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Abstract
This paper discusses some of the typical characteristics of 

modern Web applications and analyses some of the 
problems the developers of such systems have to face. 

One of such types of applications are integrated Web 

applications, i.e. applications that integrate several 

independent Web services. The paper focuses on 
providing software fault tolerance for such systems. The 

solution we put forward employs the concept of Co-

ordinated Atomic (CA) actions for structuring such 

applications and for providing fault tolerance using 
exception handling. The paper discusses important design 

and implementation decisions we have made while 

developing a Travel Agency (TA) case study and attempts 

to generalise them to allow CA actions to be easily 
applied for building dependable Web applications.  

1. Introduction 

The use of Web applications by several people has 

become very common in the past years. Hence, the 

number of such applications has considerably increased, 

and the same person can use several different Web 

applications during a short period of time to achieve his 

goal. Usually, the user controls several interactions with 

all the Web applications in an ad hoc way. These 

interactions can be very complex concurrent activities. In 

some cases these concurrent activities may be working 

together, i.e. cooperating; in other cases the activities can 

be completely independent or may be essentially 

independent though needing to compete for shared 

common system resources. In practice, different kinds of 

concurrency might co-exist in a complex activity that thus 

will require a general supporting mechanism for 

controlling and coordinating this type of activity. 

In this paper, we use the concept of Co-ordinated 

Atomic (CA) actions [1] for structuring such activities 

and for providing fault tolerance using exception 

handling. The paper discusses important design and 

implementation decisions we have made while developing 

a Travel Agency (TA) case study and attempts to 

generalise them to allow CA actions to be easily applied 

for building dependable Web applications that integrate 

several Web services that a user might want to access. 

In particular, the paper discusses how to enclose the 

client side code and the server side code in one 

framework in such a way that single or concurrent errors 

detected on those sides are dealt co-operatively by both 

sides and that CA actions can have participants executing 

on both sides. Following the conventional way the Web 

services are implemented, our framework is based on a 

centralised component offering Web services to a number 

of clients (although the whole service can be a distributed 

application running, for example, on a cluster). An 

example of such services is the TA application, which 

allows integration of several other Web services available 

on the Internet. Usually Web services have a client side 

that uses a web browser to send HTTP requests to a Web 

application. But it is clearly much more convenient to 

implement the application logic on the server side using 

Java RMI or some other technologies which are not 

oriented towards the Web. This heterogeneity creates a 

problem that we had to solve. In this paper we show how 

the HTTP requests are transformed into remote method 

invocations to specific Java objects implementing most of 

the framework features, e.g. a special method for 

concurrent exception resolution [2], and the application 

logic. In order to transform a HTTP request into RMI 

calls we use the Java Server Pages (JSP) [3] technology, 

although other technologies like Active Server Pages 

(ASP) [4] could also be used. Another important solution 

we have used allowed us to deal with the statelessness of 

the method calls on the server side. The approach we are 

using makes it possible for a CA action to include 

sequences of HTTP requests issued by the client side. To 

conclude, the ultimate aim of this investigation conducted 

within European IST DSoS project (IST-1999-11585) [5] 

is to develop an advanced framework for employing CA 

actions for building complex Web applications. 

2. Co-ordinated Atomic Actions 

The Co-ordinated Atomic (CA) action [1] is a general 

mechanism for co-ordinating multi-threaded interactions 

and ensuring consistent access to objects (resources) in 

the presence of concurrency and potential faults. It can be 

regarded as providing a programming discipline for 

nested multi-threaded transactions that in addition 

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore.  Restrictions apply. 



supports implicit co-ordination of a number of co-

operating activities and very general exception handling 

facilities. The scheme is directly suitable for handling 

situations in which hardware and software faults have not 

been masked by the underlying transaction mechanism 

but have instead been reported to the application level, 

and/or at which there are application-level abnormal 

situations that have to be handled.  

A CA action involves multiple co-operating roles that, 

among other things, must agree on the action outcome. 

