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ABSTRACT

Embedded systems will become more and more complex in
the near future. In Japan, pITRON and embedded Linux
are popular for building embedded systems. Since pITRON
does not support memory protection, the bugs in an appli-
cation may cause serious system failure. Also, embedded
Linux cannot avoid an application to monopolize the en-
tire CPU capacity due to its bugs. Therefore, w eneed to
increase the robustness of em bedded systems atthe oper-
ating system level for developing future complex embedded
systems.

We have developed t w o operating systems to increase the

robustness of embedded systems even if applications con-
tain serious bugs. The first operating system supports mul-
tiple execution of uITRON. Eac happlication is executed
on a different uITRON kernel. Therefore, if an application
is crashed, other applications that are in different address
spaces have no effect. The second operating system en-
hances the resource management of embedded Linux. Our
system monitors an application’s CPU usage and stops the
execution if the usage exceeds the specified capacity.

1. INTRODUCTION

In the future, ubiquitous computing environments[6] will
change our lives dramatically. The vision of ubiquitous com-
puting environments is to acquire information in our envi-
ronments that are not available before by using sensor tech-
nologies[2]. Also, the environments will make it possible to
control many everyda y objects ly embedding very small and
cheap computers. One of the most important issues to re-
alize ubiquitous computing is to integrate a real world and
a cyber space in a seamless w ay. This makes it possible
to merge bits and atoms. Thus, softw are infrastructure for
ubiquitous computing should provide a w orld model that
provides a model of our w orld, whic hcan be accessed by
a program, and an application can change its behavior and
change the real world by accessing the model. Also, a model
in a cyber space can be manipulated by a physical object.

Information appliances are important elements for real-
izing ubiquitous computing visions. Now adgs, most con-
sumer electronics appliances have computing capability in
order to retrieve data from sensors, to process the data, and
to con trol devices. The recent emergence of information ap-
pliances requires more advanced features, such as network-
ing and GUI Those features dramatically complicate the
appliances’ software systems and increase their code sizes.

Net worked systems need to be prepared for attacks though
the Internet. Since w ecannot expect users to be system
administrators of appliances, their softw are systems must
be more robust than ordinary personal computer systems.
Building such large, complex, and robust software systems
on em bedded krnels is, however, very difficult since soft-
w are bugs can cause system malfunction, data corruption,
security breac h, or een system destruction.

Information appliances will become more and more com-
plex in the near future. In Japan, pyITRON and embedded
Lin ux are popular to be used in enbedded systems. Since
#ITRON does not support memory protection, the bugs in
an application may cause serious system failure. Also, em-
bedded Linux cannot avoid an application to monopolize the
entire CPU capacity due to its bugs. We need to increase
the robustness of embedded systems at the operating system
level for developing future complex embedded systems.

We have developed tw o operating systems to increase the
robustness of em beddedsystems even if applications con-
tain serious bugs. The first operating system supports mul-
tiple execution of uITRON. Eac happlication is executed
on a different uITRON kernel. Therefore, if an application
is crashed, other applications that are in different address
spaces haveno effect. The second operating system en-
hances the resource management of embedded Linux. Our
system monitors an application’s CPU usage and stops the
execution if the usage exceeds the specified capacity.

The remaining of the paper is structured as follows. Sec-
tion 2 presents tw o operating systemuyITRON and embed-
ded Linux that are currently widely used in Japanese embed-
ded systems. In Section 3, we present a microkernel-based
operating system that executes multiple uITRON operating
systems. Section 4 describes an accounting system on Linux.
It protects a system from monopolizing the CPU capacity
from malicious applications. In Section 5, we conclude the

paper.

2. LINUX AND nITRON

In Japan, a lot of industrial embedded products have
adopted the ITRON specification operating system(uITRON).
pITRON is not an actual operating system implementa-
tion. It specifies the kernel interface, and many vendors
has been implemented the specification for their products.
Also, many RTOS vendors sell products that implemented
the specification. The specification contains basic function-
alities such as scheduling, thread managements, and simple
inter process communication. Th us,respectiv e companies
have been implemented a lot of software on the operat-
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ing systems. Currently, the operating systems havebeen
adopted by many products such as digital televisions and
cellular phones that are developed in Japan.

