
Supercomputing with MPI meets the Common
Workflow Language standards: an experience report

Rupert W. Nash, Nick Brown
EPCC, The University of Edinburgh

Edinburgh, United Kingdom
Email: {r.nash, n.brown}@epcc.ed.ac.uk

Michael R. Crusoe
Vrije Universiteit; Amsterdam, NL

ELIXIR-NL/DTL Projects
Email: mrc@commonwl.org

Max Kontak
DLR German Aerospace Center

Institute for Software Technology
High-Performance Computing

Cologne, Germany

Abstract—Use of standards-based workflows is still somewhat
unusual by high-performance computing users. In this paper
we describe the experience of using the Common Workflow
Language (CWL) standards to describe the execution, in parallel,
of MPI-parallelised applications. In particular, we motivate and
describe the simple extension to the specification which was
required, as well as our implementation of this within the CWL
reference runner. We discuss some of the unexpected benefits,
such as simple use of HPC-oriented performance measurement
tools, and CWL software requirements interfacing with HPC
module systems. We close with a request for comment from
the community on how these features could be adopted within
versions of the CWL standards.

I. INTRODUCTION

The use of standards-based workflows in HPC is a small, but
growing, area of our community. As developers start to recog-
nise the benefits that workflows can deliver, then they often
find that the automation, structure, abstraction, and portability
that workflows can provide, delivers significant productivity
benefits in the long term. One such user is the VESTEC
project, which required the ability to describe the execution
of applications, and then invoke them on a supercomputer.
The specific requirements in this instance included the ability
to describe the inputs, to execute the tool itself, and then to
collect the any generated outputs. Furthermore, it was highly
desirable that these steps would be represented in a structured,
and ideally standard, fashion. VESTEC team members (Nash,
Brown, Kontak) found that the CommandLineTool concept
from the Common Workflow Language v1.1 standard [1]
and the CWL reference runner (”cwltool”)1 satisfied these
requirements, but with one crucial caveat: namely that many
of our tools were MPI-parallelised applications and this is not
yet directly supported by the CWL standard.

The VESTEC (Visual Exploration and Sampling Toolkit for
Extreme Computing) project aims to fuse HPC with real-time
data for urgent decision making for disaster response. This
project involves numerous simulation codes to run on HPC
machines, and the requirement to couple these together such
that the output from one code can be used as an input to others.
CWL looked to be an attractive option to provide this in a
structured manner on production machines with existing MPI
implementations. However a key requirement was the ability

1https://github.com/common-workflow-language/cwltool

to drive this from within a batch submission script, where the
batch job itself allocates a number available nodes and starts
the CWL tool, and this engine is then able to interact with
the MPI runner in order to direct the launch parameters, such
as number of MPI processes and placement. Furthermore, this
needed to be easily configurable by the user, for each step
in the CWL workflow. As it stood, this functionality was not
available.

In figure 1 we illustrate a representation of one of the CWL
workflows used within the project. This workflow consumes
one or more global weather forecasts from the US NOAA
Global Forecast System2, and interpolates the meterological
fields onto the domain for the simulation (specified by the
input pdg, i.e. the physiographic data). It then runs the
Meso-NH [2] mesoscale atmospheric simulation application in
parallel (as specified by the sim_processes input) using
the GFS data provided as initial and boundary conditions, for
an experiment of simulated duration segment_length. The
outputs of this simulation are then post-processed by a script
into a single netCDF file with the fields of interest for use
later in the outer workflow.

The Message Passing Interface (MPI) [3] is an important
standard for parallel programming, especially for large, tightly-
coupled simulations; for example a 2017 survey by the US
Exascale Computing Project [4] identified that all the respond-
ing application development projects under its umbrella were
using MPI in some way. This approach works by starting many
copies of the same program, which differ only by a unique
index (their rank) and providing a mechanism for them to
perform point-to-point and collective communication, synchro-
nisation operations, and IO. Most HPC systems include a low-
latency, high-bandwidth interconnect which is not accessed via
the usual TCP/IP stack, which the MPI libraries themselves are
specifically optimised to take advantage of.

We have created an extension to the CWL standard to allow
a tool description to prepend the platform-specific job launcher
and the arguments it requires to the command line of the
tool invocation in a way that is orthogonal to the rest of
the tool description. This has been implemented within the
CWL reference runner, tested on several HPC clusters, and

2https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-forcast-system-gfs

ar
X

iv
:2

01
0.

