A Multi-Granularity Energy Profiling Approach
and a Quantitative Study of a Web Browser*

Chen-Ting Chuang', Chin-Fu Kuo?, Tei-Wei Kuo!™ and Ai-Chun Pang!*

' Department of Computer Science and Information Engineering

FInstitute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan 106, ROC
Email: {d89005,ktw,acpang } @csie.ntu.edu.tw, Fax:+886-223628167

Abstract

While energy-efficiency considerations become a critical is-
sue in embedded-system designs, little work is done for energy-
profiling at different granularity levels. This paper aims at the
proposing of a hybrid hardware-software-based profiling solu-
tion with different levels of abstraction. Compared to the exist-
ing work, the proposed solution could provide richer informa-
tion on energy profiling with the help of execution-path tracking
and exclusion of selected functions/classes/modules. We address
technical issues in the implementation of the proposed profil-
ing solution. A quantitative energy-profiling study over a well-
known web browser based on an object-oriented design, Kon-
queror, is then presented to provide a feasibility study of the pro-
posed solution and insights in the design of an energy-efficient
web browser.

1 Introduction

The number of transistors on microprocessor chips has been
doubling around every 18 months. As the announcements of
powerful microprocessor chips keep appearing basically in a
non-stopped fashion, the energy dissipation of microprocessor
chips also exhibits a trend similar to the performance accel-
eration of microprocessors predicted by the Moore’s Law [6].
While the statement really depends on the advance of the voltage
scaling technology, the energy dissipation might increase from
100 watts in 2000 to a number between 2,000 watts and 10,000
watts in 2010 if the trend continues. As a result, techniques in
the reduction of energy dissipation become a very important is-
sue, not only for embedded systems but also for desktops and
enterprise-class servers.

Software technology for efficient energy management is criti-
cal in extending battery lifetime and improving user experiences.
There is never any good substitute for intelligent energy manage-
ment, where energy profiling is a key methodology in software
designs for intelligent energy management such that the behav-
iors of program executions and their users are better understood.
Existing energy profiling tools can be roughly classified into
simulation-based and monitoring-based profiling. Simulation-
based energy profiling [9, 12, 13] is often time-consuming.

*This research was supported in part by the National Science Council under
grant NSC-92-2213-E-002-091.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

The accuracy of architecture-level simulation depends on how
detailed the system is modelled. While Tiwari, et al. pre-
sented instruction-level energy models [13], Brooks, et al. [12]
proposed architecture-level power simulators over various plat-
forms with an accuracy level down to cycles. Besides, the en-
ergy consumption of an operating system or a wireless LAN was
also studied in the literature, e.g., [9]. Monitoring-based energy
profiling [8, 11] is usually a preferable way in the energy con-
sumption analysis of real-life applications because it is straight-
forward and accurate. In particular, Flinn, et al. [8] proposed
an energy profiling tool to periodically sample the values of the
program counter. Shin, et al. [11] proposed a hardware-based
energy profiling tool with onboard profile acquisition circuits to
achieve a high sampling rate. For profiling with compiler sup-
ports, special (compilation) configurations are usually needed.
In particular, a technique called path profiling was proposed to
maintain the frequency of each execution path [5]. The average
profiling overheads could be close to 31%. Profiling could also
be done inside the kernel, in terms of some special-purpose hard-
ware, or with a hardware simulator. However, hardware-based
profiling solutions are often less flexible, due to the difficulties
in the examination of in-core data structures.

While many energy profiling tools usually find code in the
system libraries as hot spots, little information on energy con-
sumption was obtained from the view point of the user code and
application libraries or even the design of web pages, especially
when modifications to system libraries are beyond the capability
of many engineers. Many conventional tools for monitoring-
based energy profiling merely access the program counter to
track the context of a program’s execution and cannot provide
the information of the execution paths with reasonable over-
heads. In this paper, we propose a hybrid hardware-software-
based energy profiling solution, which could be implemented
with little cost but high accuracy. Compared to the existing
work, the proposed solution could provide richer information
on energy profiling. We propose an execution-path-tracking ap-
proach to provide multiple granularity levels in the observation
of the energy consumption of a program execution. We address
technical issues in the design and implementation of the pro-
posed profiling solution. A quantitative energy-profiling study
over a well-known web browser Konqueror is then presented
to provide a feasibility study of the proposed solution, where
Konqueror is recently adopted by Apple Computer, Inc. as the

YF]',F.

COMPUTER
SOCIETY

base for their web browser [2]. With the help of execution-path
tracking and exclusion of selected functions/classes/modules,
insights could be obtained based on observations on energy pro-
filing of functions or classes at different levels of abstraction. It
helps in the identification of program components that need bet-
ter improvement, e.g., encoding conversion, and the problems in
the designs of web pages, such as those with a heavy usage of
JavaScript code.

The rest of this paper is organized as follows. Section 2
underlies the motivation of this research. Section 3 proposes
the execution-path-tracking approach and a hybrid hardware-
software-based profiling solution. Section 4 presents the energy-
profiling tool and a quantitative study over Konqueror. Section
5 is the conclusion.