There are four possible kinds of outcome: normal,

exceptional, abort and failure. A CA action terminates 

normally if it is able to satisfy its post-conditions. If a CA 

action does not terminate normally, then each role must 

signal an exception to indicate the outcome. The roles 

should agree about the outcome so each role should signal 

the same exception. If an exception is raised during the 

execution of a CA action, this triggers a process of 

exception handling. Depending on how successfully the 

CA action can recover from the exception, it may still 

terminate normally or otherwise exceptionally. If error 

recovery is not possible, the CA action may attempt to 

rollback the state of external objects and signal abort. If 

the rollback is unsuccessful, then the CA action signals 

failure.

If a CA action terminates exceptionally (i.e. with 

exceptional, abort or failure outcome), the corresponding 

exception is raised in the enclosing context. CA actions 

can be nested and this means that an action which 

terminates by signalling an exception is effectively 

passing on the responsibility for exception handling to the 

enclosing CA action. 

Our experience in developing Web applications as TA 

shows that there are situations in which the canonical CA 

actions have to be modified for practical reasons and to 

reduce the complexity the system designers have to deal 

with while applying this fault tolerance scheme. For 

example, canonical action nesting is defined in such a 

way that a subset of participants of the containing action 

takes part in a nested action. This is a straightforward rule 

that guarantees absence of information smuggling and 

facilitates the action support. Sometimes, as we will show 

in the next sections, we have to apply another type of CA 

action, i.e. CA actions that are executed as a method call 

in which the body has several threads forked and joined 

when the action starts and completes. All forked threads 

are involved in co-operative exception handling when any 

of them raises an exception. If there are several 

concurrent exceptions they are resolved in the way this is 

done in the canonical CA action scheme as described 

above. Such method call either returns a result or signals 

an interface exception to the containing action. It is not 

difficult to see that such CA actions have all main 

properties of the CA actions with respect to fault 

tolerance and complexity encapsulation because there is 

no information smuggling outside such actions. Actions 

allowing this type of nesting can be freely mixed with the 

canonical CA actions, as indeed has been done in this 

paper.

3. Travel Agency Case Study 

To demonstrate how CA actions can be used to build 

Web applications, we have chosen a very typical system, 

a Web Travel Agency, which, as our analysis shows, has 

main characteristics of many real-life Web applications. 

We assume that there is a number of Web services in 

place that make it possible for the client to book some 

parts of trips (e.g. a hotel room, a car, a flight). Therefore, 

the goal of the exercise is to apply fault tolerance 

techniques in building a new service that allows the client 

to book whole journeys. By doing this we will be building 

a new emerging service, which none of the existing 

services is capable of delivering individually [6].  

The main challenges related to provision of fault 

tolerance of the integrated Web applications are as 

follows. The legacy components are Web servers that are 

controlled by different organisations and are not 

developed for integration, because of this there is often 

not enough information which the integrators might need 

(including, for example, component complete and correct 

specification). Another consequence of this is that system 

integrators have to treat these components as black boxes 

that can only be accessed via standard interfaces. With 

respect to the dependability of the integrated application 

there are two factors to be taken into account: a well-

known fact that the quality of many Web services is very 

low [7] and absence of evidence supporting any 

reasonable claims about their reliability. While integrating 

dependable Web applications is important to realise that it 

is impossible to develop or rely on features for locking 

Web services and for aborting (sequences of) operations 

on them. Another set of the problems specific for such 

systems is related to the Internet as the only 

communication media and the only environment in which 

composed systems operate. Web services are autonomous 

entities oriented mainly towards interactions with clients 

and they often take liberty to send replies that do not 

exactly fit the requests as a way of helping the clients or 

promoting their service. Moreover, because of their nature 

they offer a very specific type of interface suitable for 

browsing only (HTML interfaces). It is a well-known fact 

that the Internet is not a very reliable media and that there 

is a high number of Internet-specific faults such as delays, 

lost requests, services switched down (because of either 

their faults or regular shutdowns) [7] [8]. Integrated 

applications of the TA type have to meet high 

dependability requirements including consistency of 

money transfers and clients’ satisfaction. One more 

problem that the designers of such systems have to deal 
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with is that they have to preserve the right level of 

abstraction while composing the system. Such Web 

applications are typically built using complex composite 

middleware consisting of several levels with an ability to 

deal with exceptions at different levels, so there is a need 

for a unified approach and for a proper exception 

handling encapsulation. One more characteristic worth 

mentioning here is the fact that people are involved in 

execution of such systems and they can both cause errors 

and be involved in recovery; in the context of TA clients, 

the integrated system support and the legacy component 

support can be included into consideration.  