00
42

2v
1

 [
cs

.D
C

]
 1

 O
ct

 2
02

0

Workflow Inputs

Workflow Outputs

PREP_GFS

MesoNH

Postprocessing

weather_output

gfs_gribssegment_length pgd ncl_resfilesim_processes turblen output_period ncl_rootturbdim

Fig. 1. Schematic of a simple workflow used within the VESTEC project. The upper, blue boxes denote inputs, magenta boxes workflow steps which may
be run via MPI, yellow boxes conventional workflow steps, and the lower, purple boxes outputs. Arrows show the dependencies within the workflow.

merged into the CWL reference runner behind a feature flag.
Furthermore, due to the configurable way in which we have
designed the extension, it was trivial to add automatic col-
lection of performance statistics during parallel job execution
using performance gathering tools, such as LIKWID [5].

Another challenge to supporting the execution of portable
workflows on supercomputers is the requirement for custom-
compiled software and the lack of software containers for per-
formance reasons. This is somewhat orthogonal to the classic
CWL approach, as the standards have long supported both
software containers and references to the name (and published
identifier, if available) of the software tool. The CWL reference
runner has a feature which maps these software identifiers to
locally available software packages, and loads them in a site-
specific way using a local configuration3. We have adopted this
same approach within the VESTEC system, which ensures that
our workflows are portable between target HPC systems.

This paper is organised as follows, in Section II we briefly
explored related work and alternatively systems which aim to
solve the problem, but often do so in a manner not suited to
our requirements in VESTEC. This is followed by Section III
which describes the extensions made to the CWL reference
runner in order to support a knowledge of MPI and the
ability to control important parameters from workflow scripts.
Section IV then describes the use of these extensions to not
only drive the execution of workflow tasks via MPI, but

3https://github.com/common-workflow-language/cwltool/blob/main/
README.rst#leveraging-softwarerequirements-beta using a library from the
Galaxy Project [6]

furthermore demonstrates the ability to gather performance
metrics by calling into profiling tools, such as LIKWID [5]
in this example, which is often an important activity in HPC.
Section V then concludes this paper, summarising our findings,
experience and discussing further work. In particular, we
pose questions to the wider HPC workflow community about
whether this approach is the correct one for extending the
CWL specification.

II. RELATED WORK

Whilst there is an embarrassment of riches4 when it comes
to selecting a workflow system, many of these were developed
with limited single node level concurrency in mind. Therefore,
whilst it is often possible to run tasks in parallel as individual
tasks which are allocated to multiple cores on the same node,
in order to extend to run across modern supercomputers with
multiple nodes, more work is required. There have been a
number of attempts at this, some more applicable to our spe-
cific challenge here than others, but crucially the standardised
nature of CWL offers other significant advantages which made
it a very attractive technology to adopt.

Workflow systems have followed a number of distinct
approaches to supporting execution across multiple nodes. The
tightest integrated are those that look to run the different stages
in parallel inter-node, with Parsl [7] and Swift/T [8] being two
examples of this. Swift/T compiles a programmer’s Swift code
into an MPI program, where the semantics of Swift, which is
naturally concurrent, make it ideal as an abstraction around

4https://s.apache.org/existing-workflow-systems

workflows running concurrently. The language schedules the
execution of the programmer’s statements, as tasks, based upon
the availability of input data, and coordinates the distribution
and movement of data between the tasks. Implicitly moving
data using MPI, the idea is that much of this acts as a wrapper
for calls to launch existing tasks.

A major limitation of these tightly coupled approaches is
that, by coupling so closely to MPI, some of the limitations
of MPI permeate into the workflow system. For instance in
Swift/T, the lack of fault tolerance in MPI means that the work-
flow engine relies upon all tasks completing without error, and
has limited recourse if an error occurs inside one of the MPI
jobs or the MPI runtime itself. Furthermore, the dynamic job
launching capabilities of MPI, which are known to be limited,
are not sufficient to fully support the launching of tasks in
Swift/T. To address this, the authors proposed an extension
to the MPI standard, MPI_Comm_launch [9], which allows
a child MPI application to be launched inside the resources
originally held by processes of a parent MPI application. This
has been implemented within a bespoke MPI extension of on
a Linux cluster system, which indeed is required for Swift/T,
however would not be possible on mainstream production
supercomputers that use the PMI interface.

The technologies described above, where the engine trans-
lates source code of a programming language into steps is one
example of a workflow abstraction. There are other, arguably
less tightly coupled, general purpose approaches that support
the expression of the stages through configuration files. A
number of these, including DARE [10] and Pegasus [11],
support execution of their workflows on HPC machines.
For instance a specific tool, pegasus-mpi-cluster [12], has
been developed for Pegasus which enables it to run high-
throughput scientific workflows on HPC systems. MPI is
the key enabling technology here, and the engine adopts a
scheduler/worker pattern where one of the MPI processes
manages the workflow stages to be executed, distributes these
amongst the workers, and workers then communicate results
back to the scheduler once completed. This is a powerful
approach for parallel applications that follow such a pattern of
parallelism, however it is not shared by the applications of the
VESTEC project. Instead, this project involves codes which
predominately follow a geometric decomposition approach,
and write their output to the file-system, often in parallel.
For such an approach to work, where tasks are mapped to
workers, then at a minimum each worker would need to be
capable of running over numerous MPI processes within their
own communicator, which is not implemented. Furthermore,
whilst there are numerous command line options provided by
the pegasus-mpi-cluster tool, if users wished to provide further
options then this would require in-depth modification of the
tool itself.

