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Abstract 

 
The latest version of Real-Time CORBA defines a 

Distributable Thread primitive to support real-time 
computing in a dynamic distributed environment.  
However, this standard does not provide support for 
making and enforcing global decisions.  This paper 
describes the framework for a Distributed Scheduling 
Service (DSS) that provides globally sound decision-
making and scheduling enforcement to real-time 
distributed systems.  The paper describes the design 
and implementation of the framework, as well as 
preliminary performance results. 
 
1. Introduction 
 

As theory and practice in distributed computing and 
in real-time computing matures, there is an increasing 
demand for automated solutions for dynamic 
distributed real-time middleware to support scheduling 
end-to-end timing constraints.  The latest version of 
Real-Time CORBA (RTC), known as RTC1.2  
(formerly known as RTC 2.0) [1], defines the 
Distributable Thread (DT) primitive to support real-
time computing in dynamic distributed middleware 
systems. RTC1.2 provides a flexible means for 
expressing and propagating scheduling information 
across node boundaries in a distributed system. 
However, in RTC1.2, all scheduling decisions are 
assumed to be local – that is a local scheduler on each 
endsystem uses the same propagated scheduling 
information to make local scheduling decisions.  These 
local schedulers do not have a global view of the 
overall system.  This could lead to local enforcement 
decisions that fail to achieve maximum possible global 
system performance.  For instance, consider a DT that 
spans three nodes in its end-to-end path. The first local 
scheduler in the chain would choose the RTC1.2 
deadline as the deadline it must enforce.  This 
scheduling decision could leave insufficient time for 
the remaining segments of the DT to execute on the 
subsequent nodes.    What is missing is a scheduling 

decision that provides globally sound scheduling 
parameters to the local schedulers in the end-to-end 
chain. 

In addition to lacking support for global scheduling 
decisions, most distributed real-time middleware does 
not provide adequate support for overload management 
[2]. Overload management is a function that the 
middleware must perform when timing constraints in 
one or more DTs cannot be met.  In static real-time 
systems, overload management analysis can often be 
done a priori.  In dynamic systems, where such offline 
analysis is either not possible or can not be as 
comprehensive, it is essential that the middleware 
identify and address overload in a runtime setting.  
RTC1.2 provides a cancel mechanism [1] that allows a 
DT to be cancelled.  This overload management 
primitive, does not incorporate a global understanding 
of which DTs to cancel, nor does it address the overall 
effects of these cancelled DTs on the system.  Other 
overload management techniques, such as Quality of 
Service adjustment [2], should also be managed using 
globally sound parameters and criteria. 

This paper describes the design and implementation 
of a Distributed Scheduling Service (DSS) framework 
that works with application specified end-to-end 
scheduling parameters and with local scheduling 
mechanisms to make globally sound scheduling 
decisions for the system.  We are currently 
implementing the framework in a Real-Time CORBA 
1.2 environment, but have designed it to be applicable 
to other middleware systems that require global 
scheduling management.  The goal of DSS is to 
achieve globally sound end-to-end scheduling and 
overload management using the local enforcement 
capabilities of the local endsystems. 
 
2. Related Work 
 

The DSS described in this paper is a framework for 
distributed global scheduling.  One of its goals is to 
provide a mechanism for implementing some of the 
classic end-to-end scheduling algorithms that have 
been developed.  This section describes and compares 



these algorithms.  The section also discusses the 
features and deficiencies of existing distributed 
scheduling frameworks. 
 
2.1. End-to-end Scheduling Algorithms 
       

End-to-end scheduling theory has provided much 
the motivation for the development of the DSS 
framework.  It is this theory that has lead to the notion 
that local scheduling should incorporate a global view 
of the overall system.  Several researchers have 
recognized the need to compute intermediate deadlines 
when an application specifies a single, final deadline 
on an end-to-end task [3][4].  Various algorithms have 
been developed to compute the intermediate deadlines 
to maximize the possibility of all end-to-end tasks in 
the system meeting their specified deadlines.  Ultimate 
Deadline uses the end-to-end task’s relative deadline as 
the intermediate deadline for every subtask.  This is the 
simplest computation for intermediate deadlines, and 
can lead to problems if the first subtask in the end-to-
end task uses all of the available slack.  Effective 
Deadline calculates the subtask’s intermediate deadline 
by subtracting the sum of its successors’ execution 
time from the end-to-end deadline.  This algorithm puts 
all of the slack in the last subtask of the end-to-end 
task, so the intermediate deadlines of the earlier 
subtasks may be too restrictive.  Proportional Deadline 
lets the relative deadline be proportional to each 
subtask’s execution time.  In another words, the more 
execution time, the longer intermediate deadline.  
Normalized Proportional Deadline improves upon 
Proportional Deadline by taking into account each 
processor’s utilization such that subtasks on busier 
processors will be assigned longer intermediate 
deadlines.  The computation of intermediate deadlines 
is an important global scheduling decision that cannot 
be done easily with local scheduling alone. We chose 
the Effective Deadline approach for our 
implementation of the deadline assignment algorithm 
in our DSS framework because of its simplicity and 
good performance results.  The DSS is designed to be 
pluggable so that any deadline assignment algorithms 
may be substituted.  

