
A Real-Time Distributed Scheduling Service For Middleware Systems

Jiangyin Zhang, Lisa DiPippo, Victor Fay-Wolfe, Kevin Bryan, Matthew Murphy
University of Rhode Island, Department of Computer Science, Kingston, RI 02881 USA

{zhang, dipippo, wolfe, bryank, murphym}@cs.uri.edu

Abstract

The latest version of Real-Time CORBA defines a

Distributable Thread primitive to support real-time
computing in a dynamic distributed environment.
However, this standard does not provide support for
making and enforcing global decisions. This paper
describes the framework for a Distributed Scheduling
Service (DSS) that provides globally sound decision-
making and scheduling enforcement to real-time
distributed systems. The paper describes the design
and implementation of the framework, as well as
preliminary performance results.

1. Introduction

As theory and practice in distributed computing and
in real-time computing matures, there is an increasing
demand for automated solutions for dynamic
distributed real-time middleware to support scheduling
end-to-end timing constraints. The latest version of
Real-Time CORBA (RTC), known as RTC1.2
(formerly known as RTC 2.0) [1], defines the
Distributable Thread (DT) primitive to support real-
time computing in dynamic distributed middleware
systems. RTC1.2 provides a flexible means for
expressing and propagating scheduling information
across node boundaries in a distributed system.
However, in RTC1.2, all scheduling decisions are
assumed to be local – that is a local scheduler on each
endsystem uses the same propagated scheduling
information to make local scheduling decisions. These
local schedulers do not have a global view of the
overall system. This could lead to local enforcement
decisions that fail to achieve maximum possible global
system performance. For instance, consider a DT that
spans three nodes in its end-to-end path. The first local
scheduler in the chain would choose the RTC1.2
deadline as the deadline it must enforce. This
scheduling decision could leave insufficient time for
the remaining segments of the DT to execute on the
subsequent nodes. What is missing is a scheduling

decision that provides globally sound scheduling
parameters to the local schedulers in the end-to-end
chain.

In addition to lacking support for global scheduling
decisions, most distributed real-time middleware does
not provide adequate support for overload management
[2]. Overload management is a function that the
middleware must perform when timing constraints in
one or more DTs cannot be met. In static real-time
systems, overload management analysis can often be
done a priori. In dynamic systems, where such offline
analysis is either not possible or can not be as
comprehensive, it is essential that the middleware
identify and address overload in a runtime setting.
RTC1.2 provides a cancel mechanism [1] that allows a
DT to be cancelled. This overload management
primitive, does not incorporate a global understanding
of which DTs to cancel, nor does it address the overall
effects of these cancelled DTs on the system. Other
overload management techniques, such as Quality of
Service adjustment [2], should also be managed using
globally sound parameters and criteria.

This paper describes the design and implementation
of a Distributed Scheduling Service (DSS) framework
that works with application specified end-to-end
scheduling parameters and with local scheduling
mechanisms to make globally sound scheduling
decisions for the system. We are currently
implementing the framework in a Real-Time CORBA
1.2 environment, but have designed it to be applicable
to other middleware systems that require global
scheduling management. The goal of DSS is to
achieve globally sound end-to-end scheduling and
overload management using the local enforcement
capabilities of the local endsystems.

2. Related Work

The DSS described in this paper is a framework for
distributed global scheduling. One of its goals is to
provide a mechanism for implementing some of the
classic end-to-end scheduling algorithms that have
been developed. This section describes and compares

these algorithms. The section also discusses the
features and deficiencies of existing distributed
scheduling frameworks.

