the system model
is composed of the environment and a set of sentient
objects, which are capable of sensing the former and
act on it, and cooperate with each other.

Now, how to architect such a system, namely how
to define placement and composition rules for software
components, when our objects are often embedded sys-
tems, or collections thereof, where the differences be-
tween hardware and software are sometimes subtle?
That is, we no longer have the acquired principle that
has guided modular and distributed systems design for
years [10]: there are hosts, which we put where we want
in the system, and there are software components, e.g.
objects, which we put in some host, and which we can
move, migrate, replicate, etc, with a desired property
called transparency. The solution we propose is based
on a component-based object model [7]. This breaks
with the traditional separation between the software

and hardware perspectives, pointing to seeing objects
as mixed hardware /software components, although it is
obviously possible to conceive an object as a software-
only component.

Another problem in the context of architecture is
the handling of the information flow in the system.
Here, we wish to break with the traditional real-time
systems view, which makes a neat separation between
the physical flow of information through the environ-
ment and the message-based flow inside the computer
system— the input /output subsystem being the barrier
between the two. We propose that the event model
treats physical and computer event propagation in a
uniform way, and discuss the resulting advantages. For
that, we define an adequate event middleware architec-
ture based on the notion of generic events, which we
call the Generic Events ARchitecture (GEAR).

This addresses the functional part of event han-
dling, but is not enough. Non-functional properties are
paramount in systems dealing with the environment,
and in the paper we briefly discuss two questions which
are particularly relevant in the context of sentient ob-
jects: temporal consistency as the key criterion for con-
sistency of operations on time-value entities; and the
dependable management of end-to-end QoS.

The paper is structured as follows. Next section
describes a component-based object model that builds
on some of the ideas proposed in the CORTEX project.
Then, Section 3 introduces the GEAR architecture to
support the described object model. In Section 4 we
focus on an example application scenario, in which we
exercise some of the concepts and solutions proposed
in the paper, and discuss the temporal consistency and
QoS issues.

2 A Component-based Object Model

The approach proposed in this paper to architec-
turally structure applications composed of sentient ob-
jects is based on a component-based object model that
incorporates some of the ideas developed in the context
of the CORTEX project.

CORTEX assumes that a new class of applications
can be envisaged, which is composed of a (possibly
large) number of smart components that are able to
sense their surrounding environment and interact with
it. These components are referred to as sentient ob-
jects. The basic CORTEX object metaphore was pre-
sented in [6] (see Figure 1). Sentient computing es-
tablished the generic concept, presented in [12], elabo-
rated in CORTEX in the context of object components.
Generically speaking, sentient objects are objects that
accept input events from a variety of different sources
(including sensors, but not constrained to that), pro-
cess them, and produce output events, whereby they

actuate on the environment and/or interact with other
objects.

Sentient
Object

Event
Consumption
Event
Production

Figure 1. The sentient object metaphor.

Sentient objects can take several different forms:
they can simply be software-based components, but
they can also comprise mechanical and/or hardware
parts, amongst which the very sensorial apparatus that
substantiates “sentience”, mixed with software compo-
nents to accomplish their task. We refine this notion by
considering a sentient object as an encapsulating entity,
a component with internal logic and active processing
elements to transform sensorial information received as
input events, and output events in the course of it. This
interface hides the internal hardware/software struc-
ture of the object, which may be complex, and shields
the system from the low-level functional and temporal
details of controlling a specific sensor or actuator.

Furthermore, given the inherent complexity of the
envisaged applications, the number of simultaneous in-
put events and the internal size of sentient objects may
become too large and difficult to handle. Therefore, it
should be possible to consider the hierarchical compo-
sition of sentient objects so that the application logic
can be separated across as few or as many of these
objects as necessary. On the other hand, composition
of sentient objects should normally be constrained by
the actual hardware component’s structure, prevent-
ing the possibility of arbitrarily composing sentient ob-
jects. This is illustrated in Figure 2, where a sentient
object is internally composed of a few other sentient
object, each of them consuming and producing events,
some of which only internally propagated.