Pegasus also provides an alternative way of executing on
HPC machines via interaction with the batch scheduling sys-
tem using a number of approaches built atop HTCondor [13].
Parameters to the MPI job launcher can be provided via the
generation of a site catalogue, one for each machine, which

specifies the set of applicable configuration options which can
be set. This is a nice approach, however rather heavyweight
for the fairly simple workflows we have in VESTEC. In fact,
we favour following an opposite method, where instead of the
workflow system interacting with the batch system to launch
specific tasks, it is the execution of the workflow engine itself
that is submitted to the batch system. Within the confines of
the resources which have been made available, the engine then
marshals which MPI processes run and when, directing the
configuration of the MPI job launcher based upon the user’s
workflow description.

Numerous domain specific workflow systems have been
developed which, to some extent, support execution over HPC
machines. One example of this is the weather and climate
community, who make extensive use of workflows to drive
their codes. Cycl [14] is a popular workflow engine in this
community, designed specifically with the challenge of cycli-
cal workflows in mind. Used in production by organisations
which include the UK Met Office and NIWA, the technology
is also able to manage the submission of jobs via common
HPC batch systems, however it has no specific knowledge of
the underlying MPI per se. Therefore, finer-grained control
around the behaviour of MPI between allocated nodes, for
instance the ratio of MPI processes to threads, is not possible,
which is required by VESTEC.

ecFlow [15] has been developed by ECMWF and in this
technology the launching is undertaken by shell scripts, which
themselves are called by ecFlow. It is therefore these scripts,
rather than the workflow system itself, that has knowledge of
how the code should be launched, which the workflow engine
has no visibility of. Furthermore, elements of ecFlow must
be installed on the target system to enable task communica-
tions. Autosubmit [16] is another domain specific workflow
technology developed for weather and climate. Delivered as
a lightweight Python module, unlike Cycl or ecFlow, the
target HPC system need have no specific support installed for
the workflow engine. Built on top of Simple API for Grid
Applications (SAGA) [17],

A number of HPC codes have recognised the benefits of
workflows, but developed an approach which is very applica-
tion specific. One example of this is Gromacs [18], a popular
molecular dynamics application which is highly parallelised
and runs well on many thousands of CPU cores. The BioExcel
Building Blocks (BioBB) library [19] developed a workflow
approach with the aim of bringing biomolecular simulations
closer to the bioinformatics way of working. Scientists build
individual blocks by wrapping software components in Python
code, with an overarching workflow system such as Galaxy,
PyCOMPSs, and CWL then driving these. However, it is these
wrapper scripts that actually handle the job launching with
MPI and the associated parameters, with the workflow system
itself has no visibility of this.

The Common Workflow Language open standards [1] are
a set of community driven specifications for describing com-
mand line tools as typed functions and the workflows made
from these tools. While CWL originated in the bioinformatics

community, it was an early goal to not make the standards
specific to bioinformatics or even the life sciences. There
are many implementations5 of the CWL standards with a
variety of licenses: proprietary software as a service (products
from Seven Bridges Genomics and others), commercially
supported open source (Arvados6), and academic open source.
The compliance of these projects to the CWL standards can
be tested using the CWL conformance tests7. The Toil [20]
project has a ”toil-cwl-runner” workflow executor that passes
all of the CWL v1.0 and most of CWL v1.1 and CWL v1.2
conformance tests; it has backend support for many HPC/HTC
job scheduling systems and can also manage an ephemeral
cluster on commercial cloud computing systems. The CWL
reference runner ”cwltool” aims at providing a test bed for
implementation of new CWL features, but does not aim to be
a complete production level workflow management platform.
For example, the CWL reference runner does not interface
with job schedulers or do any type of remote execution.

III. DESIGN AND IMPLEMENTATION

It is worth noting that while the MPI standard deliberately
does not require a particular method for starting MPI
programs, they are typically started with a job launcher
command similar to that recommended in the standard:
mpiexec -n <num processes> <executable>
<program arguments>. Additionally, the job launcher
may not run on one of the machine that will actually execute
the program (indeed this is the case for one of the machines
used by VESTEC: ARCHER, a Cray XC30 system). Further,
the job launch command may require environment variables
to be set in order to communicate, e.g. which nodes are
available for use, as is common on clusters using SLURM.