Our choice of the fault tolerance and structuring 

techniques to be used is defined by these characteristics. 

In our design of TA case study we will be developing and 

applying the techniques that allow system integrators to 

meet high dependability requirements by incorporating 

measures for disciplined tolerance to the faults of several 

types. First of all, TA should tolerate errors caused by 

hardware failures in communication (mainly delays) or in 

legacy components (mainly crashes), which should not 

cause failures of the whole TA. Secondly, the client’s 

mistakes and client side machine crashes should be 

tolerated without affecting either TA or the legacy 

components. Thirdly, TA should tolerate situations when 

legacy components cannot provide the required service or 

when they behave abnormally. Besides, the clients should 

be informed about the situations when the machines on 

which TA is executed crash and these crashes should not 

affect the legacy components. The design should 

guarantee that all components, including legacy servers, 

TA and clients stay in a consistent known state even when 

faults happen. 

4. Structuring Web Applications 

Normally, Web applications are divide in two parts: a 

client side and a server side. The client side executes on 

the client’s machine and usually gathers information from 

the user to be sent to the server. The server side is 

responsible for using the users input, processing and then 

returning the result to the client computer. The TA 

structure has a similar structure, which is typical for many 

Web services [6]. The major difference is that in the TA 

system, requests from the client are passed to legacy 

components (this is not seen by the client) (see Figure 1). 

Note that a client can be accessing a legacy component 

directly, therefore the legacy component will see our TA 

as a client.  In order to provide a client with some level of 

fault tolerance, our approach focuses on employing 

application-level fault tolerance by means of structured 

exception handling. In designing TA we employ the CA 

actions concept.  

The overall TA execution, with respect to each client, is 

structured using CA actions. TA is a complex concurrent 

distributed application with a considerable number of 

exceptions to be handled. Several interacting components 

of different types are to be involved in this execution and 

there is a need in consistent co-operative application-

specific handling of all abnormal situations. All 

information exchanged between client and the TA is 

realised inside CA actions via shared local objects. 

Because the client thread is either executing in the client 

side or on the TA side, a special shared object is used. 

This object is a way of signalling exceptions to the client 

side if the TA side raises an exception that has to be 

handled by all participants of an action. 

Figure 1. Architecture of Travel Agency 

4.1. Structured System Design Using CA actions

In our design [9], every time a client connects to the TA 

a special CA action is started on the TA side (this CA 

action can be executed on the same place the TA server is 

executing or in a special computer used to host the clients 

actions). This special action encloses all activities that the 

client executes, even if these activities are executed on the 

client side. This action is called session action. The 

session action finishes when the client logs off or crashes.  

The session action is composed of three co-operating 

roles, which are executed by participants represented as 

concurrent co-operating threads: client controller, TA CS 

(Client Side) controller and TA SS (Server Side) 

controller. The first participant is mainly located on the 

client computer, and is responsible for interacting with the 

user. The client participant is responsible for gathering 

input from the user, sending this information via HTTP 

(JSP) to the session action, and exhibiting the result to the 

user. During this process, the client thread can be seen as 

a thread that executes partially in the client side and 

partially on the server side.  The remaining two 

participants are executed on the TA computer (or the 

computer destined to execute the client’s session action). 

These last two threads are created when a client logs into 

TA. Introducing such threads allows us to make the 

system structure cleaner, to reduce the design complexity 

by separating concerns and to improve system 

performance. For example, one of the responsibilities of 

the TA CS is to monitor the client side, while the TA SS 

is responsible for distributing the client requests between 
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the legacy systems.  As discussed in Section 2, this 

session action is not a canonical CA action, i.e. the 

threads that will execute each of the roles of the CA 

action are forked when the session action is started by the 

client controller thread (see Figure 2).  