To provide an example of such component-aware
object composition, we take a robot having as com-
ponents the several axes and manipulator controllers:
each of these controllers together with the control soft-
ware may be a sentient object. The robot itself may
then be a (composite) sentient object, composed of the
objects materialized by the controllers, and the envi-
ronment internal to its own structure, or body. The
same reasoning can be applied to a car, with its inter-
nal components. The car body (together with its em-
bedded software) may be a sentient object, composed
of several simpler objects, like: WLAN receiver and
transmitter card and driver; velocity sensor processor;
cruise speed control processor and actuator; doppler
radar control; GPS CCD camera input treatment mod-

,,

1
Wireless
transmission

GP:S o I
reception

Doppfer
radar

Object's body

Figure 2. Component-aware sentient object
composition.

ules; control elements such as cruise speed, platoon,
ambient, visual display, etc. Note that in this system
it makes no sense migrating the cruise control software
to the ambient control hardware module— it should
obviously be attached to the relevant control hardware.
Distribution and location transparency/independency
may still be desirable to a certain extent, but they must
be addressed in the context of well-formed sentient ob-
jects that obey the component-aware structuring and
composition approach.

Operational networking
(e.g. WLAN)

Operational networking
(e.g. WLAN)

Input from @

External
actions

Sensorial
stimuli

Environment
(e.g. CCD, GPS)

)

Environment
(e.g. Doppler beam)

Output to
Body

Body (e.g. velocity sensor) (e.g. speed control)

Figure 3. Information flow through a sentient
object (C.E- control element).

Figure 3 shows the perspective of a fully-fledged sen-
tient object, for example a car, receiving events from
various different sources, namely operational networks
(e.g., WLAN receiver), remote sources (e.g., GPS re-
ceiver) or local sources (e.g. velocity sensor). Likewise,
the object produces events to be consumed by differ-
ent sinks, for instance events transmitted through net-
works (e.g., WLAN transmitter) to the environment
or other objects, events to remote sinks (e.g., doppler
radar actuator) or events to local sinks (e.g., speed con-
trol actuator). Note that interactions within the local
scope are referred to as interactions with the body of
the object. This concept will be developed in the next
section.

Although literature has classically studied the net-
working and sensing/actuating problems in isolation,
we propose the innovative concept of generic event, be
it derived from the boolean indication of a door opening
sensor, from the electrical signal embodying a network
packet (at the WLAN aerial) or from the arrival of a
temperature event message.

In fact, what happens with classical event/object
models is that they are software oriented. As such,
when transported to a real-time, embedded systems
setting, their harmony is cluttered by the conflict be-
tween, on the one side, send/receive of “software”
events (message-based), and on the other side, in-
put/output of “hardware” or ‘“real-world” events,
register-based. In fact, very often, the only “event”
characteristic in “software” events is the arrival of
the event-message itself (e.g., when it merely car-
ries the state of a variable or an information to an-
other object). If such classical desiderata of dis-
tributed systems such as distribution and location
transparency /independency are to be realized to a cer-
tain degree, this conflict must be solved.

Furthermore, sentient objects deal with real-time as-
pects involving the environment. It has been shown
that the hidden channels developing through the lat-
ter (e.g., feedback loops) may hinder software-based
algorithms ignoring them. Likewise, the programs run-
ning in sentient objects have very often consistency re-
quirements that derive, even if remotely, from what
are called real-time entities, in fact representations of
state variables of the surrounding environment. Some
of these, referred to as time-value entities, have consis-
tency conditions based on the timeliness of the opera-
tions controlled by the computer, vis-a-vis their evolu-
tion in the environment (e.g., for the cooling system to
consistently use the temperature of the engine it must
obey some timeliness constraints) [18].

To fulfil this vision, we require an event model that
satisfies these two sets of requirements, respectively of
functional and non-functional nature. That is, a model
that treats the information flow through the whole
computer system and environment in a seamless way,
handling “software” and “hardware” events uniformly.
On the other hand, one that allows defining global,
end-to-end, non-functional criteria in the time domain,
such as temporal consistency, or QoS guarantees. We
address these issues in the forthcoming sections.

3 Architecture

Given the component-based object model presented
above, we should seek the right architecture to sup-
port it. This architecture must be sufficiently generic
to encompass all the possible flows of information in
the system and support the compositional approach

described earlier but, at the same time, one with suf-
ficient expressiveness to allow the identification of the
several entities that make up the system, including the
environment, the hardware and the software compo-
nents.