2.1. End-to-end Scheduling Algorithms

End-to-end scheduling theory has provided much
the motivation for the development of the DSS
framework. It is this theory that has lead to the notion
that local scheduling should incorporate a global view
of the overall system. Several researchers have
recognized the need to compute intermediate deadlines
when an application specifies a single, final deadline
on an end-to-end task [3][4]. Various algorithms have
been developed to compute the intermediate deadlines
to maximize the possibility of all end-to-end tasks in
the system meeting their specified deadlines. Ultimate
Deadline uses the end-to-end task’s relative deadline as
the intermediate deadline for every subtask. This is the
simplest computation for intermediate deadlines, and
can lead to problems if the first subtask in the end-to-
end task uses all of the available slack. Effective
Deadline calculates the subtask’s intermediate deadline
by subtracting the sum of its successors’ execution
time from the end-to-end deadline. This algorithm puts
all of the slack in the last subtask of the end-to-end
task, so the intermediate deadlines of the earlier
subtasks may be too restrictive. Proportional Deadline
lets the relative deadline be proportional to each
subtask’s execution time. In another words, the more
execution time, the longer intermediate deadline.
Normalized Proportional Deadline improves upon
Proportional Deadline by taking into account each
processor’s utilization such that subtasks on busier
processors will be assigned longer intermediate
deadlines. The computation of intermediate deadlines
is an important global scheduling decision that cannot
be done easily with local scheduling alone. We chose
the Effective Deadline approach for our
implementation of the deadline assignment algorithm
in our DSS framework because of its simplicity and
good performance results. The DSS is designed to be
pluggable so that any deadline assignment algorithms
may be substituted.

Another important global scheduling decision that
the DSS framework must make involves how to
synchronize the individual subtasks in the end-to-end
task. Several synchronization protocols have been
developed to ensure that subtasks are executed in the
correct order. A greedy synchronization protocol
requires the immediate release of a subtask when its
predecessor completes [3]. Most Real-Time CORBA
implementations use a greedy approach where servant
threads are launched as soon as possible when a
request arrives. Greedy synchronization can make the

system of end-to-end tasks difficult to analyze because
the start times of subsequent subtasks are not periodic.
Instead, they rely on the end times of the previous
subtasks. Non-greedy synchronization protocols, such
as the Release Guard protocol [3], forces each subtask
to be periodic by adjusting the release time of each job
in the subtask. Forcing periodic behavior not only
improves global worst-case response times over the
system, it also facilitates analysis of the timing of end-
to-end tasks. Our DSS framework implements a non-
greedy synchronization protocol for this reason.

2.2. Dynamic Scheduling Frameworks

Other frameworks have been developed that are
similar to our DSS framework, but none encompasses
all of the important features that ours provides.
Tempus is a middleware framework that supports the
Distributable Thread construct [5]. The analysis theory
for Tempus is based on Time/Utility Functions [6]. In
Tempus, the DT propagates scheduling parameters to
each local node. There is no global decision-maker.
Instead each local scheduler makes the scheduling
decision based only on the scheduling parameters that
each DT carries. The QuO framework also supports
dynamic distributed scheduling [7]. However, QuO
does not provide a standard way to do so. It relies on
each application’s specific configuration. Recent
research done at CMU integrates scheduling and
resource management to enhance performance in
phased-array radar systems [8]. Although the system
architecture in this work considers scheduling and
resource management together, they do not consider
end-to-end tasks distributed across different
processors. While each of these frameworks provides
valuable features to support real-time systems, none
provides all of the key elements that the DSS provides.
Specifically, the DSS provides a global awareness of
the system to allow it to make scheduling decisions
that have the interest of the overall system in mind; the
DSS provides an application independent overload
management mechanism; and the DSS provides a
natural extension of the RTC 1.2 standard with
minimal changes to the standard interface.