2 Motivation

Energy profiling provides useful information in software
designs for intelligent energy management. Existing energy
profiling tools can be roughly classified into two categories:
simulation-based and monitoring-based profiling. Simulation-
based energy profiling [9, 12, 13] is often time-consuming. The
accuracy of architecture-level simulation depends on how de-
tailed the system is modelled, e.g., those done all the way to the
circuit and gate level. Although simulation-based energy pro-
filing is, in general, good for hardware developers with com-
plete knowledge of hardware designs, it often has difficulties
in the accurate estimation of the energy consumption of oper-
ating systems in real workloads. While the time needed for
simulation-based energy profiling is usually lengthy and unpre-
dictable, simulation-based energy profiling is better for work-
loads on batch processing, instead of interactive applications
(that involve with the reactions from users and other parties di-
rectly or remotely).

Monitoring-based energy profiling [8, 11] is usually a prefer-
able way in the energy consumption analysis of real-life appli-
cations because it is straightforward and accurate. Monitoring-
based energy profiling periodically profiles the program exe-
cution context and the energy consumption data with a digi-
tal multimeter or on-board measurement circuits. The accu-
racy and system overheads are closely related to the sampling
frequency. Although hardware solutions, such as onboard pro-
file acquisition circuits [11], could achieve a high sampling fre-
quency with limited overheads, they are often not available to
many developers. Furthermore, hardware-based profiling solu-
tions could hardly examine in-core data structures. On the other
hand, software-oriented solutions, such as interrupt-handler-
based sampling plus a multimeter [8], usually has high over-
heads and large sampling jitter. In addition to that, executions
inside critical sections (that are between the entry and exit sec-
tions) of the kernel could not be observed such that the profiling
accuracy degrades [4].

Many existing tools for monitoring-based energy profiling
merely access the program counter to track the context of a pro-
gram’s execution. Although they are useful in the optimization
of programs with “fixed” execution flows (such as MPEG play-
ers) by locating (energy-consuming) hot spots, they usually fall
short in providing enough information for the analysis of more
complex applications, that involve interactivities among pro-
gram components, system/user processes, etc. Figure 1 shows

The two major
that determine energy
consumption

Application framework
(GUIskotn,event oops)

User code
(program logic)

Where hot spots in
energy consumption
are usually located

X server

! Kernel |

| Hardware |

Figure 1. A typical framework of a GUI application

a typical execution framework of a GUI application, such as
a browser. The execution context of a GUI application often
consists of the application framework (e.g., GUI skeleton), the
user code, related application libraries (e.g., customized applica-
tion development procedures), and related system libraries (e.g.,
libc). Existing energy profiling usually finds code in the sys-
tem libraries as hot spots in energy consumption. While most
researchers would consider energy optimization on system li-
braries, we must point out that the energy optimization from
the view point of the user code and application libraries is also
highly critical, especially when modifications to system libraries
are beyond the capability of application developers.

The above observations underly the motivation of this re-
search: The objective of this research is to propose a hybrid
hardware-software-based solution with multiple granularity lev-
els in the observation of the energy consumption of a program
execution. We propose to examine stack frames of application
executions to track the energy consumption of each individual
procedure of user programs and the kernel and their relation-
ship. It is to have a good profiling accuracy but with limited
system overheads. The feasibility of this work is demonstrated
by an energy profiling study on a popular web browser.

3 Hybrid Monitor-Based Energy Profiling - A
Multi-Granularity Approach

The purpose of this section is to propose a hybrid monitor-
based energy profiling approach based on the tracking of execu-
tion paths. It is to provide better observations of the energy con-
sumption of a program execution in terms of modules, functions,
or even classes at different granularity levels. We first address
technical problems and issues in the scanning of user-mode and
kernel-mode stacks, especially on efficiency considerations and
the function invocation relationship. We then present a hybrid
monitor-based energy profiling approach and address its design
issues. The physical constraints in terms of the rebuilding of the
function invocation relationship and the translation of instruc-
tion addresses for the corresponding functions are presented. We
will then address the clock synchronization issue between the
profiled computer system and the measuring computer system.
The implementation of the hybrid monitor-based energy profil-
ing tool is presented in Section 4.

3.1 Tracking of Execution Paths

The energy profiling of an application program could be bet-
ter understood in terms of modules, functions, or even classes
at different granularity levels. The achievement of such multi-
granularity observations could be done by tracking the execution

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

path of the program. We shall first use a snapshot of the execu-
tion of a Konqueror process' over Linux 2.4.18 to illustrate the
memory layout and stacks of a process:

Linux reserves the high 1 GB of the memory address space
(beginning at 0xC0000000) for privileged kernel data struc-
tures®. Program executables and libraries are typically stored
in the executable and linking format (ELF) [14]. The user-mode
memory of a process, which consists of a stack, heap, text (pro-
gram code), data (initialized data), and bss (uninitialized data),
is located at the low 3 GB of the address space. Shared libraries
are mmap()-ed into the user-mode memory address space at the
run time. Each process has a user-mode stack and a kernel-mode
stack, where the user-mode stack contains the current execu-
tion path of a process in terms of stack frames® (with caller and
callee function addresses). A kernel-mode stack is created for
each process to keep the execution context of the process, where
the stack space of interrupts stays. Note that the relocatable ad-
dresses might have different values for different runs.

We propose to scan process stacks to have an energy pro-
filing of program components through the tracking of the exe-
cution path of a program so that multi-granularity observations
could be obtained. The technical problems are mainly on (1)
how to correctly identify the function invocation relationship in
and between (user-mode and kernel-mode) stacks, (2) how to
efficiently scan stack frames, and (3) how to reduce the space
needed for profiling.