We propose the Generic-Events Architecture
(GEAR), depicted in Figure 4, which we describe in
what follows. The L-shaped structure is crucial to en-
sure some of the properties described.

Sentient Sentient
Object Object

Regular Network

Sentient

Object
ject

Sentient
Object

produce

Translation Translation
Layer Layer Layer

@ > YhN® X OYN® Y

Translation

: g Bogy
object|or object compound)

§ Environment. Environment. Environment
(incluhg operational net)

Figure 4. Generic-Events architecture.

Environment The physical surroundings, remote and
close, solid and etherial, of sentient objects.

Body The physical embodiment of a sentient object
(e.g., the hardware where a mechatronic controller
resides, the physical structure of a car). Note that
due to the compositional approach taken in our
model, part of what is ’environment’ to a smaller
object seen individually, becomes ’body’ for a
larger, containing object. In fact, the body is the
‘internal environment’ of the object. This archi-
tecture layering allows composition to take place
seamlessly, in what concerns information flow.

Translation Layer The layer responsible for physi-
cal event transformation from/to their native form
to Event Channel (EC) dialect, between Environ-
ment/Body and Event Channel. Essentially one
doing observation and actuation operations on the
lower side, and doing transactions of event descrip-
tions on the other.

Event Channel The layer responsible for event prop-
agation in the whole system. This layer is a

kind of middleware that provides important event-
processing services which are crucial for any real-
istic event-based system. For example, some of
the services that imply the processing of events
may include publishing, subscribing, discrimina-
tion, zoning, filtering, fusion and queuing.

Communication Layer The layer responsible for
'wrapping’ events (as a matter of fact, event
descriptions in EC dialect) into ’carrier’ event-
messages, to be transported to remote places. For
example, a sensing event generated by a smart sen-
sor is wrapped in an event-message and dissemi-
nated, to be caught by whoever is concerned. The
same with an actuation event produced by a sen-
tient object, to be delivered to a remote smart
actuator. Likewise, this may apply to an event-
message from one sentient object to another.

Regular Network This is represented in the hori-
zontal axis of the block diagram by the Com-
munication Layer, which encompasses the usual
LAN, TCP/IP, and real-time protocols, desirably
augmented with reliable and/or ordered broadcast
and other protocols.

The Generic-Events Architecture (GEAR) intro-
duces some innovative ideas in distributed systems ar-
chitecture, which we discuss in what follows:

e It serves an object model based on production and
consumption of generic events.

e Events are produced by several sources— environ-
ment, body, objects— which are all treated in a
homogeneous way.

e There is a basic dialect for talking about events,
used in all transactions by the Event Channel.

e The Translation Layer performs the transforma-
tion between the physical representation of a real-
time entity and the EC compliant format, in either
direction.

e The Event Channel propagates events through
Regular Network infrastructures, via regular
message-passing protocols.

e The flow of information (external environment and
computational part) is seamlessly supported by
the L-shaped architecture.

The GEAR architecture serves an object model
based on production and consumption of generic
events. A generic event in our model is a happening
that requires the attention of objects which showed an
interest on (subscribed) this class of happenings. An
event is then consumed by the object when it hap-
pens. Events are presented to objects through an Event
Channel, which is in charge of propagating them to the
relevant objects (those having subscribed to that event
class). However, not only objects produce or consume

events, but this is transparent, since it is dealt with
by ensuring all these entities (objects and other) speak
the EC dialect.

Events are produced by several sources which are
treated in a homogeneous way. Event sources include:

e the environment where physical events take place,
such as the detection of the opening of a gate, or
of the change of a semaphore light, the sampling
of a temperature at a given time.

e the body of the object (or object compound),
taken as that part of the environment which is
aggregated to the object or object compound and
would not make sense otherwise (e.g., the body of
a robot, the hardware of a car, the embodiment of
a mechatronic device), and where similar kinds of
physical events take place, for example, the sam-
pling of a car’s velocity. Note that part of what is
environment’ for an isolated object, may become
'body’ of a compound object of which that object
is part.

e the objects themselves may generate an event,
when they invoke produce, which manifests itself
as: a piece of information or a command they wish
to make available to other objects; a notification
they produce “to whom it may concern”; an ac-
tuation command on the body or on the environ-
ment, for example, controlling the speed of a car,
or telling a gate to close.