Since CWL lacks structured MPI support, the so-called base
command of the tool description would become either: the
platform specific mpiexec, thus negating portability of the
tool description and relegating the actual application to merely
an argument; or a custom wrapper script which interposes
between CWL and the tool imposing an greater burden upon
either the tool or tool description author.

Before extending the CWL specification and reference
runner, we first attempted to use the CWL feature of using
JavaScript embedded in the tool description to programmat-
ically insert the necessary MPI job launch commands to the
front of the command line string. Unfortunately this required
a somewhat convoluted job description file, as can be seen by
comparing examples (a) and (b) from listing 1 which show,
respectively, the (serial) ”Hello world” example from the CWL
tutorial8 and a version which launches multiple copies of the
same in parallel via MPI.

This approach has a number of further drawbacks, such as
requiring that a JavaScript engine be available, not allowing

5https://www.commonwl.org/#Implementations
6https://arvados.org/
7https://github.com/common-workflow-language/

common-workflow-language/blob/main/CONFORMANCE TESTS.md
8https://www.commonwl.org/user guide/02-1st-example/index.html

unknown (to the tool description author) environment variables
to be set, and interacting poorly with software container
runtimes. After engaging with the CWL community and the
CWL Project Lead (Crusoe), it was clear that the job runner
needed to understand that this was different from normal
execution, in much that same way that execution within a
container was different.

We formulated the following requirements on this extension
to the specification. That tool descriptions:

• must opt in to potentially being run via MPI;
• must allow for this to be disabled;
• must be able to control number of processes either

directly or via an input;
• must remain the same for different execution machines;
• should be as close to a non-MPI version of the same tool

as practical.

And also that the runner also needs to provide a configuration
mechanism:

• to specify the platform specific launcher;
• to specify how to set the number of processes;
• to add any further flags required;
• to pass through or set any environment variables required.

In a more general case, for example of hybrid MPI +
OpenMP parallelism, correctly launching an application re-
quires knowledge of multiple things. First, the execution
hardware: what is the memory architecture of a node (num-
ber of cores per NUMA region, how many NUMA regions
per socket, number of sockets per node) and their number?
Second, how does one set the number of MPI processes
(typically via command line argument) and OpenMP threads
(typically via the OMP_NUM_THREADS environment vari-
able)? Third, how does one specify process and thread binding
rules? Fourth, what application specific knowledge must be
considered? A similar exercise would have to completed for
GPU accelerated applications. Because of the large amount
complexity involved in a general solution and the fact that
our use case typically requires only one parallel execution per
workflow (allowing us to use the extra configuration options
to supply this), we simply defer this to future work.

CWL supports the concept of a requirement which ”mod-
ifies the semantics or runtime environment of a process”9,
which is a natural fit for the task our problem. The minimum
features we need are to enable the requirement and to pass
through the number of MPI processes to start (we treat the case
of zero processes requested as being equivalent to disabling
the requirement). The number of processes can either be a
plain integer or a CWL Expression which evaluates to an
integer.

The formal definition of CWL is given in the SALAD [21]
schema definition language, which precisely defines the keys

9https://www.commonwl.org/v1.1/CommandLineTool.html#Requirements
and hints

cwlVersion: v1.0
class: CommandLineTool

inputs:
message:
type: string
inputBinding:
position: 1

baseCommand: echo

outputs: []

(a)

cwlVersion: v1.0
class: CommandLineTool
requirements:
InlineJavascriptRequirement:

expressionLib:
- $include: mpi.js

SchemaDefRequirement:
types:
- $import: mpi.yml

inputs:
message:

type: string
inputBinding:
position: 1

mpi:
type: mpi.yml#mpiInfo
default: {}

arguments:
- position: 0

valueFrom: $(mpi.run("echo"))
outputs: []

(b)

cwlVersion: v1.0
class: CommandLineTool
$namespaces:
cwltool: http://commonwl.org/cwltool#

requirements:
cwltool:MPIRequirement:
processes: $(inputs.nproc)

inputs:
message:
type: string
inputBinding:
position: 1

nproc:
type: int

baseCommand: echo

outputs: []

(c)

Listing 1: The first, ”Hello World” example from the CWL tutorial in three ways. (a) original, serial version; (b) our interim,
MPI parallel implementation; (c) final version using MPIRequirement. In each case, the tool accepts one argument which
is echoed to standard output. In cases (b) and (c), this is run in parallel via the MPI launcher.

and their types. In listing 2 we show a simplified10 version of
the addition we made to the CWL specification. We use the
SALAD feature of inheritance to declare that this type can
be used in the requirements or hints section of a tool
description. We then declare that this object has two fields:
class which is always the string "MPIRequirement";
and processes which is either an integer or a string. We
use a simple string instead of an Expression due to a bug11

in the library which implements the SALAD specification.
Setting the attribute inVocab to a false declares that this
object should not be added to the standard CWL specification
but remain in the namespace of the reference runner (in this
case http://commonwl.org/cwltool).