Depth Function Module
unix_stream_sendmsg (kernel)
1 sock-sendmsg (kernel)
2 sock-write (kernel)
3 sys-write (kernel)
4 system_call (kernel)
5 _libe.write libe
6 _X11TransSocketWrite libX11
7 X11TransWrite libX11
8 _XFlushInt libX11
9 XFlush 1ibX11
10 XSelectInput libX11
11 QWidget::setMouseTracking libgt
12 QWidget::create libgt
13 .. libgt
14 QFrame::QFrame libqt

Table 1. An example execution path

The tracking of the execution path depends on the correct
identification of the function invocation relationship in and be-
tween (user-mode and kernel-mode) stacks. Table 1 shows an
example execution path in which a C++ class QWidget in the
libgt library invokes an X11 API XSelectInput () to set the
mouse tracking. It consequently invokes write () in the C li-
brary to send data through a Unix domain socket to the X server.
Since the code generated by gcc keeps the frame pointer in the
EBP register*, as shown in Figure 2.(b), the frame pointer in the
innermost stack frame can be accessed through the EBP regis-
ter, as shown in Figure 2.(a). We can trace the stack frames all
the way back to the stack frame of main (). Three technical

"When Konqueror loads a web page, some Kioslave processes are created to
do network file handling, beside the so-called Konqueror process.

2The size of the kernel address space might be different, depending on the
system configuration.

3The absolute address could be different for different programs under differ-
ent configurations.

*The - fomit - frame-pointer option of gcc disables the compilation of
frame pointers. The Linux kernel turns on this option by default. If a procedure
is not compiled with frame pointers, we should scan the stack to locate returned
addresses directly.

Return address

Frame pointer
T Frame 2

Argument 1o rame 1
(variable size)

Return address to frame 2

LI+ for to frame 2 -
fame polnter Lo frame <begin_of_function>

Tocal vaniables

(variable size) Frame 1

‘Saved registers. push %ebp

(variable size)

Fgument 10 Trame 0 mov
(variable size)

‘Return address to frame 1

%esp, %ebp

register <body of functions

EBP

L Frame pointer to frame 1 Frame 0
Tocal varables (Innermost pop
(variable size)

frame)

Saved registers
(variable size)

%ebp

ret

(a) The structure of stack frames (b) The code that maintains the frame pointers

Figure 2. The structure of stack frames and the
code that maintains the frame pointers

issues must be addressed so as to correctly identify the function
invocation relationship: (1) the validity of the returned address
in the stack frame (due to interrupts over frame construction),
(2) the validity of the relationship of neighboring stack frames
(due to exception handling, e.g., signals), and (3) the potential
relationship of stack frames in the user-mode and kernel-mode
stacks (due to system calls). Since the text segment of a process
might scatter over a wide range of address space, we propose
to resolve these issues by maintaining the address ranges of text
sections of the profiled programs with an efficient lookup data
structure, such as a binary tree.

The efficiency in the scanning of stacks is of paramount im-
portance for the feasibility of execution-path tracking because
the number of stack frames is often a big number. For example,
the average depth of the execution path of a Konqueror process
is between 30 and 40 in our performance evaluation. We pro-
pose to maintain a cache of the most recent execution path of
each profiled process. When a new sampling starts, the user-
mode stack is compared to the cached data first. The scanning
of the stack frames first begins with the frame at the bottom of
the stack and skip over stack frames which remain unchanged
by comparing the stack contents with the cached frame point-
ers (since the last scanning). When the first changed frame is
identified, the stack is scanned from the top of the stack such
that new frame pointers are located and cached for later sam-
pling. We must point out that the proposed approach is very
effective because most of the contents of a user-mode stack re-
mains unchanged for an extensive period of time. The saving on
the profiling space could be achieved at the same time by merely
maintaining differences of execution paths between samplings.
Note that profiling data could easily go up to several megabytes
in tens of seconds without the above caching approach.

3.2 Hybrid Hardware-Software-Based Profiling

The purpose of this section is to present a hybrid hardware-
software-based profiling approach to exploit the execution path
of an application program. The goal is to have a good sampling
frequency but without much overheads and impacts on the pro-
gram execution.

A profiling system could be partitioned into two major com-
ponents residing at the profiled computer system and the mea-
suring computer system, as shown in Figure 3: The objective
of the component residing at the profiled computer system is on

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

The Profiled Computer
System

The Measuring
Computer System

Measuring
Equipments

Clock Synchronization

Figure 3. The system architecture of a hybrid
hardware-software-based profiling approach

the trace collection, and the system might consist of three major
modules: data collecting daemon, trace monitor, and the driver-
level scheduling mechanism. The trace monitor is responsible
for the scanning of user-mode and kernel-mode stacks of pro-
cesses under monitoring and leaves the trace data at the shared
buffer for the data collecting daemon. Independent from the
trace collection strategy, the data collecting daemon could use
the OS services and choose whatever way better for the saving
of the trace data, e.g., dumping of trace data into disks or pass-
ing them over a wire to its counterpart at the measuring com-
puter system. The driver-level scheduling mechanism should be
a lower-level implementation with low overheads and little im-
pacts on application executions, such as RTAI or RTX, to peri-
odically dispatch of the trace monitor.

Workload read() connect() | pipe() | select) | select)
wio disk /0| localhost 2fd 512 fd

Time() 0.7 26.9 57 1.8 60.3

page fault of
file mapping
12000

Table 2. The execution times of some system calls
and system events, where the execution time of
read() here does not include the time for disk I/O.