2.3. Real-Time CORBA 1.2

Real-Time CORBA is a QoS enabled extension of
CORBA middleware. The Real-Time 1.1 specification
is designed for static distributed system where the
number of tasks and their scheduling parameters are
known a priori. The Real-Time CORBA 1.2
specification extends RTC1.1 to encompass both static
and dynamic systems. In a dynamic system, tasks enter

and leave the system at times that cannot be calculated
a priori. In order to effectively manage the dynamic
task set, RTC1.2 introduces the Distributable Thread
scheduling primitive. A DT is an abstraction of a chain
of method calls by multiple threads at multiple
processors. According to its definition, a DT can span
nodes boundary and carry scheduling parameters to
each node in the chain. At each local node, the
correspondent local scheduler will schedule that DT
based on its scheduling information. The interface
from the DT to the local scheduler is well defined. The
begin_scheduling_segment() (BSS),
update_scheduling_segment() (USS) and
end_scheduling_segment() (ESS) are the three most
important operations in the interface. BSS begins the
Real-Time portion of the program, and passes the
application provided scheduling parameters to the local
scheduler. The local scheduler then determines a
schedule. The schedule is enforced until BSS, USS or
ESS is encountered, forcing a change in the schedule.
Two essential arguments for BSS are a name and a
scheduling_parameter. The name identifies scheduling
segment. The application defined scheduling
parameters reflect the scheduling algorithm. USS
updates the existing scheduling parameter of a DT.
ESS indicates the end of the scheduling segment,
which means that the Real-Time region of code is
finished.

TAO [11] is an open-source middleware
implementation that supports the RTC1.2 standard.
Currently, TAO implements two local schedulers. The
first is a fixed-priority local scheduler that expects to
be supplied with priorities for the DTs that it
schedules. The second is Kokyu [12]. Kokyu is a
flexible middleware framework for managing threads
on various platforms. As a local scheduler for TAO,
Kokyu has implemented several well-known
scheduling disciplines including Fixed Priority, EDF,
MIF and MUF.

3. Design of DSS

Figure 1 depicts our overall system architecture.
There are six essential components in this framework,
Distributable Thread (DT), Local Scheduler, DSS
Proxy, DSS, Resource Manager (RM), and System
Repository. These components are independent and
coordinated with each other.

Figure 1. System Architecture

A Distributable Thread (DT) is the schedulable

entity in our system architecture. When a DT is

spawned by the application it carries its specified
scheduling parameters, including its end-to-end
deadline, along as it traverses the nodes in its path. The
Local Scheduler is defined in RTC1.2 to manage the
local portion of a DT. In our architecture, we extend
the definition and allow the local scheduler to interact
with both the DT and the DSS Proxy, so that the local
scheduler can obtain and use global information.
Applying the Interceptor pattern we put a wrapper
around the RTC1.2 local scheduler to intercept calls
between DT and DSS Proxy. The Local Scheduler can
implement various scheduling mechanisms, such as
earliest deadline first, fixed priority, and deadline
monotonic. The DSS Proxy is a running daemon that
works as a proxy to the DSS and is always located on
the same node as Local Scheduler. This collocation
reduces the overhead of making remote calls to the
DSS whenever a global scheduling decision is
required. The DSS is a centralized scheduling service
that has several responsibilities: 1) online
schedulability analysis of an end-to-end task; 2)
computation of globally sound scheduling parameters;
3) triggering of overload management if necessary.
When the system becomes unschedulable the Resource
Manager (RM) applies overload management solutions
such as QoS adjustment. The System Repository
stores system information that is shared between the
DSS and the RM. This information includes end-to-
end tasks, nodes on which they will execute, and their
scheduling parameters. The synchronization is
enforced at each local scheduler that implements any
of the synchronization protocols.

When a DT is spawned by an application, the DT
communicates with the DSS to determine if it is
schedulable alongside the existing DTs in the system,
and receives from the DSS its globally sound
scheduling parameters. In RTC1.2, the interface
specifies that the DT pass its scheduling parameters to
the Local Scheduler. We have preserved this interface,
and extended the Local Scheduler to allow it to send
these parameters to the DSS Proxy. The DSS Proxy
then makes a remote call to the DSS, which returns the
globally sound scheduling parameters to be returned to
the DT. Sometimes the DSS Proxy may have enough
information to make the global scheduling decisions
without making a remote call to the DSS. For

Local Scheduler
A

DSS RME

System Repository

D G

DSS Proxy

B

C

F

DT1

example, during some idle time of the CPU, the DSS
Proxy has a chance to call DSS to get the global
decision to be cached in the DSS Proxy, then when a
DT call DSS Proxy, it will get this information without
making a remote call. If the DSS determines that
executing the DT will make the system unschedulable,
it invokes an overload management mechanism.
Possible overload management mechanisms include
denial of the DT’s request, cancellation of an existing
DT, and QoS-based adjustment of the system. If the
RM adjusts the parameters of any DTs in the system, it
updates the System Repository so that the DSS will
have accurate system information.