Another important global scheduling decision that 
the DSS framework must make involves how to 
synchronize the individual subtasks in the end-to-end 
task.  Several synchronization protocols have been 
developed to ensure that subtasks are executed in the 
correct order.  A greedy synchronization protocol 
requires the immediate release of a subtask when its 
predecessor completes [3].  Most Real-Time CORBA 
implementations use a greedy approach where servant 
threads are launched as soon as possible when a 
request arrives.  Greedy synchronization can make the 

system of end-to-end tasks difficult to analyze because 
the start times of subsequent subtasks are not periodic.  
Instead, they rely on the end times of the previous 
subtasks.  Non-greedy synchronization protocols, such 
as the Release Guard protocol [3], forces each subtask 
to be periodic by adjusting the release time of each job 
in the subtask.  Forcing periodic behavior not only 
improves global worst-case response times over the 
system, it also facilitates analysis of the timing of end-
to-end tasks.  Our DSS framework implements a non-
greedy synchronization protocol for this reason. 
 
2.2. Dynamic Scheduling Frameworks 
        

Other frameworks have been developed that are 
similar to our DSS framework, but none encompasses 
all of the important features that ours provides.  
Tempus is a middleware framework that supports the 
Distributable Thread construct [5].  The analysis theory 
for Tempus is based on Time/Utility Functions [6]. In 
Tempus, the DT propagates scheduling parameters to 
each local node.  There is no global decision-maker.  
Instead each local scheduler makes the scheduling 
decision based only on the scheduling parameters that 
each DT carries. The QuO framework also supports 
dynamic distributed scheduling [7].  However, QuO 
does not provide a standard way to do so.  It relies on 
each application’s specific configuration.  Recent 
research done at CMU integrates scheduling and 
resource management to enhance performance in 
phased-array radar systems [8].  Although the system 
architecture in this work considers scheduling and 
resource management together, they do not consider 
end-to-end tasks distributed across different 
processors.  While each of these frameworks provides 
valuable features to support real-time systems, none 
provides all of the key elements that the DSS provides.  
Specifically, the DSS provides a global awareness of 
the system to allow it to make scheduling decisions 
that have the interest of the overall system in mind; the 
DSS provides an application independent overload 
management mechanism; and the DSS provides a 
natural extension of the RTC 1.2 standard with 
minimal changes to the standard interface.  
 
2.3. Real-Time CORBA 1.2 
 

Real-Time CORBA is a QoS enabled extension of 
CORBA middleware. The Real-Time 1.1 specification 
is designed for static distributed system where the 
number of tasks and their scheduling parameters are 
known a priori. The Real-Time CORBA 1.2 
specification extends RTC1.1 to encompass both static 
and dynamic systems. In a dynamic system, tasks enter 



and leave the system at times that cannot be calculated 
a priori. In order to effectively manage the dynamic 
task set, RTC1.2 introduces the Distributable Thread 
scheduling primitive. A DT is an abstraction of a chain 
of method calls by multiple threads at multiple 
processors. According to its definition, a DT can span 
nodes boundary and carry scheduling parameters to 
each node in the chain. At each local node, the 
correspondent local scheduler will schedule that DT 
based on its scheduling information. The interface 
from the DT to the local scheduler is well defined. The 
begin_scheduling_segment() (BSS), 
update_scheduling_segment() (USS) and 
end_scheduling_segment() (ESS) are the three most 
important operations in the interface. BSS begins the 
Real-Time portion of the program, and passes the 
application provided scheduling parameters to the local 
scheduler. The local scheduler then determines a 
schedule.  The schedule is enforced until BSS, USS or 
ESS is encountered, forcing a change in the schedule. 
Two essential arguments for BSS are a name and a 
scheduling_parameter. The name identifies scheduling 
segment. The application defined scheduling 
parameters reflect the scheduling algorithm. USS 
updates the existing scheduling parameter of a DT. 
ESS indicates the end of the scheduling segment, 
which means that the Real-Time region of code is 
finished. 