There is a basic dialect for talking about events,
used in transactions by the Event Channel. Any entity
speaking this dialect is capable of producing events to
be propagated by the Event Channel to the relevant
parts of the system, and of consuming events which
are propagated by the EC. Some of these entities are
sentient objects, which are capable of perceiving these
events and perform processing on them. Other enti-
ties are simpler: smart transducers, sensors and actu-
ators. They deserve the 'smart’ adjective because they
speak the EC dialect. However, they are limited in
their ability: sensors can only generate EC compliant
events which report what they sensed; actuators can
only consume EC compliant events requesting an actu-
ation, and perform the requested action.

The Translation Layer performs the transformation
between the physical representation of a real-time en-
tity and the EC compliant format, in either direction.
Note that a special kind of device, represented in Fig-
ure 4 by an antenna, was introduced to denote that,
unlike what happens in many models, it is necessary
to englobe the operational network transmission and
reception in the translation layer activity, and not in
the regular network activity. By operational network-
ing we mean network activity further to the regular
packet passing network of a distributed system. This
is very typical of real-time systems, namely those con-

taining embedded components, and materializes in the
form of I/0O fieldbuses, IR beaming to control remote
actuators, or radio beam reception from remote sen-
SOTs.

The propagation mission assigned to the Event
Channel is performed by Regular Network infrastruc-
tures (Ethernet, Internet, WLAN, RTLAN), through
regular message-passing protocols. However, they must
ensure whatever real-time, reliability and consistency
properties are required of the relevant implementa-
tion [14]. The Communication Layer features proto-
cols capable of enforcing the consistency properties of
the information flow across the event channel platform,
as suggested by the shade uniting local EC modules.
The distributed EC is in fact a middleware platform,
and its functionality may be completed by functions
such as: routing, filtering, enforcement of delivery se-
mantics. For example, filtering requires event channels
to be identified by a subject, over which filtering can
be performed. There exist approaches using content-
based addressing over single channels [3], but this re-
quires filtering every message. More appropriate in sen-
tient environments is to use subject-based filtering, in
which every event channel is identified by a particular
subject. To improve performance, at the expenses of
extensibility and anonymity, it is possible to bind event
channels to the addressing mechanisms of the underly-
ing network infrastructure.

The proposed architecture supports the flow of in-
formation in a number of different ways, as illustrated
in Figure 5, which demonstrates the expressiveness of
the model with regard to the necessary forms of infor-
mation encountered in real-time cooperative and em-
bedded systems. Smart sensors produce events which
report on the environment. Body sensors produce
events which report on the body. They are dissemi-
nated by the local EC module, through the Regular
Network, to any relevant remote EC modules where
entities showed an interest on them, normally, sentient
objects attached to the respective local EC modules.
Sentient objects consume events they are interested in,
process them, and produce other events. Some of these
events are destined to other sentient objects. They are
published on the EC using the same EC dialect that
serves, e.g., sensor events. However, these events are
semantically of a kind such that they are to be sub-
scribed by the relevant sentient objects, for example,
the sentient objects composing a car computer system.
Smart actuators, on the other hand, merely consume
events produced by sentient objects, whereby they ac-
cept and execute actuation commands. Alternatively
to “talking” to other sentient objects, sentient objects
can produce events of a lower level, for example, ac-
tuation commands on the body or environment. They
publish these exactly the same way: through the lo-
cal EC representative. Now, if these commands are of

concern to local actuator units (e.g., body, including
internal operational networks), they are passed on to
the local Translation Layer. If they are of concern to a
remote smart actuator, they are disseminated through
the distributed EC, to reach the former. In any case,
if they are of interest to other entities, such as other
sentient objects that wish to be informed of the actua-
tion command, then they are disseminated on the EC
to these sentient objects. A key advantage of this ar-
chitecture is that messages and events can be globally
ordered since they all pass through the event channel.