Figure 1 not only shows the components in the
system architecture, but also labels the interactions
between the components. Label A shows the
invocation of an application thread to its local
scheduler. This invocation is made for three different
operations: BSS, USS, and ESS. The first essential step
for a DT to interact with the DSS is to invoke one of
these operations. A DT first sends its scheduling
information to a local scheduler whenever the DT
makes a request to begin, update or end a scheduling
segment. The parameters passed along are determined
by the scheduling discipline chosen by both DT and
the local scheduler such as RM, DM, EDF and MUF.
If the DT spans multiple nodes our design dictates that
it must pass an end-to-end deadline and a sequence of
subtasks to the local scheduler. If the system does not
have DSS the local scheduler applies its own
scheduling mechanism, such as a priority-based
mechanism, to do the schedule for the DT. However in
our design, this scheduling parameter passed by the DT
is not used by the scheduler’s mechanism to schedule
the DT. Instead, it is propagated further to the DSS
Proxy. At Label B, the DSS Proxy applies the well-
known Remote Proxy pattern [9] to provide a local
representative for an object that resides in a different
address space. After the DSS Proxy gets the
scheduling information from the local scheduler, it can
either return back the desired information, for example,
a cached cancel message, or hand the scheduling
parameter further to DSS has the parameters from a DT
and has the information necessary in the System
Repository to perform a schedulability analysis. If the
system is schedulable, DSS returns globally sound
parameters, such as intermediate deadline, back
through steps C and B. At point D, the DSS stores the
DT’s scheduling parameters in the System Repository,
associating it with a globally unique id. This
procedure is recognized as the Local Enforcement
pattern [2], which implies that a globally meaningful
scheduling parameter is enforced locally.

If the system is not schedulable, (i.e., the system is
in an overloaded situation) the DSS triggers the

overload management module, which is designed using
Overload Management patterns [2]. There are four
patterns that deal with overload. Two of these patterns,
Deny Request and Cancel, are handled by DSS. The
other two patterns, QoS Adjustment and Resource
Reallocation, are handled by RM. If DSS denies an
incoming DT or cancels an existing DT, it throws back
a “Not Schedulable” or a “Cancellation” message to a
DT through step C, B, A. If DSS elects to adjust QoS
to reallocate resources, it invokes the appropriate
methods in the RM’s interface labeled as step E. At
step F, RM has finished performing overload
management and returns its results to DSS so that the
DSS may reanalyze the system. This E-F-E loop
repeats until a feasible solution returns the system to a
schedulable state. This cycle represents the integration
of DSS with RM [10]. At step G analysis is complete
and the RM puts the current system information back
into System Repository.

4. Implementation

The DSS is built upon TAO [11], the widely used
open source CORBA environment. There are two
versions of DSS that has been developed. The first one
is a DSS that can set priority for a Fixed Priority local
scheduler. This version of DSS takes the scheduling
parameters from a DT and calculates a globally sound
priority for each local scheduler. The second version of
the DSS sets intermediate deadlines for a Deadline
Monotonic (DM) local scheduler. In this version the
DSS uses the end-to-end deadline and subtask
execution times to calculate an intermediate relative
deadline for each subtask. In the discussion of
scheduling points below, the local enforcement
mechanism is a DM local scheduler. We chose the DM
local scheduler as our local enforcement mechanism
because it uses a fixed priority to reduce the online
scheduling overhead and DM is optimal among fixed
priority scheduling algorithms.