TAO [11] is an open-source middleware 
implementation that supports the RTC1.2 standard.  
Currently, TAO implements two local schedulers.  The 
first is a fixed-priority local scheduler that expects to 
be supplied with priorities for the DTs that it 
schedules.  The second is Kokyu [12].  Kokyu is a 
flexible middleware framework for managing threads 
on various platforms. As a local scheduler for TAO, 
Kokyu has implemented several well-known 
scheduling disciplines including Fixed Priority, EDF, 
MIF and MUF.  
 
3. Design of DSS 
 

Figure 1 depicts our overall system architecture. 
There are six essential components in this framework, 
Distributable Thread (DT), Local Scheduler, DSS 
Proxy, DSS, Resource Manager (RM), and System 
Repository. These components are independent and 
coordinated with each other.  

 

Figure 1. System Architecture 

 
A Distributable Thread (DT) is the schedulable 

entity in our system architecture. When a DT is 

spawned by the application it carries its specified 
scheduling parameters, including its end-to-end 
deadline, along as it traverses the nodes in its path. The 
Local Scheduler is defined in RTC1.2 to manage the 
local portion of a DT. In our architecture, we extend 
the definition and allow the local scheduler to interact 
with both the DT and the DSS Proxy, so that the local 
scheduler can obtain and use global information. 
Applying the Interceptor pattern we put a wrapper 
around the RTC1.2 local scheduler to intercept calls 
between DT and DSS Proxy. The Local Scheduler can 
implement various scheduling mechanisms, such as 
earliest deadline first, fixed priority, and deadline 
monotonic.  The DSS Proxy is a running daemon that 
works as a proxy to the DSS and is always located on 
the same node as Local Scheduler. This collocation 
reduces the overhead of making remote calls to the 
DSS whenever a global scheduling decision is 
required.  The DSS is a centralized scheduling service 
that has several responsibilities:  1) online 
schedulability analysis of an end-to-end task; 2) 
computation of globally sound scheduling parameters; 
3) triggering of overload management if necessary.  
When the system becomes unschedulable the Resource 
Manager (RM) applies overload management solutions 
such as QoS adjustment.  The System Repository 
stores system information that is shared between the 
DSS and the RM.  This information includes end-to-
end tasks, nodes on which they will execute, and their 
scheduling parameters. The synchronization is 
enforced at each local scheduler that implements any 
of the synchronization protocols.  

When a DT is spawned by an application, the DT 
communicates with the DSS to determine if it is 
schedulable alongside the existing DTs in the system, 
and receives from the DSS its globally sound 
scheduling parameters.  In RTC1.2, the interface 
specifies that the DT pass its scheduling parameters to 
the Local Scheduler.  We have preserved this interface, 
and extended the Local Scheduler to allow it to send 
these parameters to the DSS Proxy.  The DSS Proxy 
then makes a remote call to the DSS, which returns the 
globally sound scheduling parameters to be returned to 
the DT.  Sometimes the DSS Proxy may have enough 
information to make the global scheduling decisions 
without making a remote call to the DSS.  For 
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example, during some idle time of the CPU, the DSS 
Proxy has a chance to call DSS to get the global 
decision to be cached in the DSS Proxy, then when a 
DT call DSS Proxy, it will get this information without 
making a remote call.  If the DSS determines that 
executing the DT will make the system unschedulable, 
it invokes an overload management mechanism.  
Possible overload management mechanisms include 
denial of the DT’s request, cancellation of an existing 
DT, and QoS-based adjustment of the system.  If the 
RM adjusts the parameters of any DTs in the system, it 
updates the System Repository so that the DSS will 
have accurate system information. 