Body
Sensor

YDumb

" Radio

Body

| Transmitter Actuator Actuator
Body Event
Channel
Body
Sensor
|
TR Actuator RERRTa
. [Smart / > [Smat |
| Sensor / 4\ Actuator| *
o —_| Smart {Smart ‘ “ :“‘
‘ | Sensor- Actuator| .

o P ‘:EhVirphn‘\e‘nt‘ -

Figure 5. Information flow in the whole sys-
tem.

One of the fundamental challenges we address in this
paper is the provision of support for non-functional re-
quirements. Our focus is on the aspect of timeliness. In
order to deal with real-time sentient objects we need to
understand the implications of timeliness requirements
in the context of the proposed generic-events architec-
ture. This can be done by establishing fundamental
correctness criteria for the operation of the system.
The system architecture, including the protocols and
mechanisms lying in the middleware (which, in fact,
can be part of the Event Channel), must be built so
that the strict observation of the established criteria
is ensured. Given the distributed nature of the prob-
lem, the correctness of the operation does not depend
solely on the observation of timeliness constraints, but
also on the consistency and coordination among the
distributed actors in the system. In this respect, note
that the information flow is defined in terms of events,
and it is controlled at the Event Channel, where ev-
erything passes. As such, and very importantly, all

consistency criteria that we define as to be secured by
the EC, apply as well to regular messages, messages
through other, operational network channels, and in-
put/output feedback paths through the environment.
In this architecture, no hidden channel problems affect
the operation of the system [18].

Before proceeding, we need to define events more
precisely. A generic event is a happening that takes
place in the event channel at a given instant of the
timeline, (E,T). The happening is internal to the sys-
tem, has an event-channel-compliant representation,
and is not necessarily related with physical events tak-
ing place in the environment. That is, the ’event’ is
the happening as seen by the event channel, at a given
instant of the timeline.

In the following section we present a small example
to illustrate how an event channel aware of timeliness
requirements can be used in a concrete scenario.

4 A Cooperating Cars Scenario

An interesting scenario to exercise some of the ideas
presented in this paper, is one involving several sentient
objects operating and interacting with their environ-
ment, and where the correct operation of the whole sys-
tem requires some timeliness requirements to be met.
A cooperating cars scenario provides all these ingredi-
ents [5].

Modern cars make an increasing use of sensor tech-
nology and advanced mechatronic systems. It is ex-
pected that in a near future they will be equipped with
all kinds of sensors, for the diagnosis of internal com-
ponents, to let them know their exact position, for the
detection of obstacles, for the evaluation of weather and
road conditions, etc. Based on all this information it
will be possible to automate several controls and func-
tionalities, specially all those not involving any safety
issues. However, the automatic control of critical func-
tions is a more challenging objective. The fundamental
problem is that it is not possible to construct an exact
‘image’ of the surrounding environment, and therefore
there is a risk of making wrong decisions based on in-
complete or inaccurate information. Moreover, the en-
vironment is continuously changing, which introduces
an additional time dimension that must also be taken
into account. In fact, the intrinsic problem is that of
unpredictability, which must be addressed in the con-
text of adequate models and solutions.

In the scenario we consider, there may exist several
cars (sentient objects) with the ability to ’consume’
events from the environment and ’produce’ events to
it, trying to perform some function inside a restricted
area, call it a zone, requiring the ability to perceive
the environment and control their operation. We obvi-
ously model our system using the GEAR architecture,

which implies that there exist Event Channels through
which events are disseminated and received. Because
there are several cars, the fundamental safety rule con-
sists in ensuring that no car crashes occur (to focus our
discussion, we do not consider other, static, obstacles).
To satisfy this safety rule, each car must obviously be
aware of each other car position. Therefore, we assume
that each car periodically disseminates its position to
the environment, which will be used by the interested
cars (namely those lying in its proximity).

One possible way to achieve this would be by provid-
ing to all of them a temporally consistent image of the
external environment, and one that would be consis-
tent with each one’s internal environment (what their
body tells them), e.g., the coordinates and attitude of
a car, and the state of internal variables. Smart sensors
publish events about the relevant real-time entities of
the environment. Body sensors do the same with re-
spect to the body. These events define the state of
the zone (the part of the environment circumscribed to
a given zone). Now, suppose all sentient objects fea-
ture a module, call it constructor, in charge of building
a real-time image of the zone. The constructor sub-
scribes to the environment and body events, as well as
to any relevant events produced by the other objects.
The external environment events contribute to form a
public RT Image of the zone. That image is enriched
with inputs from other objects, and from the object’s
own body, part of which may or not be made public.
What is important is that all these events obey global
consistency rules.