A simple example tool description which uses this extension
is shown in listing 1(c). In this case, the user must provide
an input giving the number of MPI processes to start. The
MPI requirement object then uses this input to evaluate the
expression given as the value of processes.

The cwltool reference runner is open source (Apache 2
licensed) and written in Python (for versions ≥ 3.5). The
runner is written in a clear, object-orientated style, with an
extensive unit-test suite, making development relatively easy.
We added a command line option (--mpi-config-file)
to cwltool to accept a simple YAML file containing the
platform configuration data. We show descriptions of the
allowed keys, their types, and their default values if omitted
in table I.

10The full specification for MPIRequirement is at
https://github.com/common-workflow-language/cwltool/blob/
83038feb2a6fc3bab952e1ecc2a11bfbc8c557b4/cwltool/extensions-v1.1.
yml#L48

11https://github.com/common-workflow-language/schema salad/issues/326

- name: MPIRequirement
type: record
extends: cwl:ProcessRequirement
inVocab: false
fields:
- name: class
type: string
jsonldPredicate:

"_id": "@type"
"_type": "@vocab"

- name: processes
type: [int, string]

Listing 2: SALAD-YAML description of the
MPIRequirement. Note that labels and documentation
strings have been removed for clarity.

Within the runner, this argument, if present, is used to
configure the MPI runtime. When a tool is actually executed,
the runner checks for the MPIRequirement, evaluates the
processes attribute and if present and non-zero, it uses the
configuration data, as described in table I, to prepend the
appropriate strings to the front of the command line and alter
the runtime environment.

In keeping with the coding standards for cwltool, we im-
plemented fourteen unit tests, which are run in a continuous
integration system. Since this lacks an MPI library, we also
had to provide a mock MPI job launcher. Our work has been
merged12 into the main branch of the repository and released.
We performed some simple tests of running containerised par-

12https://github.com/common-workflow-language/cwltool/pull/1276

TABLE I
DESCRIPTION OF ALLOWED KEYS IN THE MPI PLATFORM CONFIGURATION FILE

Key Type Default Description

runner str "mpirun" The primary command to use.
nproc_flag str "-n" Flag to set number of processes to start.
default_nproc int 1 Default number of processes.
extra_flags List[str] [] A list of any other flags to be added to the runner’s command line before the

baseCommand.
env_pass List[str] [] A list of environment variables that should be passed from the host environment

through to the tool (e.g. giving the nodelist as set by your scheduler).
env_pass_regex List[str] [] A list of Python regular expressions that will be matched against the host’s

environment. Those that match will be passed through.
env_set Mapping[str,str] {} A dictionary whose keys are the environment variables set and the values being

the values.

allel applications: we could not make this work using Docker,
however we had success in simple cases using Singularity [22].

We also tested the extension by applying it within the
VESTEC project, to describe the individual tasks that are
performed. In the initial use-case evaluated this was an urgent
simulation of a forest fire using real time weather forecast
data, the workflow for which is shown above in figure 1. We
could use a single platform-dependent configuration file to run
multiple MPI programs (steps PREP_GFS and MesoNH) with
different numbers of processes.

One feature we have yet to implement is allowing users to
specify tool-dependent overrides to the platform configuration
data. For example one might wish to create a workflow with
one pure-MPI code and another that uses multiple threads per
MPI-process; these would likely require to be launched with
different flags, for example to change the number of processes
per node and alter the thread binding, which is not currently
possible. We note that nevertheless individual steps within a
workflow can still start different numbers of MPI processes;
what we lack is a fine-grained method for control of more
advanced, often machine specific MPI options.

IV. MPI-AWARE PERFORMANCE MONITORING

Monitoring the performance of parallel applications is par-
ticularly important when they may be running across thou-
sands of cores and is very common in the HPC and super-
computing community. In a scenario where a workflow may
execute very many parallel jobs this is even more so.

There are several tools that can be used to measure the per-
formance of applications, for example, the open-source Linux
kernel tool perf [23] or the proprietary Intel VTune [24]. For
an integration of performance measurements with the CWL
extension presented in this paper, we have decided to use the
open-source LIKWID tool suite [5], [25], which contains a set
of command-line tools that enable us to read out performance
counters of the CPU easily. For example, it provides a drop-
in replacement for mpirun called likwid-mpirun, which
can be provided directly in the CWL MPI configuration YAML
file as the platform-specific runner.