However, most of embedded systems havebecame very
complex now. For example, a curren t cellular phone in
Japan contains a Web bro wser,a Java virtual machine, e-
mail software, and camera softw are. On pITRON, these
software modules are running on a single address space. T o
implement these softw are modules in a robust vay, we need
a more powerful operating system. Linux curren tly sup-
ports various CPU architectures, and kernel modules can be
loaded dynamically. The characteristics are very suitable for
embedded systems. Therefore, many industries have consid-
ered that using Linux for their products provides big merits
for them.

Japan Embedded Linux Consortium (www.emblix.org) has
been developed the Linux on ITRON specification to com-
bine the advantages of both gITRON and embedded Linux.
Linux on ITRON executes Linux as one of threads of pITRON.
Therefore, both pfITRON applications and Linux applica-
tions run on a single system. The fast response time is
ensured for puITRON applications and many Linux appli-
cations can be reused on Linux. Ho wver, software bugs
in uITRON applications may crash the entire system. Also,
malicious applications may monopolize the entire system ca-
pacity. We have developed our operating systems to solve
the problems.

3. AMICROKERNEL-BASED OPERATING
SYSTEM FOR BUILDING ROBUST EM-
BEDDED SYSTEMS

In this section, we propose a system architecture that co-
locates multiple em beddedoperating systems on a micro-
kernel. The proposed architecture employs a microkernel to
provide protected execution environmernts for the existing
embedded kernels that have noprotection mechanism. In
each protected execution environment, a kernel, its appli-
cations, and servers share the same protection domain and
run just as they run directly on hardware; thus, there is
no need to port the existing software to run on different
operating systems. The microkernel supports multiple pro-
tected execution environments, so that we can concurrently
run the multiple instances of an embedded kernel along with
applications. Applications and servers can be decoupled to
different protection domains, so that they can be isolated to
reinforce reliability and security. In this case, applications
can use server proxies to use services provided by servers
with the same API. The microkernel performs the schedul-
ing of embedded kernel instances. We provide t wo schedul-
ing policies in the microkernel for different purposes. One
of those policies can be selected at the time of system con-
figuration.

In order to show the feasibilit yof our approach, we are
developing a system that consists of TL4 microkernel and a
pITRON kernel. TL4 microkernel is being developed based
on L4 p-kernel [5]. We chose to apply our approach to a
uITRON kernel since embedded OS kernel implementations
compliant to the uITRON specification [9] are the most pop-
ular in Japan. In this paper, we refer to an implementation
of an embedded OS kernel follo wing theuyITRON specifica-
tion as a uITRON kernel.

The features of this system are summarized as follows:

Protected Domain

Application

Protected Domain

Application

Protected Domain

Application Application

Application Application

Server
Proxies

Server

ITRON Kernel .
Proxies

ITRON Kernel ITRON Kernel

TL4 Microkernel

Figure 1: Overview of System Architecture

e This system enables the pro vision of protected do-
mains without affecting the compatibility of the kernel
APIs by employing a microkernel.

e It can ac hiee the maximum reusability of the existing
softw are resources including enbedded OS kernels and
their applications.

o It enables the schedulability analysis of real-time tasks
on an embedded OS kernel, so that it can guarantee
that those tasks are scheduled in a timely manner.

Those features can protect the existing softw are resources,
maintain the software quality, and sa & costs.

3.1 System Overview

Figure 1 depicts the overall architecture of the system.
This system consists of TL4 microkernel, the multiple in-
stances of a pITRON kernel. Multiple applications can run
within a single instance of a pITRON kernel while they are
not protected from each other since they share the same pro-
tection domain. There can be uITRON kernel instances for
the pro vision of services. Their own protection domains can
be dedicated to running servers for securit y and protection.
Applications can access services provided by servers through
server proxies. Server proxies hide communications between
the protection domains of applications and servers.

Only TL4 microkernel executes in the privileged mode
directly on top of hardware. TL4 microkernel provides pro-
tection domains, threads, and IPC. A protection domain
and threads constitute an execution environment of a single
pITRON kernel instance and their applications. Threads
provided by TL4 microkernel execute in an execution en-
vironment in the user mode, so that only limited and con-
trolled access is granted to the pI'TRON kernel instance in
it. Since different protection domains are allocated for ap-
plications and servers, the misbehaviors of applications do
not cause data destruction in servers’ protection domains.