After the session action has started, the client can 

choose the activity among the following: checking 

availability of a trip, booking a trip, cancelling a trip, and 

paying for a trip. They correspond to four actions that are 

nested into the session action: the availability, booking,

cancellation and payment actions. These four actions 

have the same three participants as the containing session

action, i.e. they are canonical CA actions. The client may 

choose to perform any of these actions in any possible 

order but within a restriction imposed by the menu 

presented to him (e.g. it is not possible to cancel a trip if it 

has not been booked before). One of the possible 

scenarios is shown in Figure 2. In the figure, we represent 

the client participant informing the TA CS and TA SS 

controllers that he wants to execute the availability action 

and when this has finished (supposing that he is content 

with the choices he got) he informs the other participants 

to execute the booking action.  

Figure 2. Valid execution of the session action 

If any of those four actions is not able to deliver the 

service required, it completes abnormally and propagates 

an interface exception to the session action. When 

possible all three participants of this action are involved 

in handling of such exception. Note that when the 

availability action completes without exceptions it 

produces a normal result consisting of a description of a 

number of trips meeting all client’s requirements: in the 

scenario shown in Figure 2 the client chooses one of these 

trips and proceeds with booking. The trip choices are sent 

to the client when the client controller is executing inside 

the availability action. 

Let us consider now the internal structure of the 

availability action. In our design it has two nested actions 

(Figure 3): the request action and the consult_services

action. They implement distributed browser access to the 

TA service. Within the request action client’s information 

is passed from the client computer to the TA server and 

checked. If during this checking the TA CS controller 

finds that some part of the information is incorrect (e.g. 

city name, days of travel, length of the stay, etc.) it raises 

a corresponding internal exception in the action to alert 

the client and to advise him to correct this information. 

After such correction the action continues. If the TA 

server is down or crashes, the corresponding action is 

aborted and an external exception is propagated to the 

availability action level. This action is aborted in its turn 

and an external exception is signalled to the session level 

to inform the client and to advise him to close the session. 

If one of these two actions (request or consult_services)

detects that the client is not on-line or his computer 

crashes, the action itself and the containing action 

availability are aborted, and the session action completes. 

Figure 3.  Structure of the availability action 

As mentioned in Section 2, sometimes we need a 

special type of CA action that is initiated by only one 

thread but that have several threads inside. The TA SS 

controller, one of the participants of the consult_services

action, activates the compose_trips action that is designed 

as a CA action of this type (Figure 4). CA action 

compose_trips has four cooperating participants: the ct 

controller (a service thread coordinating the execution of 

the remaining three participants) and three participants: 

flight, car and hotel, which are responsible for providing 

respective information for composing the whole trip. The 

arrow from the client participant to the TASS controller 

represents the sending of the information from the client 

to the TASS controller. This information is later passed to 

the ct controller participant in the compose_trips action, 

which will split the information into details of the flight, 

car and hotel. The ct controller passes then this 

information to the respective participants, which access 

their legacy components. 

Figure 4. Action compose_trips is nested in 
action consult_services

If any of these participants raises an exception all of 

them are involved in cooperative handling. For example, 

if there is no car available for the date of travel the ct 

action availability

client controller

TA CS controller 

TA SS controller 

action
request

action

consult_services

action session

client controller 

TA CS controller 

TA SS controller 

action
availability

action
booking

client controller

ct controller 

flight 

car

hotel action compose_trips

TA CS controller 

TA SS controller 

action 
consult_services

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time  
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE 
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5. General implementation structure 

controller may decide to find another airport nearest to the 

destination city, or to check a more expensive or cheaper 

option for car rental, or to search for the hotels offering 

car rental. When handling is not possible at the level of 

action compose_trips a corresponding exception is 

propagated to the TA SS controller and raised in all 

participants of action consult_services.

5. Implementation 

The previous section has shown how we have 

structured all activities that are executed by the TA in 

order to access legacy components using the CA action 

concept. In this section we discuss the implementation 

details, the technologies used and the architecture of the 

whole system. Figure 5 shows the architecture of our 

system and possible technologies that could be used for 

exchanging information between client, TA and legacy 

systems. In our implementation we have used the 

technologies written in bold font in the figure. 