View of the environment
through the RT-image

Figure 6. Safety rules in the cooperating cars
scenario.

The safety rule is illustrated on the left of Figure 6.
At every instant, each car must know the position of all
other cars with a bounded error (¢). This error depends
on how much time has passed since the position of a
car was disseminated and on the maximum speed of
that car. Therefore, both of them must be bounded.
The control safety rule that must be satisfied is that
the grey car cannot ’enter’ inside the dashed circles.

The problem would be easily solvable if we could

assume a reliable and timely propagation of events
through EC modules. In such a traditional hard real-
time approach, the system would be configured so that
at every P time units the grey car would receive infor-
mation from the black car (see Figure 6 on the right).
Every car would be able to construct a real-time im-
age of the environment (of the surrounding cars) with
a bounded accuracy (related with the propagation la-
tency, A, and the period P), and all the images would
be consistent among them. Then, every car would
consistently decide what to do. However, because we
are assuming a distributed environment, possibly with
many cars disseminating events to a shared event chan-
nel, we have to consider the uncertainty of the environ-
ment. Hence, we also have to solve the conflict between
this uncertainty and the requirements for timeliness
(that is, ensuring bound A).

The problem of operating in uncertain environments
is that timing bounds (e.g., like those resulting from
temporal consistency constraints) may be violated be-
cause of timing failures. Therefore, when executing in
uncertain environments, applications with timeliness
requirements must be able to deal with timing fail-
ures. We assume our architecture, despite uncertainty
of communication, is endowed with perfect timing fail-
ure detection, such as supported by a timely computing
base (TCB) [17]. Fail-safe applications deal with tim-
ing failures simply by switching to a fail-safe state as
soon as a timing failure occurs. In that way, they avoid
any misbehavior and they preserve safety. This is only
possible, however, if the failure is timely detected, be-
fore there is time to do anything wrong. The timely
timing failure detection and timely execution of safety
procedures can be done with the help of the TCB ser-
vices.

Considering our cooperating cars scenario, it is quite
easy to see that there exists a fail-safe state to which
a car can switch if anything goes wrong: it just has to
stop. Hence, it would be possible to construct an EC
module with associated timeliness requirements (trans-
lated into timing bounds) and, simultaneously, use the
adequate constructs to ensure that, would the real-time
view of the environment at that car become temporally
inconsistent, it would immediately stop. In this exam-
ple, it is also clear that the car would be able to start
moving again, as soon as its view of the environment
would become consistent again.

Note that it would be possible to relax the timing
bounds assumed for the propagation of events through
the event channel, in order to reduce the probability of
the occurrence of timing failures (and hence the prob-
ability of a car stopping). However, unless the position
were disseminated more frequently, this would increase
the error bound (€) associated to the local image of
the environment (which is also not good). To keep the
error while increasing the assumed timing bounds, it

would be necessary to reduce the allowed maximum
speed. As a matter of fact, the possibility of adjust-
ing the maximum car speed along with the assumed
timing bound would be allowed for applications of the
time-elastic class, that is, applications where bounds
are automatically adjusted with the QoS of the sup-
porting runtime environment [4].

But the relevant question has to do with knowing
when and how to make the adjustments in order to
have better results (i.e., for a car to keep moving, pos-
sibly slower, but never stopping because of a timing
failure). Note that if the environment does not change,
then it is not necessary to make any adjustments (as-
suming that the operational state is already the best).
On the other hand, when the environment changes,
the system should adapt to the new conditions. Once
more, this problem may be solved by dependably esti-
mating the state of the environment and deciding how
to adapt. That is, by measuring the timeliness of the
event channel, and making these measurements avail-
able to all EC modules: this would allow all relevant
cars to adapt consistently.