3.2 Design

This section describes the details of the enhancements and
modifications made to TL4 microkernel and a pITRON ker-
nel in order to run multiple pITRON kernel instances on
TL4 microkernel. TL4 microkernel is based on L4 u-kernel
[6], and is enhanced to enable the execution of multiple
MITRON kernel instances. TL4 microkernel inherits L4 pu-
kernel’s simple abstractions, that include threads, protection
domains, memory pages, and IPC. Note that in the rest of
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Figure 2: Structure and Elements of yITRON Ker-
nel on TL4 Microkernel

this paper we use threads to refer to TL4 microkernel’s exe-
cution entities and tasks or applications to refer to uITRON
kernel’s execution entities.

3.2.1 uITRON Kernel on TL4 Microkernel

A pITRON kernel is a simple embedded real-time kernel
that pro vides real-time tasks, synhronization and communi-
cation mechanisms, and device drivers. An implementation
of the kernel can be divided into the machine independent
and dependent parts. The machine independent part in-
cludes the common mechanisms and policies of the kernel
while the machine dependent part includes platform depen-
dent mechanisms and device drivers. In order to bring a
pITRON kernel on TL4 microkernel, the machine dependent
part needs to be modified. Since the maximum reusability
of the existing softw areincluding the kernel is our major
goal, the modifications need to be minimized. Therefore, we
introduce a layer, called the processor emulator, that emu-
lates the hardware and encapsulates the differences from the
hardware.

Figure 2 depicts the structure and elements of a yITRON
kernel on TL4 microkernel. A yITRON kernel on TL4 mi-
crok ernel consists of three layers, the machine independent

part, the dependent part, and the processor emulator. Threads

provided by TL4 microkernel execute a uITRON kernel.
Threads are used in two different ways. One is for the exe-
cution of the all three layers. We call this thread the main
ezecution thread. The others are for handling interrupts and
execute only device drivers in the dependent part and the
processor emulator. We call those threads interrupt emu-
lation threads. Interrupt emulation threads run at higher
priority levels than the main execution threads in order to
emulate interrupts. The processor emulator manages those
two types of threads in order to emulate the hardware, and
thus enables the execution of m ultipleuI TRON kernel in-
stances. The processor emulator deals with interrupts, time
management, scheduling events, and the idle state. Their
details are the following.

3.2.1.1 Controlling Interrupts.
Disabling interrupts is a simple yet efficient way to protect
critical sections for single CPU systems. When a pITRON

kernel instance runs on top of TL4 microkernel, it cannot
disable interrupts of the CPU. If it does, the other instances
will not receive interrupts, either. Since there can be more
important and urgent tasks in the other instances, only in-
terrupts to a certain uITRON kernel instance should be dis-
abled. Therefore, interrupt disabling needs to be emulated
by some means.

Our pITRON kernel on TL4 microkernel emulates in ter-
rupt disabling by introducing a flag in the processor emu-
lator. If the flag is set, it indicates interrupts are disabled.
When an interrupt occurs and its interrupt emulation thread
starts its processing in the processor emulator, it checks if
the flag is set or not. If it is set meaning interrupts are
disabled, the interrupt emulation thread yields the execu-
tion and waits for a message notifying interrupts are en-
abled. In other words, interrupt requests are queued for
later processing. This w aydoes not require any interven-
tions to invoke TL4 microkernel nor to program an inter-
rupt controller. The processor emulator handles interrupt
disabling by managing interrupt emmlation threads. Since
it just requires the processor emulator to set the flag, it is
very ligh twight. The interrupt disabling emulation in the
processor emulator is invoked by calling a certain function
in the processor emulator to set the interrupt disabling flag.

3.2.1.2 Time Management.

A kernel manages its time usually relying on periodic in-
terrupts from a timer device. When multiple uITRON ker-
nel instances run on top of TL4 microkernel, we need to con-
sider the scheduling of the timer interrupt emulation threads
for those kernel instances. There are at least the main exe-
cution thread and the timer interrupt emulation thread for a
single pITRON kernel instance. Those threads are runnable
only when their u)ITRON kernel instance is scheduled to run
by TL4 microkernel. If the timer interrupt emulation thread
is executed every time it becomes runnable, the timer inter-
rupt handler is executed to update the time of its kernel in-
stance; thus, the kernel instance can keep its time updated.
If the timer interrupt emulation thread is not executed by
the time when the next timer interrupt should happen, the
time of its kernel instance is not updated; thus, the kernel
instance cannot keep its time up to date. This can happen if
there are higher priority kernel instances that are scheduled
before the kernel instance in question.