The first step (1) is executed by the client when he 

sends an HTTP request to the HTTP server on the TA 

side. When the TA HTTP server receives the request it 

executes JSP code associated with the Web page the 

client was trying to access (note in the figure that we are 

using JSP but could have used ASP instead). This JSP 

code is interleaved with Java code that makes an RMI call 

(2) to the TA system, which is responsible for creating the 

session action as described in the previous section. All the 

CA actions are created as remote objects, via an RMI call 

(3), on a different machine. Note that this remote machine 

could be a set of computers, or a cluster of computers, and 

the CA actions are distributed among these computers. 

After the session action has been started, the client 

receives back an identifier to this action, and a new Web 

page containing a set of options he can access in the TA. 

This identifier is send back to the client via a cookie, 

which is stored in the client’s machine. 

All the steps described above are related to the first 

access the user makes to our TA. Once he has got a Web 

page back, the whole structure for checking trip 

availability, or executing any of the actions described in 

the previous section is ready. Therefore, if the user now 

wants to check availability for a specific trip, he fills a 

form in an HTML page and the information on this form 

is sent via an HTTP request (4) to the TA HTTP server. 

The TA HTTP server executes then the JSP code that 

sends this information to the session action via an RMI 

call (5). In the session action, as described in the previous 

section, the client’s request is passed to the legacy 

components (6). When all legacy components, i.e. hotel, 

airline and car rental Web sites, have returned the 

availability, this information is send back to the client, 

and the whole process can be started again (7,8,9,…). As 

can be seen in Figure 5, the CA actions access the legacy 

component via the RMI protocol, but we could have used 

any of the other technologies shown in the figure, i.e. 

SOAP, CORBA, etc. One important feature in our design 

is that each access to legacy components is wrapped into a 

special code implementing a kind of plug-in (or driver). 

This plug-in provides always the same interface to the CA 

actions independently of the technology used by the 

legacy system. Employing such remote protective 

wrappers is an important design decision that allows us to 

separate a number of lower-level and routine activities 

from the main TA logic. Moreover, although in our 

current implementation we use synchronous calls to 

legacy components, using such wrappers will allow us to 

deal with asynchronous calls as well. 

5.1 HTTP Server and JSP Code 

One of the important features of the HTTP server is that 

it is stateless, i.e. it does not keep state between calls. 

This is very important when one wants to deal with faults 

of the HTTP server. In the event of the HTTP server 

crashing, then a new HTTP server can take over the job of 

TA System 
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CA actionsTA HTTP 
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the crashed server. This feature is also valid for the TA 

system. All the information needed about the client is 

kept, in our system, in a cookie that is set when the client 

first connects to the TA Web site and downloads the 

HTML page shown in Figure 7. In this figure, we show 

how HTML and JSP code are interleaved. The Java code 

is shown between lines 2 and 12. The Java code is 

responsible for accessing the TA system (line 6), creating 

a new session action in the TA (line 7), and creating a 

cookie to store information about the session action. The 

information stored in the cookie will be used every time 

the client wants to execute a nested action in the session

action, for example availability action. The client, via JSP 

code also uses this information to access local shared 

objects that will serve as a communication channel 

between the client and the other participants of the 

session action. The HTML code shows a set of options to 

the client, for example an option for making a reservation 

(line 13), or an option to cancel a reservation (line 14). 

01: <html> … <body>
02: <%@ page import="TravelAgency"%>
03: <%@ page import="java.rmi.*"%>
04: <%@ page // other Java imports … 
05: <% try { 
06:      TravelAgency ta = (TravelAgency) Naming.lookup("rmi://address/TA"); 
07: int numb = ta.createAction();
08:      Cookie c = new Cookie (request.getRemoteHost(), Integer.toString(numb)); 
09:
10:      response.addCookie(c); 
11:      response.setContentType("text/html"); ... 
12: catch ( … ) { … }   %> 
13: <p align="center"><a href="sos_ta.htm">Make A Reservation</a></p>
14: <p align="center"><a href="soscancel.htm">Cancel a Reservation</a></p> ...
15: </body> </html>