Figure 1 not only shows the components in the 
system architecture, but also labels the interactions 
between the components. Label A shows the 
invocation of an application thread to its local 
scheduler.  This invocation is made for three different 
operations: BSS, USS, and ESS. The first essential step 
for a DT to interact with the DSS is to invoke one of 
these operations. A DT first sends its scheduling 
information to a local scheduler whenever the DT 
makes a request to begin, update or end a scheduling 
segment. The parameters passed along are determined 
by the scheduling discipline chosen by both DT and 
the local scheduler such as RM, DM, EDF and MUF. 
If the DT spans multiple nodes our design dictates that 
it must pass an end-to-end deadline and a sequence of 
subtasks to the local scheduler.  If the system does not 
have DSS the local scheduler applies its own 
scheduling mechanism, such as a priority-based 
mechanism, to do the schedule for the DT. However in 
our design, this scheduling parameter passed by the DT 
is not used by the scheduler’s mechanism to schedule 
the DT. Instead, it is propagated further to the DSS 
Proxy. At Label B, the DSS Proxy applies the well-
known Remote Proxy pattern [9] to provide a local 
representative for an object that resides in a different 
address space.  After the DSS Proxy gets the 
scheduling information from the local scheduler, it can 
either return back the desired information, for example, 
a cached cancel message, or hand the scheduling 
parameter further to DSS has the parameters from a DT 
and has the information necessary in the System 
Repository to perform a schedulability analysis. If the 
system is schedulable, DSS returns globally sound 
parameters, such as intermediate deadline, back 
through steps C and B. At point D, the DSS stores the 
DT’s scheduling parameters in the System Repository, 
associating it with a globally unique id.  This 
procedure is recognized as the Local Enforcement 
pattern [2], which implies that a globally meaningful 
scheduling parameter is enforced locally. 

If the system is not schedulable, (i.e., the system is 
in an overloaded situation) the DSS triggers the 

overload management module, which is designed using 
Overload Management patterns [2]. There are four 
patterns that deal with overload. Two of these patterns, 
Deny Request and Cancel, are handled by DSS. The 
other two patterns, QoS Adjustment and Resource 
Reallocation, are handled by RM. If DSS denies an 
incoming DT or cancels an existing DT, it throws back 
a “Not Schedulable” or a “Cancellation” message to a 
DT through step C, B, A.  If DSS elects to adjust QoS 
to reallocate resources, it invokes the appropriate 
methods in the RM’s interface labeled as step E.  At 
step F, RM has finished performing overload 
management and returns its results to DSS so that the 
DSS may reanalyze the system. This E-F-E loop 
repeats until a feasible solution returns the system to a 
schedulable state.  This cycle represents the integration 
of DSS with RM [10]. At step G analysis is complete 
and the RM puts the current system information back 
into System Repository. 
 
4. Implementation 
 

The DSS is built upon TAO [11], the widely used 
open source CORBA environment. There are two 
versions of DSS that has been developed. The first one 
is a DSS that can set priority for a Fixed Priority local 
scheduler. This version of DSS takes the scheduling 
parameters from a DT and calculates a globally sound 
priority for each local scheduler. The second version of 
the DSS sets intermediate deadlines for a Deadline 
Monotonic (DM) local scheduler. In this version the 
DSS uses the end-to-end deadline and subtask 
execution times to calculate an intermediate relative 
deadline for each subtask. In the discussion of 
scheduling points below, the local enforcement 
mechanism is a DM local scheduler. We chose the DM 
local scheduler as our local enforcement mechanism 
because it uses a fixed priority to reduce the online 
scheduling overhead and DM is optimal among fixed 
priority scheduling algorithms. 

 
Figure 2. RTC1.2 Scheduling Points and DSS 

 



In RTC1.2 scheduling points are the points in time 
and/or code at which the local scheduler is invoked by 
the application, which may result in a change in the 
current schedule. Figure 2 shows that all seven 
scheduling points which may have interactions with 
our DSS. The seven scheduling points are 
Begin_Scheduling_Segment (BSS), 
Update_Scheduling_Segment (USS), 
End_Scheduling_Segment (ESS), send_request, 
receive_request, send_reply, and receive_reply. In our 
current implementation, we use four of the seven 
scheduling points, BSS, USS, ESS and 
receive_request, to interact with the DSS. At BSS, the 
DT sends all of its scheduling parameters to the DSS.  
These scheduling parameters include a system wide 
unique name of the DT and a sequence of scheduling 
parameters for subtasks. The scheduling parameter for 
a subtask contains a processor name that the subtask 
will execute on, an execution time for that subtask and 
an intermediate deadline. DSS calculates a globally 
sound intermediate deadline using the Effective 
Deadline algorithm. For example, consider an end-to-
end DT that has a relative deadline of 10 and two 
subtasks. Subtask1 is assigned in Node1 and Subtask2 
in Node2. The execution times for Subtask1 and 
Subtask2 are 1 and 2 respectively. By Effective 
Deadline, the intermediate relative deadlines for 
Subtasks are 8 and 2. Rather than using a deadline of 
10 for all subtasks, the local scheduler on node 1 will 
use an intermediate deadline of 8 and the local 
scheduler on node 2 will use an intermediate deadline 
of 2. 