We can deal with the above problem by having the pro-
cessor emulator that emulates the timer interrupts occurred
while a pITRON kernel instance was blocked b y cotrolling
the n unber of times the timer interrupt handler is executed.
When a timer interrupt occurs, before calling the timer in-
terrupt handler of a pITRON kernel, the processor emulator
examines if the handler has missed any of its past dues. If
it happened, the processor em ulatorcalculates how many
times the handler has missed the dues. Finally, the pro-
cessor emulator calls the timer interrupt handler necessary
times to catch up with the curren t time. Note that the
timer interrupt emulation thread runs at the highest prior-
ity level; thus, no other threads can run before it finishes its
time management.

3.2.1.3 Dealing with External Scheduling Events.
Scheduling needs to be done in tw o cases. One is an inter-

nal sc heduling ewent that happens when the current execu-

tion v oluttary relinquishes the CPU by calling the scheduler.
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Since internal events can be handled within a uITRON ker-
nel, there is no difference even if it runs on TL4 microkernel.
The other is an external scheduling event that happens when
an in terrupt occurs and a higher prioriy task wakes up. Ex-
ternal ev ens require in terrupt emulation threads to control
the execution of the main execution thread. An interrupt
is processed by an interrupt emulation thread but tasks are
executed on the main execution thread; thus, the current
instruction pointer of the main execution thread needs to
be changed from an interrupt emulation thread. TL4 mi-
crok ernel provides a system primitive for that purpose. The
primitive can c hange the instruction and stack pointers of
the thread specified by the argument and retrieves the old
values of the instruction and stack pointers. Those old val-
ues are saved for later resumption.

3.2.1.4 Dealing with Idle State.

When all tasks are blocked and there is no task to runin a
#ITRON kernel, the kernel falls in to the idle state. When a
pITRON kernel on top of TL4 microkernel finds that it falls
into the idle state, the main execution thread needs to block
in order to avoid disturbing the other instances’ execution
by just spinning. The main execution thread invokes TL4
microkernel to wait for a notification message of a scheduling
event. When an interrupt occurs and it causes an scheduling
event, an interrupt emulation thread makes the main exe-
cution thread call the scheduler as described in the previous
section. At that time, the interrupt emulation thread exam-
ines if the main execution thread is in the idle state or not.
If not, then no action is needed. If it is in the idle state, the
interrupt emulation thread sends a notification message to
it and wakes it up from the idle state.

3.2.2 TL4 Microkernel

This section describes the enhancements made to TL4 mi-
crok ernel in order to execute m ultipley]l TRON kernel in-
stances on it.

TL4 microkernel’s execution entities are threads. TL4
microkernel’s scheduler first selects which uITRON kernel
instance to run among multiple instances. After that, the
scheduler needs to determine whic hthread to run. Since
there are multiple threads that execute a uITRON kernel
instance, each instance has a thread queue that maintains
runnable threads of the instance. Threads are maintained
in priority order. The priority of threads is only effective in
each uITRON kernel instance, so that the thread priority
levels of different uITRON kernel instances are never com-
pared.

An interrupt emulation thread waits for an IPC message
from a certain interrupt source, and an interrupt w ales
up the thread. There are the following three states of a
pITRON kernel instance, and in each state an interrupt em-
ulation thread needs to be treated differently in TL4 micro-
kernel:

e The instance is running: In this case, either the main
execution thread or the other interrupt emulation thread
is running. The priority level of the a waken interrupt
emulation thread is compared with the current thread.
If the awaken interrupt em ulationthread has higher
priority, it preempts the current thread. If it has lower
priority, it is inserted in to the thread queue.

e The instance is runnable but not running: In this case,

the awaken interrupt emulation thread is simply in-
serted into the thread queue. Since the instance is
runnable, there is no other thing to be done.

e The instance is not runnable: In this case, the in-
stance is in the idle state. The aw alen interrupt em-
ulation thread is inserted into the thread queue, and
the instance is marked runnable. When the instance
is scheduled, the interrupt emulation thread runs. If a
scheduling event happens, the main execution thread
resumes its execution (see Dealing with Idle State in

Section 3.2.1.4).