The design issues of the components residing at the profiled
computer system include the huge amount of trace data, the effi-
ciency in the stack scanning, the quick identification of the func-
tion relationship, the selection of a proper sampling frequency,
etc. Beside the discussions of the first three issues in the pre-
vious section, the selection of a proper sampling frequency is
not an easy problem. While the accuracy of profiling highly de-
pends on the sampling rate, it is not so obvious that profiling
has its limitations, due to a small duration time in executing a
function or the profiling methodology. The time needed for the
processing of a system call or a system event of Linux over an
Intel PIIT 733 MHz machine, as shown in Table 2, serves as a
very good example in revealing some constraints in profiling®.
Hence, to increase profiling accuracy, a proper sampling period
should be less than the execution times of most system calls and
system events, such as 50 pus.

Program-counter-based profiling could hardly restore the ex-
ecution paths of an application program properly, especially
when the sampling frequency is not high enough. As shown in
Figure 4, the recovered execution times of functions of an appli-

5We can trace the processing/invocations of system calls and system events
by inserting trace instrumentation into the kernel [15]. However, it is not the
focus of the paper.

Sampling period
A

B A A
A A A
Q B D
Function A [I T []
Function B Function D
Function C T:I Il:i
A () Original execution trace
B A
A & B A D A
Function A [I I I]
i ¥ i
Function B | | [] Function D
Fuhction C

(b) Recovered execution trace

Figure 4. The recovered workload from the sam-
ples of execution paths

cation program in terms of program-counter profiling could be
a very rough approximation of their counterparts in the original
execution time. Although the execution-path tracking approach
proposed in this paper could correctly build up the execution
paths for an application execution (with the scanning of stack
frames), a small duration time in the execution of a function
still imposes a physical constraint on the inaccuracy of profil-
ing (because we might hardly hit functions with small execution
times during profiling). An excellent performance study in [10]
provides a good evidence in the justification of the above argu-
ment, and it indicates that the number of machine instructions
per function in GUI applications over Windows NT is often less
than 100, where an ordinary Intel PIII 733 MHz machine could
easily run hundreds of millions of instructions per second. In
other words, unless an ultra high sampling frequency is adopted
(of course with a formidable overheads), it is always difficult to
have an accurate profile even with stack scanning.

—=&— Konqueror
—e— Emacs

100%

Ratio of function executed
over this period

/

H 4 13 8 10 2
Depth of stack frames

Figure 5. The average depth of a user-mode stack
(the sampling period = 50 uSs).

Despite the discouraging observations, we must point out
that the execution-path tracking approach proposed in this pa-
per could still obtain a good precision in the energy profiling of
functions, especially from the program structure’s point of view.
As shown in Figure 5, even though function invocations corre-
sponding to the innermost stack frames are hard to trace, func-
tion invocations corresponding to the outer stack frames could
be identified without much difficulty. We could still have a good
picture of the energy profiling for an application with a reason-
able granularity.

The component residing at the measuring computer system
consists of two major modules: an energy monitor and an an-
alyzer. The energy monitor controls measuring equipments di-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

rectly connected to the profiled computer system. Note that the
controlling of measuring equipments should not be at the pro-
filed computer system because the controlling itself still con-
sumes energy. The analyzer analyzes the collected trace data
and charges the energy consumption to each individual process,
code module, procedure, and kernel service, etc. The instruction
addresses of execution paths observed during the data collection
time must be translated into the corresponding function names
in a high-level language, e.g., C or C++. It could be done by
analyzing the relocation addresses of executables and shared li-
braries to identify the residing module of each given instruction
address. The symbol table of related object files is the key to find
out the corresponding function of a given instruction address.

3.3 Implementation Remarks

Given instruction addresses of an execution path, the analyzer
of the measuring computer system must find out the function
names corresponding to the addresses to derive the energy pro-
file of functions. Because every program executable and shared
libraries in an operating system, such as Linux, often contain
a symbol table for symbol information in the text, data, and
bss segments, the mapping of functions and addresses could be
found by striping out the symbol table from their correspond-
ing executable or library. The raw data of an executable or a
library could also be accessed directly or accessed through util-
ities, such as nm (1) and objdump (1) in Unix, to access the
corresponding symbol table. Note that shared libraries could be
dynamically mmap()-ed into a memory address space, such that
their relocation addresses must be taken into account when sym-
bol tables are referred. Furthermore, C++ compilers decorate the
symbol names of C++ functions, known as name mangling, in
order to support function overloading. As a result, de-mangling
is needed for the lookup of function names that correspond to
the profiled instruction addresses.

Another implementation issue for energy profiling is clock
synchronization between the profiled computer system and the
measuring computer system, where no system clock is shared.
As shown in Figure 3, clock synchronization is simply achieved
through a standard RS232 serial interface or a parallel port.
Clock synchronization could often be better achieved with a par-
allel port because the triggering signal port of the measuring
equipments (i.e., the general purposed I/O pin) can be directly
connected to a parallel port of the profiled computer system.
Trigger signals could be sent from the timing circuits of the mea-
suring equipments. However, parallel ports are often not widely
available for many embedded systems. An RS232 serial inter-
face could be adopted for clock synchronization instead because
of its popularity.

4 Case Study - Energy-Profiling of a Browser

In this section, we shall present an energy profiling tool based
on the proposed hybrid approach and address related implemen-
tation issues. We will then demonstrate the feasibility of the
approach by an energy profiling of a well-known web browser
Konqueror and provide insights to the design of a more energy-
efficient web browser.