The implementation for USS scheduling point is 
similar to BSS. USS is used when an existing DT 
requires a change in its scheduling parameters.  For 
instance, if a QoS adjustment has shortened the 
intermediate deadline for a subtask, the DT will invoke 
USS and update its scheduling parameters.  Any such 
changes to scheduling parameters may require a 
reanalysis of the system, and changes to the 
information stored in the System Repository.  The ESS 
scheduling point is simply sending a message that this 
DT is no longer in the system, therefore DSS can 
remove its information from System Repository. The 
receive_request scheduling point allows a subtask on a 
new node to capture an incoming request from its 
predecessor subtask, and then request scheduling 
information from the DSS.  In this case, the subtask 
will not pass all of the scheduling parameters to the 
DSS, but only its unique name. According to this 
name, the DSS will calculate the intermediate deadline 
for this subtask, and return it to the subtask. 

 We implemented a DM RTC1.2 local scheduler 
using TAO [11] the widely used open source CORBA 
environment. This DM scheduler utilizes Kokyu [12] 

as its local scheduler and dispatcher. Kokyu is a very 
flexible middleware framework for managing threads 
on various platforms. Kokyu has implemented several 
well-known scheduling disciplines including Fixed 
Priority, EDF, MIF and MUF. Since Kokyu does not 
provide an implementation of DM local scheduler, we 
revised the provided MUF local scheduler to be a DM 
local scheduler by setting the criticality to be a function 
of the relative deadline and added operations at each 
scheduling points mentioned above to call DSS. 
Besides the flexibility, Kokyu schedulers are the only 
local schedulers that implemented Release Guard [3] 
synchronization protocol that forces each subtask to be 
periodic, allowing low overhead online analysis.  

The focus of our current implementation is to set up 
the DSS framework. The DSS Proxy and Overload 
Management mechanisms such as Deny Request and 
Cancel are still in the design phase. Once the basic 
functions of DSS work smoothly with DM local 
scheduler, we will move to implement the DSS Proxy 
and Overload Management mechanisms. One 
challenge in implementing Cancel is where to 
propagate the cancel message to the DT. The possible 
places for this cancel message to be sent are 1) the 
head of the DT defined by RTC1.2, which is the 
current execution point of the DT, 2) the beginning of 
the DT, 3) all the DSS Proxies by a broadcast. Because 
this framework is aiming to support a better real-time 
behavior, a timely cancel message is important to 
achieve our goal.  Thus a deeper investigation of the 
RTC1.2 cancel mechanism and an efficient cancel 
algorithm is required. Another improvement can be 
done is to let DSS interact with send_request and send-
rely to optimize network behavior.   
 
 
 
5. Experimental Evaluation 
 

We have performed two types of experiments on 
our DSS framework.  The first is a set of evaluation 
tests using a version of the DSS that interacts with the 
Resource Manager and local schedulers. The second 
set of tests was implemented in the RTC1.2 framework 
to evaluate the benefit of using the DSS over using 
local schedulers alone.   In this section we describe the 
results of these tests. 

DSS with RM Tests.  These tests demonstrate that 
the DSS with the RM improves real-time performance.  
The full results of these tests have been reported in 
[10].  The experiments were based on a distributed 
video delivery application for Unmanned Aerial 
Vehicles (UAVs).  The UAV application consists of 
senders, which acquire and send out video frames; 



viewers, which either display the video to human 
monitors or feed the video to automatic target 
recognizers; and distributors, which replay the videos 
frames from senders to viewers.  In this experiment, we 
collected data from a simulated UAV application that 
runs in RMBench [10], a tool designed for 
performance evaluation of real-time embedded 
systems.  The experiment consisted of six periodic end-
to-end tasks, which were sender/distributor/viewer 
chains.  Tasks 1 through Task 6 were assigned 
importance 1 through 6 (1= lowest, 6 = highest), 
respectively.  Each task consisted of three sub-tasks:  
sender, distributor, and viewer.  Each task could be run 
at 10 different service levels, with level 10 providing 
the highest video quality and level 1 the lowest.  We 
ran three instances of the experiment.  The baseline 
experiment did not use the   RM or the DSS to control 
timeliness. The RM experiment used only the RM, 
which reacted to host overload.  The DSS / RM 
experiment used the integrated DRM and DS services. 