Moreover, in the VESTEC project, where this function-
ality will be used, we want to be able to automatically
process performance measurement data. LIKWID allows for

this by providing so-called output filters, which generate
output in machine-readable formats (e. g., JSON) instead
of human-readable command-line output. This enables us
to automatically process the created data. Unfortunately,
likwid-mpirun does not yet support output filters. How-
ever, one can still combine the platform specific runner with
the more basic likwid-perfctr tool, which can measure
the performance for a single MPI rank, such that one JSON
output file with performance data is created for each rank,
which can then be combined to get the data for all MPI ranks.
Our implementation of MPIRequirement does also easily
allows us to configure this combination of different tools as
can be seen in Listing 3.

As an example, we have created a CWL file for the HPCG
benchmark [26], which also allows for the configuration of
the problem size and target run time parameters. This was
chosen since the application reports its own estimates of the
floating point performance achieved, allowing us to have some
confidence that the reported numbers are correct. We have
executed the benchmark in an MPI-only manner on one and
two nodes of a cluster at German Aerospace Center, where
each node consists of 4 Intel Xeon Gold 6132 CPUs with 14
cores each, yielding a total of 56 and 112 cores, respectively.
As the MPI configuration file, we have used the one already

runner: srun
extra_flags: [
"likwid-perfctr",
"-C", "L:N:0",
"-g", "FLOPS_DP",
"-o", "/output/path/likwid_%j_%h_%r.json"
]

nproc_flag: -n
env_pass_regex: ["SLURM_.*"]

Listing 3: The MPI configuration file used for the execution of
an MPI application with CWL on a cluster that uses SLURM
as batch scheduler (therefore, the runner is srun) and pro-
viding machine-readable performance data files through the
likwid-perfctr tool. The so-called performance group
FLOPS_DP has been chosen, such that LIKWID reports
double precision floating point performance.

TABLE II
RESULTS REPORTED BY LIKWID FOR THE HPCG BENCHMARK WHEN EXECUTED WITH CWL ON ONE AND TWO NODES OF THE USED CLUSTER. THE

TABLE SHOWS THE TOTAL NUMBER OF CORES, THE TOTAL NUMBER OF FLOATING POINT OPERATIONS PER SECOND, THE MEAN AND STANDARD
DEVIATION PER RANK AS WELL AS THE TOTAL NUMBER OF SCALAR AND VECTORIZED MICRO-OPERATIONS.

HPCG reported LIWKID reported
Performance / GFLOP s−1 Performance / GFLOP s−1 Micro operation rate / Gs−1

Cores Total Rank mean Rank s.d. Total scalar Total vector

56 38.0 39.7 0.71 0.002 39.0 0.31
112 71.7 74.6 0.67 0.002 73.5 0.58

presented in Listing 3. After running the benchmark, LIKWID
provides us with the data about double precision performance,
shown in Table II.

LIKWID reports a total performance of 74.6GFLOP s−1

on two nodes, whereas the HPCG benchmark itself re-
ports 71.7GFLOP s−1 (based on its measured run time and
estimate of the number of operations performed), which
can be attributed to measurement errors and the fact that
likwid-perfctr acts as a wrapper for the whole HPCG
binary including computation of the performance statistics,
set up times etc., which might yield more floating point
operations. The same is true for the results gathered when
running the benchmark on a single node. Furthermore, from
the collected data we can observe that the HPCG benchmark
code has very good load balancing among the cores, since the
standard deviation of the performance is very small in both
cases. We can also see that the number of floating-point oper-
ations per rank only drops by a small amount when using two
instead of one node, which gives a hint to a good strong scaling
of the benchmark code. Of course this needs to analysed in
more detail for a reliable assessment of the scaling properties.
In Table II, we have also provided the measured number of
scalar and packed micro-operations, which indicate that the
compiler was not able to generate SIMD (single instruction,
multiple data) instructions from the HPCG code efficiently.
This gives a hint to possible performance optimizations.

All in all, in this section we have shown a simple proof-
of-concept on how the presented CWL extension can be used
for an MPI-parallel application and how easily the flexible
design of the extension allows us to perform performance
measurements.

V. CONCLUSION

In this paper we have presented our experience of working
between two quite disjoint communities, HPC and workflows.
The VESTEC authors (Nash, Brown, and Kontak) could rea-
sonably be defined as ”traditional HPC” researchers and their
experience is in writing, understanding, optimising and using
parallel applications on supercomputers. Whereas Crusoe’s
experience however comes from bioinformatics and scientific
workflow communities where the need for (and the use of)
standards-based approaches is more significant.

The VESTEC authors were pleasantly surprised to find that
these tools were powerful and flexible enough to be altered for
the purposes described above. We serendipitously found that

the software requirements feature of CWL could help make
our tool descriptions more portable, and that use of multi-step
CWL workflows could simplify our larger workflow system
by combining pre- and post-processing steps within a single
invocation of a CWL runner. The CWL community is pleased
that their efforts to enable the CWL standards to be useful
beyond the original bioinformatics users is yet again proven
worth while.