Figure 7. HTML and JSP code for the start menu of the TA

01: public TASS(String n, drip.Manager mgr, drip.Manager leader) throws RemoteException { 
02: super(mgr, leader, n);
03:
04:      // Create the compose_trips CA action. 
05:      // Create managers. Parameters: manager name, DMI name 
06:      drip2.Manager mgr1   = new drip2.ManagerImpl("mgr1","compose_trips"); 
07:      drip2.Manager mgr2   = new drip2.ManagerImpl("mgr2","compose_trips"); 
08:      drip2.Manager mgr3   = new drip2.ManagerImpl("mgr3","compose_trips"); 
09:      drip2.Manager mgr4   = new drip2.ManagerImpl("mgr4","compose_trips"); 
10:
11:      // Create roles: Parameters: role name, role manager, leader manager 
12:      ctComposeTrips       = new compose_trips.CT    ("ct",     mgr1, mgr1); 
13:      flightComposeTrips   = new compose_trips.Flight("flight", mgr2, mgr1); 
14:      carComposeTrips      = new compose_trips.Car   ("car",    mgr3, mgr1); 
15:      hotelComposeTrips    = new compose_trips.Hotel ("hotel",  mgr4, mgr1);
16: }

Figure 8. Java code for creating the compose_trips action 

01: public void body(Object list[]) throws Exception, RemoteException { 
02: try {
03:     RemoteQueue rqIn  = (RemoteQueue) list[0], rqOut = (RemoteQueue) list[1]; 
04:     BreakRequest request = new BreakRequest((triprequest) rqIn.get()); 
05:
06:     ctCarQueue.put(request.cr); 
07:     ctFlightQueue.put(request.fr); 
08:     ctHotelQueue.put(request.hr); 
09:     waitAnswers.synchronize(); 
10:
11:     Flight fl[]   = (Flight[]) ctFlightQueue.get(); 
12:     Hotel hl[]    = (Hotel[])ctHotelQueue.get(); 
13:     Car cl[]      = (Car[])ctCarQueue.get(); 
14:     Trip trips[] = Compose.combine(fl,hl,cl);
15:
16:     rqOut.put(trips); 
17:   } catch (Exception e) { throw e;  }
18: } 

Figure 9. Java code of the ct controller role of the compose_trips action 
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Another important feature that can be seen in Figure 7 

is the Java exception handling code used to inform the 

client when the TA system is not available (line 12). Note 

that the HTTP server can be active but the TA system can 

be down. They execute on different machines as shown in 

Figure 5. 

5.2 CA Actions 

The implementation of the CA actions is realised using 

an object-oriented framework [10] developed in Java 

RMI. In this framework, CA actions are implemented 

with two types of objects: manager and role. As described 

in Section 2, each CA action is composed of a set of roles. 

A role object contains the code that will be executed by a 

participant of the CA action. A manager object is 

responsible for controlling the execution of a role object. 

The set of managers control as CA action protocols, i.e. 

synchronisation upon entry, synchronisation upon exit, 

concurrent exception resolution, testing of the pre and 

post-condition. For the complete description of the 

framework see [10]. This framework was extended to 

support the type of CA actions described in Section 2. 

Although this extension was enough to implement CA 

actions, it could not be applied directly to the system we 

have implemented. The major reason is that the code for 

the client participant is split into two parts: one running 

on the server machine and another running on the client 

machine. We solve that by allowing the thread that 

executes the client role to execute in the client’s browser, 

therefore we consider the thread executing in the client’s 

browser as being inside the action. The TACS participant 

is responsible for controlling the client, and may use 

timeout mechanism to detect when the client is not 

running anymore. 

Figure 8 shows the constructor of the TASS role object 

of the consult_services action. This object is responsible 

for creating and starting the compose_trips action. The 

creation of the compose_trips action is divided into two 

parts. First the set of manager objects is created (lines 6 to 

9). Second, the set of role objects is created (lines 12 to 

15). Each manager is created with a name and the name of 

the action it belongs to, while each role object is created 

with a name, a manager that will control the role, and a 

manager that is the leader
1
 of the manager of this role. All 

these objects are remote objects and could be executing 

on different machines. One important feature that can be 

identified in Figure 8 is the different managers that are 

used in the compose_trips and consult_services:

drip.Manager (line 1) and drip2.Manager (lines 6 to 9). 