4.1 Energy Profiling and Analysis Toolkit

A hybrid monitor-based profiling toolkit called Energy Pro-
filing and Analysis Toolkit (EPAT) is built to demonstrate the

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

feasibility of the proposed approach. The profiled computer sys-
tem is built on an x86 machine with an Intel Pentium III 733
MHz CPU. From Table 2, we observe that the execution time of
many system calls is relatively smaller than 50 ps. Hence, the
sampling period is set as 50 us (i.e., the sampling rate is 20, 000
samplings/second). Note that the sampling rate is high enough
to get accurate energy profiling. Real-time Application Interface
(RTAI), that was developed by Mantegazza, at al. at DIAPM [7],
is adopted as the driver-level scheduling mechanism, as shown
in Figure 3. It is because RTAI is less intrusive to Linux and has
low run-time overheads and short interrupt latency. The trace
monitor is implemented as a periodic RTAI task, and the data
collecting daemon is a Linux task. While RTAI could virtually
interrupt Linux at any time, the stacks examined by the trace
monitor might include inconsistent contents because the writ-
ing of a stack frame might be interrupted. The trace monitor
should skip over any inconsistent stack frame, that is at the top
of a stack, as discussed in the previous section. Since RTAI
is light-weighted in the implementation, a very small jitter in
the sampling is possible. The access of the data structures of
an executing Linux task could be done through the global vari-
able 1inux_task. Because a one-shot timer is adopted in the
EPAT implementation, there would be a timer-drifting problem
for EPAT although it could be a minor issue in the profiling of
many user applications.

A digital multimeter, such as an NI 6036E DAQ card [3],
could be used to record digitalized current/voltage samples,
where an NI 6036E DAQ card could reach 200,000 Hz in the
sampling rate. A digital multimeter is installed at the measuring
computer system to avoid the consumption of any energy for the
profiled computer system. A digital multimeter measures the
differential voltage of a shunt resistor between the power sup-
ply and the motherboard, where the resistance of a shunt resistor
should be chosen carefully to avoid any distortion of the input
voltage for the system®.

The synchronization between the measuring computer sys-
tem and the profiled computer system is done by an RS232 serial
interface. When an energy profile starts, the measuring com-
puter system sends a notification signal over the RS232 cable
to the profiled computer system. It should be noted that serial
communication over an RS232 cable could suffer from tens of
microseconds in communication delay. For example, consider
an RS232 serial interface with the communication mode being
N51: Let the baud rate be 115200 bps, and the RS232 FIFO-
queue length be 1. The delivery delay for a 7-bit notification
signal is at least 7 bits/(115200bits/sec) = 61 ps. The deliv-
ery of a serial-port interrupt in RTAI could introduce another 20
s delay over many i386 platforms. The total delay could be
roughly up to 80 wus. Suppose that the sampling period is 50 us,
i.e., 20,000 samplings/second. The first two samplings on the
profiled computer system should be ignored in an energy profil-
ing, due to the delivery delay.

4.2 Energy Profiling of a Web Browser

Since a web browser has been a necessity for many mobile
systems, a good low-power design of a web browser becomes an

SPower supplies that comply with the standard ATX specification provide
three output voltages: 3.3V, 5V and 12V. Which input voltage should be used to

drive the CPU depends on the design of the motherboards.
1E l',F.

COMPUTER
SOCIETY

The Kongueror Browser

A. Application Framework

GUI skeleton and event loops (GUI skeleton, event loops)

kongqueror

B. User Code

libkhtm! ‘ Kjs_htm! libkjs rogrem logic)

KDE Libraries C. Applic;
Gibkdecore, libkio.

Qt Library (libqt)

libkonq

(applicati

D. System Libi
(low-level system services)

X server libe & Image Other
X1 | libfam System
Libraries

libpthread Libraries

[A

E. Kemel

Figure 6. The system architecture of Konqueror

interesting problem. Konqueror [2], an open source browser that
is recently adopted by Apple Computer, Inc. as the base for her
web browser Safari [1] and is programmed in the C++ language,
is profiled to provide references for the energy consumption of
a web browser. With EPAT, we could provide an energy con-
sumption analysis for browser functions, components, or even
classes at different granularity levels. The results would help in
providing more insights to the design of a more energy-efficient
web browser.

4.2.1 Konqueror: A Web Browser Example

Konqueror, that is a part of a project for the KDE desktop envi-
ronment, is an open-source web browser over the Qt application
environment for Linux and is programmed in the C++ language.
Compared to a well-known browser Mozilla (that has millions
of lines of code), the core of Konqueror has less than 200,000
lines of codes [2], and it provides a good set of features for en-
ergy profiling, e.g., CSS1, CSS2 (mostly), JavaScript, Java Ap-
plet, Flash, SSL, etc. The system architecture of Konqueror is
as shown in Figure 6 (similar to that in Figure 1). A summary of
her major libraries and code modules is listed in Table 3.

[Library/Modules | Description |

Kongueror
TibKhtml
TibkGs
Kjs-huml
Tibkong

The core of Konqueror
HTML core library
JavaScript support
TavaScript language bindings for KHTML
The basic services of Konqueror, such as bookmark
file browser i ion, etc.
libkdecore The KDE core library that provides basic functionality, such as
IPC, internationalization and locale support, system configuration, etc.
libkio The KDE I/0 library for low level access to network files.
libqt Qt is an object-oriented C++ application development
framework that provides standard GUI widgets and APIs for
file-handling, network, threading, etc.
FAM (File Alternation Monitor) that notifies changes in specific
files or directories.
Tibc The C library
1ibX11 The X11 library

libfam

Table 3. Major libraries and code modules of Kon-
queror

4.2.2 Energy Profiling of Konqueror and the Overheads of
EPAT
The purpose of this section is to explore the energy con-
sumption of Konqueror with various features being activated
and to evaluate the overheads of EPAT (with the proposed
hybrid monitor-based profiling approach). The evaluation
was conducted over well-known web sites, such as Yahoo!
(http://www.yahoo.com/), and a popular Chinese news
web site Chinatimes (http://news.chinatimes.com/).