3.3 Evaluation

We have just finished our first implementation of the sys-
tem described in this paper. TL4 microkernel was imple-
mented based on L4Ka::Hazelnut, which is a version of L4 p-
kernel. Our uITRON kernel on top of TL4 microkernel was
implemented based on TOPPERS/JSP, which is an open
source pITRON kernel compliant to the pITRON4.0 specifi-
cation. The rest of this section shows the evaluation results
obtained from the current implementation. We first com-
pare the memory footprints for our uITRON kernel on TL4
microkernel and the original uJITRON kernel to find out the
memory overhead. Next, we show the measurement results
of invocation latencies from a simple application setup. All
measurements w ere performed on IBM ThinkRd X23 Lap-
top PC with Intel Mobile Pentium IIT 866MHz CPU. The
measurements used the high-resolution timestamp counter
built in the CPU. All times shown below are the average of
costs that were measured 500 times.

3.3.1 Memory Footprints

T able 1 shavs the memory sizes consumed to run a single
a single instance of our ugITRON kernel on TL4 microker-
nel. If multiple instances are created, the memory sizes for
the uITRON kernel are multiplied by the number of its in-
stances. The memory footprint of a uITRON kernel instance
on TL4 microkernel is 63KB, which is slightly smaller than
the footprint of the original uITRON kernel. TL4 microker-
nel, however, takes 47KB; thus, the total memory footprint
of a pITRON kernel instance on TL4 microkernel is 45KB
larger. Since protection domains are needed to construct
large systems in order to deal with softw are complexity, such
memory overhead is negligible. Although w ecannot com-
pare those memory footprints with the embedded versions
of Linux kernel, they require significantly larger memory
sizes.

3.3.2 Invocation Latencies

We measured the latencies from the software entry point
of interrupt processing to the invocation of an interrupt
handler and application tasks. Figure 3 (a) and (b) show
the measurement setups for the original pITRON kernel on
hardware and the pITRON kernel on TL4 microkernel, re-
spectively. The arrowed lines in the figures indicate the flow
of control starting from receiving an interrupt. There are
tw o applications tasks, Application T ask1l and 2. Appli-
cation Task 1 receives a character from a serial line device,
and Application Task 1 passes the received character to Task
2. T1, T2, and T3 indicate the invocation times of the se-
rial device interrupt handler, Application Task 1 and 2 by
receiving a character, respectively.
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T able 1: Memory Foot Prints

Text | Data BSS
TL4 microkernel 23KB | 4KB | 20KB
uITRON kernel modified to run on TL4 microkernel | 18KB | 1KB | 44KB
T otal 42KB | 5KB | 64KB
Original pfITRON kernel 17KB | 1kB | 47KB

Table 2:

Latencies from the Interrupt Processing Entry Point for a Serial Line Device

| uITRON on TL4 | Original uITRON

T1: pITRON Interrupt Handler

T2: Character Received by Application Task 1
T3: Character Received by Application Task 2

Application Task 1 Application Task 2 Application Task 1| |Application Task 2

T2: Receive Character| [T3: Receive Character,|

L |
T1:Interrupt
Handler
L ¥ v i
IV

Interrupt from a Serial Device

T2: Receiye Character
A

T3: Re(iive Character

L ¥ y i

-

T1: Interrupt Handler:
L ITRON Kernel

Interrupt from a Serial Device

L ITRON Kernel

TL4 Microkernel ‘

(a) Original ¢ ITRON Kernel (b) 1 ITRON Kernel on TL4 Microkernel

Figure 3: Measurement Setup to Handle Interrupts
and to Invoke Application Tasks

Table 2 shows the measurements results. The table shows
T1, T2, and T3 described above for the both cases of the
#ITRON kernel on TL4 microkernel and the original gITRON
kernel on hardware. The results interestingly shows that the
#ITRON kernel on TL4 microkernel outperforms the origi-
nal pITRON kernel for all three points although the differ-
ences become smaller as the execution goes forward.

The latency to invoke the interrupt handler in the gITRON
kernel shows the most significant difference betw een the t w o
cases. The case of the uITRON kernel on TL4 microkernel
involv es the extra costs of the context switching to the inter-
rupt emulation thread and crossing the privilege/user mode
boundary. The results show that the extra costs incurred to
run the uITRON kernel on TL4 microkernel are negligible
for the latency to invoke the interrupt handler.

The execution flow from T1 to T2 involves the in terrupt
handler’s cost to read an input character from the serial line
device, to wake up Application Task 1, and to switch the
context to it. The costs from T1 to T2 are 6.32 usec for
the pITRON kernel on TL4 microkernel and 6.08 usec for
the original pITRON kernel. The difference includes the
costs of TL4’s system primitive to change the instruction
and stack pointer of the main execution thread, and the
context switching from the interrupt emulation thread to
the main execution thread.