Together, we have developed an extension for the Common
Workflow Language to specify that a tool requires the use of
an MPI job launcher and implemented this within the CWL
reference runner. While we acknowledge that this is not as of
yet feature complete, it does allow interested users to configure
a complex, parallel application while not imposing a large
burden on the implementation of the CWL specification, as
demonstrated by our concise implementation which has been
released within the reference runner.

Therefore we believe that the work described in this paper
is, as it stands, of use to the HPC community driving their
codes via workflows. The ultimate aim is for this to become
part of the CWL specification, and to this end we will extend
the MPI platform configuration format to allow overriding
for different steps, likely using the reference implementation’s
overrides extension as inspiration. This will allow tool descrip-
tion authors and users to combine parallel applications which
require different launch options within a single workflow. Two
further straightforward features we plan to add are: first, to
allow specification of the revision of MPI standard required
by a tool; and, second, to allow specification of the level of
thread support required, as MPI applications can require one
of four distinct levels.

Before acceptance to the standard, we believe it important to
explore how best to implement the use of MPIRequirement
simultaneously with software container engines that include
Docker, Singularity, udocker, runc, and others. Likewise we
plan to test in one or more cloud environments that offer
managed MPI services. Bother exercises will improve the
specification and implementation of the MPIRequirement
and provide guidance for others who wish to implement the
extension.

To further demonstrate the applicability of such a
MPIRequirement language extension, another next step is
to engage with other implementations of the CWL specifica-
tion. This will enable the production of one or more indepen-
dent, proof-of-concept, implementations of our extension.

With our primary goal being to submit the
MPIRequirement (or some equivalent) feature for
inclusion into a future version of the CWL standard, we aim
for this paper to serve, in part, as a request for comment
from the wider HPC and workflow communities. We believe
that the work explored here has a real world application to
further exploiting HPC machines via workflows, and as such
the authors would be grateful to receive any comments or
suggestions, either via email or public CWL forums13.

ACKNOWLEDGMENT

This work was funded under the EU FET VESTEC H2020
project, grant agreement number 800904. This work used the
ARCHER UK National Supercomputing Service (http://www.
archer.ac.uk).

REFERENCES

[1] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton,
M. Heuer, A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich,
M. Scales, S. Soiland-Reyes, and L. Stojanovic, “Common workflow
language, v1.0.” [Online]. Available: https://w3id.org/cwl/v1.0/

[2] C. Lac, J.-P. Chaboureau, V. Masson, J.-P. Pinty, P. Tulet, J. Escobar,
M. Leriche, C. Barthe, B. Aouizerats, C. Augros, P. Aumond,
F. Auguste, P. Bechtold, S. Berthet, S. Bielli, F. Bosseur, O. Caumont,
J.-M. Cohard, J. Colin, F. Couvreux, J. Cuxart, G. Delautier, T. Dauhut,
V. Ducrocq, J.-B. Filippi, D. Gazen, O. Geoffroy, F. Gheusi, R. Honnert,
J.-P. Lafore, C. Lebeaupin Brossier, Q. Libois, T. Lunet, C. Mari,
T. Maric, P. Mascart, M. Mogé, G. Molinié, O. Nuissier, F. Pantillon,
P. Peyrillé, J. Pergaud, E. Perraud, J. Pianezze, J.-L. Redelsperger,
D. Ricard, E. Richard, S. Riette, Q. Rodier, R. Schoetter, L. Seyfried,
J. Stein, K. Suhre, M. Taufour, O. Thouron, S. Turner, A. Verrelle,
B. Vié, F. Visentin, V. Vionnet, and P. Wautelet, “Overview of the
Meso-NH model version 5.4 and its applications,” Geoscientific Model
Development, vol. 11, no. 5, pp. 1929–1969, 2018. [Online]. Available:
https://gmd.copernicus.org/articles/11/1929/2018/

[3] “MPI: A message-passing interface standard version 3.1,” MPI Forum,
Tech. Rep., 2015.

[4] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata,
R. E. Grant, T. Naughton, H. P. Pritchard, M. Schulz, and G. R.
Vallee, “A survey of MPI usage in the US exascale computing
project,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 3, p. e4851, 2020, e4851 cpe.4851. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4851

[5] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proceedings of PSTI2010, the First International Workshop on Parallel
Software Tools and Tool Infrastructures, San Diego CA, 2010.