Konqueror 3.3.1 was profiled over Linux 2.4.18 with gcc
2.95, KDE 3.3.1, and X 4.2.0 (for X servers, libraries, and utili-
ties). EPAT was built over the same platform with RTAI 24.1.9.
The filesystem mounted on disk partitions was ext3, and an In-
tel PIII 733 MHz machine was adopted for performance evalu-
ation. We removed any servers irrelevant to the profiling, such
as the cron daemon and the sendmail server, and shut down
syslogd to prevent potential factors from interfering with the
experimental results. Swapping was disabled, and the /tmp par-
tition was mounted as TMPFS (temporary file system), which
kept files in the virtual memory, for better performance. The
TSC register on 80x86 microprocessors was adopted to measure
the time spent by EPAT on the profiled computer system at the
granularity of a clock cycle.

The energy consumption of a profiled computer system over
a time interval T was E = [, P(t)dt = % S Vaig s (t)dt,
where Rspunts Voupply, Vairs(t), and P(t) were the shunt re-
sistor resistance, the supply voltage, the differential voltage
(of the shunt resistor between the power supply and the moth-
erboard), and the power usage at time ¢, respectively. The
current through the profiled computer system at time ¢ was
I(t) = Viigs(t)/Rshunt according to the Ohm’s Law, and
P(t) = Vsuppiy*I(t) = Veupply* Vaif £ (t)/ Rshunt. Because the
energy consumption of the profiled computer system was pro-
filed at a regular period At, the energy consumption of the sys-
tem could be approximated by £ ~ % St o Vaip (i) At
The power usage was in watt, and the energy consumption was
in joule.

The CPU time usage of Konqueror
0.930 seconds
1413 seconds
1810 seconds
2,486 seconds
2919 seconds
4.008 seconds

Overheads (in a percentage)
6.45%
6.12%
5.61%
5.32%
5.67%
4.79%

Table 4. The run-time overheads of EPAT when
Konqueror with different workloads was profiled
at 20,000 samplings/second in 10 seconds.

For the rest of this section, the energy profiling of Kon-
queror was reported over Yahoo! and Chinatimes with different
browser features being activated. Table 4 shows the run-time
overheads of EPAT when Konqueror with different workloads
was profiled at 20,000 samplings/second in 10 seconds. Note
that the remaining CPU time of the profiled computer system in
each 10-second profiling was mostly consumed by the idle task
or other system serives, such as those from X. The overheads
was derived as (the CPU time usage of EPAT)/(the CPU time
usage of Konqueror). It was not surprised that the CPU time us-
age of EPAT was roughly proportional to the CPU time usage of
the profiled program, although some fixed overheads did exist.
The profiling overheads were no more than 7% of the profiled
system.

¢ Loading of a Web Page

The energy consumption of Konqueror in the loading of a
web page over Yahoo! and Chinatimes in each 15 seconds was
first measured by EPAT. Compared to Chinatimes, Yahoo!, that
is designed being compatible with most web browsers and has
a good response time, does not have a heavy use of JavaScript.
Loading a web page over Yahoo! consumed only 8.732J, while

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

Process Time (scc) | Energy (oule) | Power (wat)
idle 12.965 153652 1185
Konqueror 0626 8732 13.95
X 0539 7.765 14.39
Other 0.867 11.908 13.73

Table 5. Energy consumption of different pro-
cesses in the loading of a web page over Yahoo!

Related Class

QCString QChar QConstString QString
QStringData QTextString QGCache ...
QGArray QGListlterator QMetaObject
QObject QValueListPrivate QGList

QGDict ...

QBig5Codec QBig5Decoder QBighkscsCodec
QFontMetrics QFontPrivate ...

Category

Classes related
string

Classes related to
basic data structure
manipulation
Other classes

Table 6. Lower-level classes related to the manip-
ulation of strings, basic data structures, etc.

that over Chinatimes consumed 58.321J. It was because China-
times (the most popular Chinese news web site in Taiwan) had
more complex web page designs and required Chinese encoding
conversion. Better conversion algorithms on a browser or good
designs of JavaScript code on a web page would be very help-
ful to the energy-efficient considerations of a browser. Table 5
shows the execution time, energy consumption, and power us-
age of different processes in loading a web page over Yahoo!. It
was surprised to see that the profiled system consumed a huge
amount of energy in idling, compared to other parts, where the
PIII platform in the experiments did not support dynamic volt-
age scaling. The idling was mainly due to the lengthy waiting
time for data delivery over the networks. Intelligent voltage scal-
ing policies would clearly improve the energy consumption of a
browser substantially.