The results indicate that the use of the RM and the 
DSS improve both the latency and the number of 
missed deadlines significantly for this experiment, but 
at the cost of reducing the average quality of the less 
important active distributed task.  Employing the DRM 
service alone decreased the number of missed 
deadlines from 26% to 10%.  The integrated DSS/RM 
reduced the number of missed deadlines to less than 
1%.   

RTC 1.2 Tests.  The current DSS framework is 
implemented to support the Deadline Monotonic 
scheduling algorithm. It uses the RTC1.2 Fixed 
Priority local scheduler as its local enforcement 
mechanism. The DSS framework is implemented with 
three possible deadline assignment heuristics:  
Ultimate Deadline (UD), Effective Deadline (ED) and 
Proportional Deadline (PD). The greedy 
synchronization protocol is used for subtasks in this 
experiment. 

The experiment depicted in Figure 3 is set up with 
two nodes. Each node has two tasks running. Task 1 
and Task 3 reside on different nodes are only doing 
local execution. Task 2 is an end-to-end task spanning 
both nodes. All the time values in the experiments are 
in seconds.  This experiment is not meant to be a 
comprehensive study of the scheduling framework.  
Rather, it is a proof-of-concept to indicate that the DSS 
framework can implement the various intermediate 
deadline assignment algorithms, and the results will be 
as expected based on the theory.   

Table 1 shows the scheduling parameters for the 
tasks in the experiment.  These parameters were 
borrowed from [3] because this set of tasks was shown 
to be non-schedulable when intermediate deadlines 

were not computed, but schedulable under both ED and 
PD. 

 
Figure 3. Experiment Setup 

Table 1. Task set with scheduling parameters  

Task Host Period Etime 

1 P1 8 3 
T2,1 P1 10 5 
T2,2 P2 10 3 
T3 P2 4 1 

 

Table 2. Relative Deadline Assignment  

Task w/oDSS DSS -UD DSS -ED DSS -PD 

T1 8 8 8 8 
T2,1 10 10 7 6 
T2,2 10 10 3 3 
T3 4 4 4 4 
 

Table 3. Percentage of missed deadlines 
based on 100 periods. 

Task RTC1.
2 

DSS - UD DSS - ED DSS - PD 

T1 0 0 0 0 
T2,2 99 99 0 0 
T3 0 0 0 0 

 
Table 2 shows the deadlines for each of the tasks, 

including the intermediate deadlines that were 
computed by the various algorithms.  Table 3 shows 
the results of the experiments.  It compares the 
percentage of missed deadlines for the various deadline 
computation algorithms that the DSS has implemented.  
With ED and PD, intermediate deadline assignment by 
DSS, none of the tasks missed their deadline. In 
contrast, without DSS or using UD 99% deadlines 
were missed. The results showed that the DSS is able 



to implement these known deadline computation 
algorithms, and the results are as expected. 
 
6. Conclusion 
 

In this paper, we presented a Distributed Scheduling 
Service (DSS) framework for Real-Time CORBA 1.2.  
In the design of the service, a global view of the 
system is especially emphasized. By incorporating 
DSS into a RTC1.2 system, global scheduling 
decisions can be made that take into account not just 
each endsystem’s requirements, but the requirements 
of the entire system.  The design of the DSS does not 
interfere with the application’s interface with the 
RTC1.2 system.  Through the use of well-known 
design patterns, the DSS design provides a seamless 
way to incorporate global information into the RTC1.2 
system.  The current implementation supports four out 
of seven RTC1.2 scheduling points at which the DSS is 
invoked to provide global scheduling information.  
Future implementations will support all of the seven 
scheduling points. 

The results of the evaluations tests that we 
performed indicate that DSS can be beneficial in 
determining when resource management is necessary, 
and in helping to implement proper strategies.  The test 
results also showed that the DSS framework can 
implement various well-known algorithms that have 
been proven in theory to enhance the schedulability of 
end-to-end tasks in a real-time distributed system. 
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