[6] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech,
J. Chilton, D. Clements, N. Coraor, B. A. Grüning, A. Guerler,
J. Hillman-Jackson, S. Hiltemann, V. Jalili, H. Rasche, N. Soranzo,
J. Goecks, J. Taylor, A. Nekrutenko, and D. Blankenberg, “The Galaxy
platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update,” Nucleic Acids Res., vol. 46, no. W1, pp. W537–
W544, 2018. [Online]. Available: https://doi.org/10.1093/nar/gky379

[7] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster et al., “Parsl: Per-
vasive parallel programming in Python,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 25–36.

[8] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster, “Compiler
techniques for massively scalable implicit task parallelism,” in SC’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2014, pp. 299–
310.

13https://www.commonwl.org/#Support

[9] J. M. Wozniak, M. Dorier, R. Ross, T. Shu, T. Kurc, L. Tang,
N. Podhorszki, and M. Wolf, “MPI jobs within MPI jobs: A practical
way of enabling task-level fault-tolerance in HPC workflows,” Future
Generation Computer Systems, vol. 101, pp. 576–589, 2019.

[10] I. Klampanos, A. Davvetas, A. Gemünd, M. Atkinson, A. Koukourikos,
R. Filgueira, A. Krause, A. Spinuso, A. Charalambidis, F. Magnoni
et al., “Dare: A reflective platform designed to enable agile data-
driven research on the cloud,” in 2019 15th International Conference
on eScience (eScience). IEEE, 2019, pp. 578–585.

[11] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[12] M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi,
and P. J. Maechling, “Enabling large-scale scientific workflows on
petascale resources using mpi master/worker,” in Proceedings of the
1st Conference of the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the campus and beyond,
2012, pp. 1–8.

[13] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[14] H. Oliver, M. Shin, D. Matthews, O. Sanders, S. Bartholomew, A. Clark,
B. Fitzpatrick, R. van Haren, R. Hut, and N. Drost, “Workflow automa-
tion for cycling systems,” Computing in Science Engineering, vol. 21,
no. 4, pp. 7–21, 2019.

[15] A. Bahra, “Managing work flows with ecFlow,” ECMWF Newsl, vol.
129, pp. 30–32, 2011.

[16] D. Manubens-Gil, J. Vegas-Regidor, C. Prodhomme, O. Mula-Valls, and
F. J. Doblas-Reyes, “Seamless management of ensemble climate predic-
tion experiments on HPC platforms,” in 2016 International Conference
on High Performance Computing & Simulation (HPCS). IEEE, 2016,
pp. 895–900.

[17] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf, “SAGA: A simple API
for grid applications. high-level application programming on the grid,”
Computational Methods in Science and Technology, vol. 12, no. 1, pp.
7–20, 2006.

[18] M. Javanainen, I. Vattulainen, and L. Monticelli, “On atomistic models
for molecular oxygen,” The Journal of Physical Chemistry B, vol. 121,
no. 3, pp. 518–528, 2017.

[19] P. Andrio, A. Hospital, J. Conejero, L. Jordá, M. Del Pino, L. Codo,
S. Soiland-Reyes, C. Goble, D. Lezzi, R. M. Badia et al., “BioExcel
Building Blocks, a software library for interoperable biomolecular
simulation workflows,” Scientific data, vol. 6, no. 1, pp. 1–8, 2019.

[20] J. Vivian, A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong,
A. Novak, J. Pfeil, J. Narkizian, A. D. Deran, A. Musselman-Brown,
H. Schmidt, P. Amstutz, B. Craft, M. Goldman, K. Rosenbloom,
M. Cline, B. O’Connor, M. Hanna, C. Birger, W. J. Kent, D. A. Patterson,
A. D. Joseph, J. Zhu, S. Zaranek, G. Getz, D. Haussler, and B. Paten,
“Toil enables reproducible, open source, big biomedical data analyses,”
Nature Biotechnology, vol. 35, no. 4, pp. 314–316, 2017.

[21] P. Amstutz, “Semantic annotations for linked Avro data (SALAD).”
[Online]. Available: https://www.commonwl.org/v1.1/SchemaSalad.html

[22] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLOS ONE, vol. 12, no. 5,
pp. 1–20, 05 2017. [Online]. Available: https://doi.org/10.1371/journal.
pone.0177459

[23] perf: Linux profiling with performance counters. Accessed 2020-08-25.
[Online]. Available: https://perf.wiki.kernel.org/index.php/Main\ Page

[24] Intel VTune Profiler. Accessed 2020-08-25. [Online]. Available: https://
software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

[25] LIKWID Performance Tools. Accessed 2020-08-25. [Online]. Available:
https://hpc.fau.de/research/tools/likwid/

[26] P. L. Jack Dongarra, Michael A Heroux, “High-performance conjugate-
gradient benchmark: A new metric for ranking high-performance com-
puting systems,” The International Journal of High Performance Com-
puting Applications, vol. 30, pp. 3–10, 2015.