The energy profiling of functions in Konqueror (by exclud-
ing basic functions in the handling of data structures, e.g., the
classes in Table 6) was reported in Table 7 by an analysis of
the collected execution paths. Compared to the energy profiling
of all functions, as shown in Table 8, Table 7 provides other
information on the behavior of Konqueror (in terms of func-
tions in higher layers of the system architecture, as shown in
Figure 6). For example, Table 7 shows that text-drawing, i.e.,
function QPainter: :drawText, costed 2.45% of the entire
energy consumption. Without any help on the tracking of exe-
cution paths, engineers could only observe the energy consump-
tion of each module, such as those shown in Table 9, where the
energy consumption of the module KERNEL denoted that for
Konqueror executing in kernel mode. Observations without ex-

Function Module Layer | % Energy
T Khtml::Font:-update Tibkhtml B 8.68%
2 KURL::url libkdecore c 2.97%
3 QPainter::drawText libgt D 2.45%
4 QEventLoop::enterLoop libgt D 1.96%
5 QEventLoop::processEvents libgt D 1.86%
6 Khtml::CSSStyleSelector::styleForElement libkhtm! B 1.77%
7 khtml::CSSStyleSelector::checkOneSelector libkhtml B 1.54%
8 QPixmap::convertFromImage libgt D 1.54%
9 DOM::StyleBaselmpl::parseValue libkhtm! B 1.43%
10 QTextCodec::fromUnicode libgt D 1.28%
11 QGIFFormat::decode libgt D 122%
12 HTMLTokenizer::parseTag libkhtm! B 1.18%
13 ::FontFamil, libkhtm! B 1.13%
14 SSStyleSelector::applyRule libkhtml B 1.08%
15 Khtml::Decoder::decode libkhtml B 1.06%

Table 7. Energy profiling of functions in Kon-
queror for the loading of a Yahoo! web page.

Function Module Layer % Energy
1 malloc libkdecore C 7.54%
2 free libkdecore C 3.84%
3 khtml::CSSStyleSelector::styleForElement libkhtml B 1.54%
4 _builtin_new libfam D 1.46%
5 memepy libe D 1.27%
6 QGIFFormat::decode libgt D 1.21%
7 operator== libgt D 1.05%
8 khtml::HTMLTokenizer::parseTag libkhtml B 1.01%
9 QString::setLength libgt D 1.01%
10 QString::find libgt D 0.93%
11 —builtin_delete libfam D 0.89%
12 Khtml::CSSStyleSelector::applyRule libkhtml B 0.87%
13 QPixmap::convertFromImage libqt D 0.86%
14 QString::QString libqt D 0.85%
15 QFontPrivate::textWidth libgt D 0.82%

Table 8. Energy profiling of all functions in Kon-
queror for the loading of a Yahoo! web page.
Functions involved with basic memory manage-
ment are marked bold.

Module Energy (joule) % Energy
libqt 3.601 41.23%
libkhtml 1.819 20.83%
libkdecore 1.228 14.06%
KERNEL 0.485 5.55%
libe 0.364 4.16%
libfam 0.337 3.86%
libX11 0.181 2.07%
libXft 0.131 1.49%
libpthread 0.130 1.49%
libkjs 0.080 0.91%
konqueror 0.072 0.82%
libz 0.060 0.68%
libkio 0.057 0.65%

Table 9. Energy profiling of modules in the load-
ing of a web page over Yahoo!

clusion of selected functions were often on the energy consump-
tion of basic functions. For example, 7 out of 15 most energy-
demanding functions, as shown in Table 8, were involved with
basic memory management (that costed roughly 17% of the en-
tire energy consumption).

Tracking of execution paths clearly provided observations of
energy profiling at different granularity levels. The energy pro-
filing of all Konqueror functions, when a Chinatimes web page
was loaded, was similar to that in Table 8, except that the pro-
cessing of Chinatimes web pages involved with JavaScript pars-
ing and the conversion of Big5 and Unicode in Chinese charac-
ters (the table is not included because of the similarity).

The energy consumption amounts for JavaScript parsing
and the conversion of Big5 and Unicode in Chinese charac-
ters were 0.88% and 2.68% of the entire energy consumption,
respectively. Furthermore, the ratios of energy consumption
of khtml::CSStytleSelector::styleForElement
and khtml: : Font : : update were larger than their counter-
parts in Table 7. We observed that the functions were hot spots
in the loading of a web page. Some insights could be drawn from
the observations: (1) Because a web browser application could
be associated with default fonts, the most frequently used fonts
(e.g., the true type) and their font sizes could be pre-rendered
and cached to reduce the time for font-rendering-related compu-
tations. (2) Since khtml: : Font: :update was a hot spot,
any optimization of the related code would be definitely needed.
(3) khtml: :CSStytleSelector: :styleForElement
was used to sort out most frequently used style rules. Some
caching and pre-calculation mechanisms would be helpful to re-
duce the energy consumption. Although Table 8 showed that
functions malloc and free were hot spots in the loading
of a web page, the functions were at a lower level and might

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

be highly optimized already. Tracking of their usages would
be more helpful in reducing the energy consumption of a web
browser.

Furthermore, the energy profiling of different C++ classes
could be obtained. It provides other information for high-level
process executions. For example, QPainter (basic paint-
ing, such as line drawing) costed 6.18% of the entire energy
consumption, and QGIFFormat (GIF image decoding) costed
1.29% of the entire energy consumption.

e Viewing of a Web Page

The energy profiling of Konqueror in viewing a web page
was done by analyzing its energy consumption while a loaded
web page was scrolled down at a constant rate in 15 seconds.
The energy consumption of Konqueror in page viewing was
substantially less than that in loading. For example, the en-
ergy consumption of Konqueror in viewing was roughly 1.593]
over Yahoo! pages, and that over Chinatimes was roughly
40.334]. Note that Chinatimes had a news-sticker implemented
with JavaScript, and that resulted in updating of a web page fre-
quently. Compared to the energy consumption in page loading,
the energy consumption in the reviewing of a web page over Ya-
hoo! was about 1.593.7/8.732.J/ ~ 18% of that in loading. For
Chinatimes, the ratio of the energy consumption in viewing and
loading was about 40.334.J/58.321.J/ =~ 69%. In the perfor-
mance evaluation, the energy consumption of the modules that
handled JavaScript (e.g., 1ibkjs and kjs_html), when a web
page was loaded (/viewed), costed 9.16% (/7.98%) of the entire
energy consumption. It further emphasized the criticality in the
energy-efficiency considerations for the handling of JavaScript
code.