Figure 2. RTC1.2 Scheduling Points and DSS

In RTC1.2 scheduling points are the points in time
and/or code at which the local scheduler is invoked by
the application, which may result in a change in the
current schedule. Figure 2 shows that all seven
scheduling points which may have interactions with
our DSS. The seven scheduling points are
Begin_Scheduling_Segment (BSS),
Update_Scheduling_Segment (USS),
End_Scheduling_Segment (ESS), send_request,
receive_request, send_reply, and receive_reply. In our
current implementation, we use four of the seven
scheduling points, BSS, USS, ESS and
receive_request, to interact with the DSS. At BSS, the
DT sends all of its scheduling parameters to the DSS.
These scheduling parameters include a system wide
unique name of the DT and a sequence of scheduling
parameters for subtasks. The scheduling parameter for
a subtask contains a processor name that the subtask
will execute on, an execution time for that subtask and
an intermediate deadline. DSS calculates a globally
sound intermediate deadline using the Effective
Deadline algorithm. For example, consider an end-to-
end DT that has a relative deadline of 10 and two
subtasks. Subtask1 is assigned in Node1 and Subtask2
in Node2. The execution times for Subtask1 and
Subtask2 are 1 and 2 respectively. By Effective
Deadline, the intermediate relative deadlines for
Subtasks are 8 and 2. Rather than using a deadline of
10 for all subtasks, the local scheduler on node 1 will
use an intermediate deadline of 8 and the local
scheduler on node 2 will use an intermediate deadline
of 2.

The implementation for USS scheduling point is
similar to BSS. USS is used when an existing DT
requires a change in its scheduling parameters. For
instance, if a QoS adjustment has shortened the
intermediate deadline for a subtask, the DT will invoke
USS and update its scheduling parameters. Any such
changes to scheduling parameters may require a
reanalysis of the system, and changes to the
information stored in the System Repository. The ESS
scheduling point is simply sending a message that this
DT is no longer in the system, therefore DSS can
remove its information from System Repository. The
receive_request scheduling point allows a subtask on a
new node to capture an incoming request from its
predecessor subtask, and then request scheduling
information from the DSS. In this case, the subtask
will not pass all of the scheduling parameters to the
DSS, but only its unique name. According to this
name, the DSS will calculate the intermediate deadline
for this subtask, and return it to the subtask.

 We implemented a DM RTC1.2 local scheduler
using TAO [11] the widely used open source CORBA
environment. This DM scheduler utilizes Kokyu [12]

as its local scheduler and dispatcher. Kokyu is a very
flexible middleware framework for managing threads
on various platforms. Kokyu has implemented several
well-known scheduling disciplines including Fixed
Priority, EDF, MIF and MUF. Since Kokyu does not
provide an implementation of DM local scheduler, we
revised the provided MUF local scheduler to be a DM
local scheduler by setting the criticality to be a function
of the relative deadline and added operations at each
scheduling points mentioned above to call DSS.
Besides the flexibility, Kokyu schedulers are the only
local schedulers that implemented Release Guard [3]
synchronization protocol that forces each subtask to be
periodic, allowing low overhead online analysis.

The focus of our current implementation is to set up
the DSS framework. The DSS Proxy and Overload
Management mechanisms such as Deny Request and
Cancel are still in the design phase. Once the basic
functions of DSS work smoothly with DM local
scheduler, we will move to implement the DSS Proxy
and Overload Management mechanisms. One
challenge in implementing Cancel is where to
propagate the cancel message to the DT. The possible
places for this cancel message to be sent are 1) the
head of the DT defined by RTC1.2, which is the
current execution point of the DT, 2) the beginning of
the DT, 3) all the DSS Proxies by a broadcast. Because
this framework is aiming to support a better real-time
behavior, a timely cancel message is important to
achieve our goal. Thus a deeper investigation of the
RTC1.2 cancel mechanism and an efficient cancel
algorithm is required. Another improvement can be
done is to let DSS interact with send_request and send-
rely to optimize network behavior.