5 Conclusion

We discussed an innovative model and architecture
to support event-based object-oriented programming
on real-time cooperative and embedded systems. The
component-based approach to object definition is very
important, as it reflects well the nature of the target
systems. The body-environment duality is key to re-
cursive composition in the model. The L-shaped block
diagram allows the harmonious confluence of physical
and computerized information flows. To our knowl-
edge, it is the first architecture to provide hidden chan-
nel avoidance in the model, that is, a seamless integra-
tion of physical and computer information flows. This
may have important implications on the way to ar-
chitect embedded systems, which we intend to explore
in future papers. The generic event concept provides a
common representation inside the system for what used
to be “state” and “event” messages, and this opens an
avenue for the integration of event-triggered and time-
triggered operation, a subject of current importance in
embedded systems.

References

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman,
P. Steggles, A. Ward, and A. Hopper. Implementing a
sentient computing system. IEEE Computer, 34(8):50—

56, aug 2001.
[2] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma,

A. McNeil, O. Seidel, and M. Spiteri. Generic sup-
port for distributed applications. I[EEE Computer,
33(3):68-76, 2000.

[3] N. Carriero and D. Gelernter. Linda in context. Com-
munications of the ACM, 32(4):444-458, apr 1989.
[4] A. Casimiro and P. Verissimo. Using the timely com-

puting base for dependable qos adaptation. In Pro-
ceedings of the 20th IEEE Symposium on Reliable Dis-
tributed Systems, pages 208-217, New Orleans, USA,

Oct. 2001. IEEE Computer Society Press.
[5] Definition of application scenarios. CORTEX project,

IST-2000-26031, Deliverable D1, Oct. 2001.
[6] Preliminary definition of cortex programming model.

CORTEX project, IST-2000-26031, Deliverable D2,

Mar. 2002.
[7] 1. Crnkovic and M. Larsson, editors. Building Reliable

Component-Based Software Systems. Artech House

Publishers, 2002.
[8] O. M. Group. The common object request broker: Ar-

chitecture and specification. Technical Report OMG

Document 96-03-04, July 1995.
[9] T. Harrison, D. Levine, and D. Schmidt. The de-

sign and performance of a real-time corba event ser-
vice. In Proceedings of the 1997 Conference on Object
Oriented Programming Systems, Languages and Appli-
cations (OOPSLA), pages 184-200, Atlanta, Georgia,

USA, 1997. ACM Press.
[10] A. J. Herbert, J. Monk, and R. van der Linden.

The ANSA Reference Manual, Release 1.1. Architec-
ture Projects Management, Litd, Cambridge, UK, July

1989.
[11] J. Hightower and G. Borriello. Location systems for

ubiquitous computing. IEEE Computer, 34(8):57-66,
aug 2001.
[12] A. Hopper. The clifford paterson lecture, 1999 sentient

computing. Philosophical Transactions of the Royal

Society London, 358(1773):2349-2358, Aug. 2000.
[13] M. Horstmann and M. Kirtland. Dcom architecture.

http://www.microsoft.com/jini/specs/.
[14] J. Kaiser and M. Mock. Implementing the real-time

publisher/subscriber model on the controller area net-
work (CAN). In Proceedings of the 2nd International
Symposium on Object-oriented Real-time distributed

Computing (ISORC99), Saint-Malo, France, May 1999.
[15] R. Meier and V. Cahill. Steam: Event-based mid-

dleware for wireless ad hoc networks. In Proceedings
of the International Workshop on Distributed Event-
Based Systems (ICDCS/DEBS’02), pages 639-644, Vi-

enna, Austria, 2002.
[16] P. Verissimo, V. Cahill, A. Casimiro, K. Cheverst,

A. Friday, and J. Kaiser. Cortex: Towards support-
ing autonomous and cooperating sentient entities. In
Proceedings of European Wireless 2002, Florence, Italy,

Feb. 2002.
[17] P. Verissimo and A. Casimiro. The Timely Computing

Base model and architecture. Transaction on Comput-
ers - Special Issue on Asynchronous Real-Time Sys-
tems, 51(8), Aug. 2002. A preliminary version of this
document appeared as Technical Report DI/FCUL TR
99-2, Department of Computer Science, University of

Lisboa, Apr 1999.
[18] P. Verissimo and L. Rodrigues. Distributed Systems for

System Architects. Kluwer Academic Publishers, 2001.