The execution flow from T2 to T3 involves only the con-
text switching from Application Task 1 to Application Task
2 using the semaphore primitives provided by the pITRON
kernel. There is no difference in the execution path betw een
the tw o cases. since the application task switching is per-
formed on the main execution thread for the case of the
pITRON kernel on TL4 microkernel. There is, however, the
difference in the cost between them. The costs from T2
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2.45 psec 3.75 pusec
8.77 psec 9.83 psec
10.49 psec 10.72 psec

to T3 are 1.72 usec for the uITRON kernel on TL4 micro-
kernel and 0.89 usec for the original pITRON kernel. The
MITRON kernel on TL4 microkernel is approximately twice
slower than the original uITRON kernel. More investiga-
tions need to be performed to find out the reasons for this
difference.

3.4 Current Status

We are currently extends the system to execute both Linux
and pITRON on the TL4 microkernel. The system will sup-
port a resource management framework and device driver
framework for running multiple operating systems in a sta-
ble w ay. The operating system also makes it possible to
execute both Linux and pITRON. If an application requires
very fast response, uITRON can be used to execute the ap-
plications. On the other hand, if an application requires to
reuse v arious in ternet protocolsthe application should be
executed on Linux.

We are also implementing light-w eiglt protection domains
for confining softw are bugs in respectie components. Since
the component framework can be restarted by rebooting in-
dependently, the entire system does not need to be restarted
when some serious problems are found. We have a plan to
build a new operating system on the component framework.
The operating system consists of a couple of components
such as a file system component and a netw ork system com-
ponent. The components are quickly rebootablevhen the
component is crashed. The operating system enables us to
build a rebootable system that can reboot very quickly when
a system finds a serious problem.

4. A LINUX-BASED OPERATING SYSTEM
FOR BUILDING ROBUST EMBEDDED
SYSTEMS

4.1 Introduction

The current Linux has several problems to be used for
future embedded systems. When malicious application pro-
grams are downloaded and executed, the programs may con-
sume a large amount of CPU capacity if those programs cre-
ate many processes because these processes receive the CPU
capacity fairly on the time-sharing scheduler.

Linux offers both the time-sharing scheduler and real-time
scheduler. If there are real-time processes that are executed
on the real-time scheduler, processes running on the time-
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sharing scheduler are dela yd until the real-time processes
are bloc led. Therefore, the response time of processes run-
ning on the time-sharing scheduler may become long due to
the long execution of real-time processes.

We believe that the CPU resource should be protected
from malicious programs, and the response time should not
be degraded even if there are real-time processes. We have
developed an accounting system to restrict the CPU capac-
ity consumed by each process to solve the above problems.

4.2 Related Work

Lin ux/RK][7] provides the resource reservation system that
reserves resources such as CPU, disk and netw ork capac-
ity for executing real-time applications. The resource reser-
vation system prevents a system from being overloaded by
controlling the admission of new processes. Also, the reser-
vation system monitors that a process does not consume
more CPU capacity than the specified CPU usage. The ap-
proach is very attractive for building real-time systems. Our
accoun tingsystem uses a similar mechanism to restrict to
use the CPU capacit yto protect a system from malicious
programs and long running real-time processes.

The proportional fair scheduler[1] allocates CPU capacity
to each process fairly. The allocation of the CPU capac-
ity is controlled in a rigorous way. Therefore, each process
can consume the same amount of CPU resource. Each pro-
cess can assign “w eigh” to allocate the different amount
of CPU resource. For example,if process A has weight 1
and process B has weight 3, process A consumes 25% CPU
capacit y and process B consumes 75% CPU capacity. How-
ever, the approach is difficult to group processes to allocate
CPU resource. T osolve the problem, hierarc hical propor-
tional fair schedulers[3] are proposed. In the approach, the
higher level multiple sc hedulers run on the lover level pro-
portional fair scheduler. Each higher level scheduler con-
sumes the same amount of CPU capacity. F or example, tw o
schedulers, scheduler A and B run on the proportional fair
scheduler, and process X, Y and Z run on scheduler A. In
this case, process X, Y and Z consume 50% CPU capacity.

The proportional fair scheduler is very promising, but it
offers different semantics from the original Lin ux sc hedul-
ing semantics. Some Linux applications assume the Linux’s
original scheduling semantics. Thus, the portability of ap-
plications is decreased in the approach.