The former is used to create a canonical CA action. The 

latter is used to create the modified CA action as 

described in Section 2. 

                                                
1

The leader is responsible for controlling all protocols of the CA action.

Figure 9 shows the main code of the ct controller role 

of the compose_trips action. This role receives references 

to two remote objects that are used to receive (rqIn) and 

send (rqOut) (line 3) information from/to the client via 

the JSP code (see Figure 4). Line 4 shows how the client 

request is received from the client via the remote object, 

and how this request is split into separate requests to the 

legacy components. The next step is to pass this 

information (line 6 to 8) to the roles that will access the 

legacy components. This sending of information is 

realised via local objects. After sending this information, 

the ct controller has to wait the other roles to receive the 

required information back from the legacy components 

(line 9). When car, flight and hotel roles have got back 

availability from the legacy components, the ct controller 

receives this information (lines 11 to 13), combines this 

data, and sends it back to the client via the remote object 

rqOut (line 16). Figure 4 represents the Java code from 

Figure 9. Note that if any exception is raised during the 

execution of ct controller role, this exception is caught 

and thrown to the manager object that controls this role 

(line 24). The manager object then informs its leader 

about the exception and the exception resolution 

algorithm is executed. 

6. Concluding Remarks 

Our experience in the past years has shown that CA 

actions provide a powerful support structuring mechanism 

for several different types of applications, for example, 

control software for different types of production cells 

(fault-tolerant [11], not fault-tolerant [12], and real time 

[13]), or for complex GAMMA computation [14]. In this 

paper we have discussed and shown how CA actions can 

be used for structuring and implementing integrated Web 

applications. This case study differs from the previous 

ones because the application area has a number of very 

specific characteristics, which required some adjustments 

in the way CA actions are used. For example, 

heterogeneity and complexity of the environment, 

autonomy and legacy of the Web servers, and needs to 

explicitly deal with node crashes and communication 

delays. One of such problems is that legacy components, 

i.e. existing Web services, are not controlled by system 

integrators and, due to this, the main means of system 

recovery is application-specific exception handling. The 

situation is complicated by the fact that only weak 

assumptions can be made of the behaviour of such 

components. It is becoming clear to the specialists in the 

field that ACID transactions cannot be used for such 

purposes; this is why more flexible techniques are being 

developed [15]. CA actions clearly offer a more general 

approach that allows developers to deal with co-operative 

and competitive concurrency, and to employ application-

specific and component-specific exception handling in a 
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disciplined and structured way. Another relevant 

characteristic of CA actions is their ability to support 

structuring and fault tolerance of the complex systems 

that include non-software entities such as human beings, 

devices, money, goods, documents, etc. Because of their 

very nature, activities involving such entities become 

long-lived and the abort semantics is not applicable. CA 

actions keep all information under control and allow 

different types of application-specific recovery to be 

programmed using exception handling [1] [16]. CA 

actions, being a general design concept, are not attached 

to deal with any specific type of faults, although in each 

particular case study the fault assumptions have to be 

clearly stated. In this practical work we do not consider 

Byzantine faults (this is where the main focus of research 

on consensus is [17]), but we mainly deal with 

environmental faults, software design faults and hardware 

crashes with fail-stop semantics. 

With respect to the implementation of CA actions, one 

important aspect that had to be dealt with in this paper 

was the separation of the code of one of the participants 

of a CA action. The client participant code was split 

between the TA computer and the Web browser 

computer. Controlling this type of separation was very 

complex. We solved this by having some kind of 

watchdog that would check, via time-out, whether the 

client was down or not. Another point, as explained in 

Section 2, was the extension of the Java framework [10] 

to allow for a new special type of CA action. 

We would like to conclude by saying that in many 

practical situations it makes sense to apply specific 

structuring techniques tailored for particular needs: we 

refer here to employing a special type of CA actions and 

splitting an action participant into two parts executed at 

different machines.  Another important conclusion is that 

the solution proposed for developing a unified service 

interface and several wrappers oriented towards accessing 

existing Web services using different technologies 

(WSDL [18], SOAP [19], other XML-based techniques, 

CORBA, etc.) offer a very flexible and dynamic way of 

dealing with ever-growing number of technologies. 
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