From the experimental
sumption of all functions, we observed that many
functions were involved with HTML rendering
(e.g., khtml: :RenderObject: :nodeAtPoint,
khtml: :RenderFlow: :paintObject, etc). The ra-
tio of total energy consumption of such functions was roughly
13%. By excluding basic functions in the handling of basic
data structures, the information on the behavior of Konqueror
in terms of functions in higher layers of the system architec-
ture could be derived, i.e., energy profiling of C++ classes.
We observed that the ratio (19%) of energy consumption of
QPainter in the viewing of a web page was obviously larger
than the counterpart (6.18%) in the loading of a web page. The
reason is that the web page was scrolled down at a fixed rate in
the experiments such that Konqueror redrew frequently. The
energy profiling of all Konqueror functions in the viewing of
a Chinatimes web page was similar to that of the viewing of a
Yahoo! web page, except that the energy consumption amounts
for JavaScript parsing and the conversion of Big5 and Unicode
in Chinese characters were 1.2% and 4.65% of the entire
energy consumption, respectively. If related data in rendering
were cached during consecutive loadings of web pages, the
rendering-related computations might be reduced significantly.

When an application is profiled by the proposed profiling
approach, the information of energy consumption could be on
different levels of abstraction, e.g., functions, modules, or even
classes. Application developers could identify the components
of an application which need more energy from different-level

results of the energy con-

energy profiling information. Then they could improve the ap-
plication program. Note that the major objective of this paper is
not to provide complete insights about how to improve the pro-
filed application. Our goal is to provide different-level profiling
information to let the developers know the possible hot spots in
the application program.

5 Conclusion

In this paper, we propose a hybrid hardware-software-based
energy profiling solution, which could be implemented with lit-
tle cost (no more than 7% of the profiled system) but high ac-
curacy. Compared to the existing work, the proposed solution
could provide richer information on energy profiling. We pro-
pose an execution-path-tracking approach to provide multiple
granularity levels in the observation of the energy consump-
tion of a program execution. We address technical issues in
the design and implementation of the proposed profiling solu-
tion. A quantitative energy-profiling study over a well-known
web browser Konqueror is then presented to provide a feasibil-
ity study of the proposed solution and insights in the design of
an energy-efficient web browser. The experimental results show
the energy consumption of functions, modules, or even classes
at different layers of a program. It helps in the identification of
program components that need better improvement, e.g., encod-
ing conversion, and the problems in the designs of web pages,
such as those with a heavy usage of JavaScript code.

For the future work, we shall extend the hybrid hardware-
software-based profiling solution for more elaborated energy
analysis, especially on interactive GUI-based applications,
where the workloads of GUI applications are often driven by
external GUI and system events. We should also extend EPAT
to the exploiting of energy consumption of an application run on
a platform supporting dynamic voltage scaling.

References

[1] AppleTMSafari. http://www.apple.com/safari/.

[2] Konqueror. http://www.konqueror.org/.

[3] National Instruments DAQ. http://www.ni.com/dag/.

[4] J. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. Leung, R. L.
Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
‘Where have all the cycles gone? In Proceedings of the 16th Symposium on Operating
System Principles, Oct. 1997.

[5] T. Ball and J. R. Larus. Efficient path profiling. In International Symposium on
Microarchitecture, pages 46-57, 1996.

[6] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23-29, July
1999.

[7] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes, S. Hughes, and K. Yagh-
mour. Diapm-rtai position paper. Real Time Operating Systems Workshop, Nov. 2000.

[8] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In
Symposium on Operating Systems Principles, pages 48-63, 1999.

[9] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. T. Kandemir,

T. Li, and L. K. John. Using complete machine simulation for software power esti-

mation: The softwatt approach. In International Symposium on High-Performance

Computer Architecture HPCA, pages 141-150, 2002.

D. C. Lee, P. Crowley, J.-L. Baer, T. E. Anderson, and B. N. Bershad. Execution

characteristics of desktop applications on windows NT. In ISCA, pages 27-38, 1998.

D. Shin, H. Shim, Y. Joo, H.-S. Yun, J. Kim, and N. Chang. Energy-monitoring tool

for low-power embedded programs. IEEE Design and Test of Computers, 19(4):7-17,

2002.

T. Simunic, L. Benini, and G. D. Micheli. Cycle-accurate simulation of energy con-

sumption in embedded systems. In Design Automation Conference, 1999.

V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction level power analysis and

optimization of software. In Journal of VLSI Signal Processing, pages 1-18, 1996.

Tool Interface Standard (TIS). Executable and Linking Format (ELF) Specification.

K. Yaghmour and M. R. Dagenais. Measuring and characterizing system behavior us-

ing kernel-level event logging. In Proceedings of the 2000 USENIX Annual Technical

Conference, 2000.

[10]

[11]

[12]
[13]

[14]
[15]

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS'05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