4.3 Design and Implementation of Accounting
System

This section proposes an accounting system to avoid un-
limited use of the CPU capacity. We have implemented the
system on Linux version 2.4, and the system runs on a stan-
dard PC.

4.3.1 Accounting Objects

The accounting system offers accounting objects as an ab-
straction to manipulate the CPU capacity of each process.
An accounting object is bound to several processes to limit
the CPU capacity that the processes can consume as shown
in Figure 4.

As shown in Figure 5, an accounting object has tw o pa-
rameters: C and T, where T represents a period that is a
constant time to control the object, and C is the maximum
time to be able to execute processes bound to the account-
ing object within T. The processes bound to the accounting

Processes

Accounting Object

Accounting Object

Figure 4: Accounting Object and Processes

AO

process f‘ ’f‘ t

T T

Figure 5: Parameters for Accounting Objects

object cannot consume the CPU time more than C within
T. When processes consumes the entire CPU time within
each period, the processes is blocked un til the next period
comes.

The accounting system allows several processes to be bound
to an accounting object. F or example, ve assume that pro-
cess P1, P2 and P3 are bound to an accounting object whose
parameters are C1 and T1. When the total execution time
of P1, P2 and P3 exceeds Cl1 in each T1, the execution of the
processes are blocked until the next period will be started.

4.3.2 Binding Accounting Objects

An accounting object is bound to a process by invoking
a system call to bind the accounting object and the process
in an explicit way. Also, when a process that is bound to
an accounting object executes the fork system call to create
a new process, the accounting object is bound to the newly
created process automatically in an implicit way.

4.3.3 Implementation

Figure 6 depicts the implementation of the accounting sys-
tem. The current accounting system uses two types of timers
for managing the CPU capacity that eac h process can con-
sume. The first timer is a replenish timer and the second one
is an enforcing timer for controlling eac h accoutiing object.
Each accounting object has a value that shows the remain-
ing execution time in each period. The value is decreased
while the processes bound to the accounting object is run-
ning. When the value becomes 0, the processes are blocked
until the next period starts. The replenish timer is used to
set the timer value to parameter C in the accounting object,
and the enforcing timer is used to check the v alue becomes
0.

In the default mode, the processes bound to an accounting
object is blocked when the value becomes 0. Ho wver, if a
process sets a signal number in parameters when creating
the accounting object, the accounting system sends a signal
instead of blocking it. The signal can be used to control the
process bound to the accounting object in an explicit way.

4.3.4 Controlling Overload Situation

Controlling overload situatioss very important to offer
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Figure 6: Accounting System

services in a stable way. In our system, an accounting object
that is bound to the idle process is used to control overload
situation. The idle process is executed when there is no
runnable process. If the system becomes busy, the idle pro-
cess consumes a very little CPU capacity. By monitoring the
CPU usage of the idle process, the system can detect over-
load situation. Our system allows an application to receive
a signal when the CPU usage of the idle process becomes
low er than the specified CPU usage.

4.3.5 High Resolution Timer

The standard Linux kernel uses the 10 ms for the timer
interrupt interval. Th us, it is meaningless to specify param-
eter C and T that are smaller than 10 ms. Our system solves
the problem by using the high resolution timer[4] to support
fine grained CPU accounting. The high resolution timer is
implemented by using the one shot mode of the ISA clock
timer chip in the standard PC. The high resolution timer al-
lows us to specify microseconds granularity parameters for
accoun ting objects.

4.3.6 Access Control

Each accounting object has an owner attribute for con-
trolling the access to the object. The owner attribute of the
accounting object is assigned by a process that creates it.
Only the owner of an accoun tingobject or the super user
can manipulate the accounting object. In previous resource
reservation systems, there is no support of access control.
Therefore, these previous systems cannot be used for pro-
tecting resources from malicious programs.

4.3.7 Kernel Interface

This section shows the kernel in terface offered ly the ac-
coun ting system. An application program needs to use the
object_attribute structure that contains basic parameters such
as C and T for creating an accounting object.

int cabi_account_create (&object_id. &object_attributes)

Creates a new accounting object. When created, the
object is not bound to any processes. An applica-
tion program sets parameters such as C and T in o0b-
ject_attribute. The function returns objectid that is
used to manipulate the accounting object.

int cabi_account_destroy (object_id) Destroys the ac-
coun ting objectspecified by object_id. The function
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can be called by the owner of the accounting object or
the super user.

int cabi_account_bind_pid(object_id, pid) Binds the spec-
ified accounting object to a process whose process ID
is pid. An accounting object can be bound to multiple
processes. If the process is terminated, the process is
automatically unbound from the accounting object.

int cabi_account_bind_pgid(object_id, pid) Binds all pro-
cesses that have the same pgid to the specified account-
ing object.

int cabi_account_get (object_id, &object_attributes)
Retrieves the parameters of the specified accounting
object.

int cabi_account_object_set (object_id, &object_attributes)
Changes the parameters of the specified accounting ob-
ject.