5. Experimental Evaluation

We have performed two types of experiments on
our DSS framework. The first is a set of evaluation
tests using a version of the DSS that interacts with the
Resource Manager and local schedulers. The second
set of tests was implemented in the RTC1.2 framework
to evaluate the benefit of using the DSS over using
local schedulers alone. In this section we describe the
results of these tests.

DSS with RM Tests. These tests demonstrate that
the DSS with the RM improves real-time performance.
The full results of these tests have been reported in
[10]. The experiments were based on a distributed
video delivery application for Unmanned Aerial
Vehicles (UAVs). The UAV application consists of
senders, which acquire and send out video frames;

viewers, which either display the video to human
monitors or feed the video to automatic target
recognizers; and distributors, which replay the videos
frames from senders to viewers. In this experiment, we
collected data from a simulated UAV application that
runs in RMBench [10], a tool designed for
performance evaluation of real-time embedded
systems. The experiment consisted of six periodic end-
to-end tasks, which were sender/distributor/viewer
chains. Tasks 1 through Task 6 were assigned
importance 1 through 6 (1= lowest, 6 = highest),
respectively. Each task consisted of three sub-tasks:
sender, distributor, and viewer. Each task could be run
at 10 different service levels, with level 10 providing
the highest video quality and level 1 the lowest. We
ran three instances of the experiment. The baseline
experiment did not use the RM or the DSS to control
timeliness. The RM experiment used only the RM,
which reacted to host overload. The DSS / RM
experiment used the integrated DRM and DS services.

The results indicate that the use of the RM and the
DSS improve both the latency and the number of
missed deadlines significantly for this experiment, but
at the cost of reducing the average quality of the less
important active distributed task. Employing the DRM
service alone decreased the number of missed
deadlines from 26% to 10%. The integrated DSS/RM
reduced the number of missed deadlines to less than
1%.

RTC 1.2 Tests. The current DSS framework is
implemented to support the Deadline Monotonic
scheduling algorithm. It uses the RTC1.2 Fixed
Priority local scheduler as its local enforcement
mechanism. The DSS framework is implemented with
three possible deadline assignment heuristics:
Ultimate Deadline (UD), Effective Deadline (ED) and
Proportional Deadline (PD). The greedy
synchronization protocol is used for subtasks in this
experiment.

The experiment depicted in Figure 3 is set up with
two nodes. Each node has two tasks running. Task 1
and Task 3 reside on different nodes are only doing
local execution. Task 2 is an end-to-end task spanning
both nodes. All the time values in the experiments are
in seconds. This experiment is not meant to be a
comprehensive study of the scheduling framework.
Rather, it is a proof-of-concept to indicate that the DSS
framework can implement the various intermediate
deadline assignment algorithms, and the results will be
as expected based on the theory.

Table 1 shows the scheduling parameters for the
tasks in the experiment. These parameters were
borrowed from [3] because this set of tasks was shown
to be non-schedulable when intermediate deadlines

were not computed, but schedulable under both ED and
PD.

Figure 3. Experiment Setup

Table 1. Task set with scheduling parameters

Task Host Period Etime

1 P1 8 3
T2,1 P1 10 5
T2,2 P2 10 3
T3 P2 4 1

Table 2. Relative Deadline Assignment

Task w/oDSS DSS -UD DSS -ED DSS -PD

T1 8 8 8 8
T2,1 10 10 7 6
T2,2 10 10 3 3
T3 4 4 4 4

Table 3. Percentage of missed deadlines
based on 100 periods.

Task RTC1.
2

DSS - UD DSS - ED DSS - PD

T1 0 0 0 0
T2,2 99 99 0 0
T3 0 0 0 0

Table 2 shows the deadlines for each of the tasks,

including the intermediate deadlines that were
computed by the various algorithms. Table 3 shows
the results of the experiments. It compares the
percentage of missed deadlines for the various deadline
computation algorithms that the DSS has implemented.
With ED and PD, intermediate deadline assignment by
DSS, none of the tasks missed their deadline. In
contrast, without DSS or using UD 99% deadlines
were missed. The results showed that the DSS is able

to implement these known deadline computation
algorithms, and the results are as expected.