4.3.8 An Example of Resource Protection

This section shows how our accounting system protects
CPU resource from downloaded programs that behave ma-
liciously . We assume that there is a manager process to
start processes to execute downloaded programs. The man-
ager process is bound to an accounting object whose C is
50 ms and T is 100 ms. When the manager process receives
a request to execute a downloaded application, it creates
a new process. The process is automatically bound to the
accoun ting object to whih the manager process is bound.
Therefore, the newly created process cannot consume more
than 50% CPU capacity(50 ms / 100 ms = 50 %), and it
cannot monopolize the CPU resource.

4.3.9 An Example to Improve the Response Time

The accounting system can improve the response time of
usual processes running on the time sharing scheduler. We
assume that a real-time process is running and the process is
executed for 500 ms without blocking. When a process that
runs on the time sharing scheduler becomes runnable, the
process may need to wait for the blocking of the real-time
process. Therefore, the worst case response time becomes
500 ms. However, if an accounting object whose C is 40 ms
and T is 50 ms is bound to the real-time process, the process
is blocled every 50 ms for 10 ms. Thus, the w orst case
response time is improved to 40 ms by using our accounting
system.

4.4 Evaluation

We have evaluated our accounting system by running sev-
eral benc hmarks. The evaluation uses a standard PC that
has Celeron 300MHz CPU and 512MB memory. We use the
high resolution timestamp counter in our evaluation.

4.4.1 Basic Cost

The evaluation shows the basic cost of our accounting
system. Figure 7 shows the average cost for invoking each
kernel function.

The result shows the creation time is longer than other
system function’s cost. Because the creation cost includes
allocating a memory region and creating dynamic timers.
The bind function also includes the searching cost through

all processes in the system.
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create 39.3
bind 35.1
unbind 9.8
destroy 24.0
set 49
get 3.5

Figure 7: Basic Overhead
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Figure 8: Improving the Response Time

4.4.2 Improving the Response Time

In the benchmark, we executed tw o tests as sho wn in Fig-

ure 8. The left graph in the figure shows the CPU usage
of the t w o processesthat are not bound to accounting ob-
jects. The first process executes an infinite loop and runs on
the time sharing scheduler. The second process runs on the
real-time scheduler, and stops 2 seconds after the execution
of every 10 million loops.

The right graph shows the result when the second real-
time process is bound to an accounting object whose C is
20 ms and T is 100 ms. By binding to an accounting ob-
ject, a process running on the time sharing scheduler can
consume CPU capacity constantly. Th us, the response time
is improved significantly.

4.4.3 Protecting CPU Resource

In the benchmark, a process that simulates a malicious
program creates many processes to monopolize the entire
CPU resource. The process is bound to an accounting object
whose C is 30 ms and T is 100 ms. When the process creates
processes, these processes are bound to the parent process’s
accounting object automatically.

Figure 9 shows the CPU usage when malicious processes
are executed. The result shows that these malicious pro-
cesses can consume only 30% CPU capacit y,and cannot
monopolize the entire CPU resource.

4.5 Current Status

We have developed a prototype accoun tingsystem and
shown the effectiveness of our approach. Currently, Mon-
tavista Japan Inc. is w orking to merge our system in their
embedded Linux distribution, and Japan Embedded Linux
Consortium started a new working group to discuss the ker-
nel interface of the accounting system for various embedded
systems. We are currently considering to enhance our sys-
tem for supporting multiple security domains and multi-core
chips. Also, weneed to take into account other resources

Comumed U Ratis [ % }
Comumas 0 R

Figure 9: Protecting from a Malicious Application

such as mmory , disk bandwidth, and network bandwidth
in the near future.

5. CONCLUSION

In this paper, we have presen ted t w operating systems to
increase the robustness of embedded systems. The first op-
erating system is a microkernel-based operating system that
enables multiple uITRON to be executed on a microkernel.
The second operating system enhances embedded Linux to
avoid to monopolize the entire CPU capacity from malicious
applications.
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