6. Conclusion

In this paper, we presented a Distributed Scheduling
Service (DSS) framework for Real-Time CORBA 1.2.
In the design of the service, a global view of the
system is especially emphasized. By incorporating
DSS into a RTC1.2 system, global scheduling
decisions can be made that take into account not just
each endsystem’s requirements, but the requirements
of the entire system. The design of the DSS does not
interfere with the application’s interface with the
RTC1.2 system. Through the use of well-known
design patterns, the DSS design provides a seamless
way to incorporate global information into the RTC1.2
system. The current implementation supports four out
of seven RTC1.2 scheduling points at which the DSS is
invoked to provide global scheduling information.
Future implementations will support all of the seven
scheduling points.

The results of the evaluations tests that we
performed indicate that DSS can be beneficial in
determining when resource management is necessary,
and in helping to implement proper strategies. The test
results also showed that the DSS framework can
implement various well-known algorithms that have
been proven in theory to enhance the schedulability of
end-to-end tasks in a real-time distributed system.

7. References

[1] Real-time CORBA (Dynamic Scheduling) specification,
version 1.2, Nov., 2003, http://www.omg.org/cgi-
bin/apps/doc?formal/05-01-04.pdf.

[2] L. DiPippo, V. Fay-Wolfe, J. Zhang, M. Murphy, P.
Gupta, "Patterns in Distributed Real-Time Scheduling",
Proceedings of the 10th Conference on Pattern Language of
Programs 2003, Monticello, IL, Sept. 2003

[3] J. Sun, “Fixed priority scheduling of end-to-end periodic
tasks”, Ph.D. thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1997.

[4] B. Kao,H. Garcia-Molina: “Deadline Assignment in a
Distributed Soft Real-Time System,” in the proceedings of
the 13th International Conference on Distributed computing
Systems. 1993.

[5] P. Li, B. Ravindran, H. Cho and E. D. Jensen,
“Scheduling Distributable Real-Time Threads in
Middleware,” IEEE International Conference on Parallel and
Distributed Systems, pages 187 - 194, July 2004

[6] E. D. Jensen, “Asynchronous decentralized real-time
computer systems,” in Real-Time Computing, W. A. Halang
and A. D. Stoyenko, Eds., NATO Advanced Study Institute.
Springer Verlag, October 1992.

[7] Praveen K. Sharma, Joseph P. Loyall, George T.
Heineman, Richard E. Schantz, Richard Shapiro, Gary
Duzan. Component-Based Dynamic QoS Adaptations in
Distributed Real-Time and Embedded Systems. International
Symposium on Distributed Objects and Applications (DOA),
Agia Napa, Cyprus, October 25-29, 2004.

[8] S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky,
“Integrated Resource Management and Scheduling with
Multi-Resource Constraints,” In Proceedings of 25th IEEE
Real-Time Systems Symposium, 2004.

 [9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Adisson Wesly, Riding, MA, 1995.

[10] K. Bryan, L. C. DiPippo, V. Fay-Wolfe, M. Murphy, J.
Zhang, D. T. Fleeman, D. W. Juedes, C. Liu, L. R. Welch, D.
Niehaus, and C. D. Gill, Integrated CORBA Scheduling and
Resource Management for Distributed Real-Time Embedded
Systems, RTAS 2005, San Francisco, California, March 7 -
10, 2005.

[11] D.C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar,
"A High-performance Endsystem Architecture for Real-time
CORBA," IEEE Communications Magazine, February, 1997.

[12] C. Gill, D. Levine, D. C. Schmidt, and F. Kuhns, “The
Design and Performance of a Real-Time CORBA Scheduling
Service,” International Journal of Time-Critical Computing
Systems special issue on Real-Time Middleware, 1999.

