
Software Quality Models: Purposes, Usage Scenarios and Requirements

Florian Deissenboeck, Elmar Juergens, Klaus Lochmann, and Stefan Wagner
Fakultät für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany
{deissenb,juergens,lochmann,wagnerst}@in.tum.de

Abstract

Software quality models are a well-accepted means to
support quality management of software systems. Over the
last 30 years, a multitude of quality models have been pro-
posed and applied with varying degrees of success. De-
spite successes and standardisation efforts, quality models
are still being criticised, as their application in practice ex-
hibits various problems. To some extent, this criticism is
caused by an unclear definition of what quality models are
and which purposes they serve. Beyond this, there is a lack
of explicitly stated requirements for quality models with re-
spect to their intended mode of application. To remedy this,
this paper describes purposes and usage scenarios of qual-
ity models and, based on the literature and experiences from
the authors, collects critique of existing models. From this,
general requirements for quality models are derived. The
requirements can be used to support the evaluation of ex-
isting quality models for a given context or to guide further
quality model development.

1. Introduction

Research on software quality is as old as software re-
search itself. As in other engineering and science disci-
plines, one approach to understand and control an issue is
the use of models. Therefore, quality models have become
a well-accepted means to describe and manage software
quality. Beginning with hierarchical models proposed by
Boehm et al. [2], over the last 30 years, a variety of quality
models has been developed, some of which have been stan-
dardised. Many of these models are used, for example to aid
the specification of quality requirements, to assess existing
systems or to predict the defect density of a system in the
field.

Research Problem Despite the progress made with soft-
ware quality models, there are still issues that prevent them

from becoming widely adopted in practice. Practitioners,
in particular, have been disappointed because quality mod-
els do not live up to expectations. It often remains unclear
how quality models can be operationalised in practice to
define, assess and predict quality. An underlying problem
is the overwhelming number of diverse models that have
been proposed by different research communities for differ-
ent purposes without using a uniform terminology.

Contribution To clarify the situation regarding the
plethora of existing quality models, we propose a simple
three-level scheme to classify quality models w.r.t. to their
intended purpose. Following this scheme, we collect the
common points of criticism for the available quality models
and the usage scenarios of these models as they are found
in the relevant literature. Based on these, as well as on our
personal practical experiences, we derive a set of general re-
quirements for quality models and their meta models. These
requirements can be used to judge the appropriateness of a
model for a given situation as well as to improve existing
quality models.

2. Software quality models

The last three decades in quality modelling generated a
multitude of very diverse models commonly termed “qual-
ity models”. Examples on the spectrum of diverse mod-
els include taxonomic models like the ISO 9126 [12],
metric-based models like the maintainability index (MI) [4]
and stochastic models like reliability growth models
(RGMs) [16]. On first sight, such models appear to have
little relation to each other although all of them deal with
software quality. We claim that this difference is caused by
the different purposes the models pursue: The ISO 9126 is
mainly used to define quality, metric-based approaches are
used to assess the quality of a given system and reliability
growth models are used to predict quality. To avoid compar-
ing apples with oranges, we propose to use these different

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

purposes, namely definition, assessment and prediction of
quality, to classify quality models. Consequently, we term
the ISO 9126 as definition model, metric-based approaches
as assessment models and RGMs as prediction models.

Although definition, assessment and prediction of qual-
ity are different purposes, they are obviously not indepen-
dent of each other: It is hard to assess quality without know-
ing what it actually constitutes and equally hard to predict
quality without knowing how to assess it. This relation be-
tween quality models is illustrated by the DAP classification
shown in Fig. 1.

De�nition
Models

Assessment
Models

Prediction
Models

ISO 9126

Ideal Model
MI

RGM

Figure 1. DAP Classification for Q-Models

The DAP classification views prediction models as the
most advanced form of quality models as they can also be
used for the definition of quality and for its assessment.
However, this view only applies for ideal models. As Fig. 1
shows, existing quality models do not necessarily cover all
aspects equally well. The ISO 9126, for example, defines
quality but gives no hints for assessing it; the MI defines an
assessment whose relation to a definition of quality is un-
clear. Similarly, RGMs perform predictions based on data
that is not explicitly linked to a definition of quality.

To reflect the importance of the purpose, we propose
a definition of quality models in this paper that explicitly
takes the purpose of the quality model into account. Due
to the diversity of different models, we deliberately do not
restrict the type of model to a specific modelling technique
or formalism:

Definition 1 (Quality Model) A model with the objective
to describe, assess and/or predict quality.

Independent of the modelling technique used to build a
quality model, we consider the existence of a defined meta
model as crucial. Even though, in many cases, quality meta-
models are not explicitly defined for existing quality mod-
els. A metamodel (or “structure model” [14]) is required to
precisely define the model elements and their interactions.
It not only defines legal model instances but also explains
how models are to be interpreted. Accordingly, we define:

Definition 2 (Quality Meta Model) A model of the con-
structs and rules needed to build specific quality models.

Finally, it must be defined how the quality model can be
used in the development and evolution of a software sys-
tem. This typically concerns the process by which a qual-
ity model is created and maintained and the tools employed
for its operationalisation. We call this a quality modelling
framework. Although not necessarily required for the enu-
meration and discussion of quality model requirements, we
give a definition for the sake of clarity:

Definition 3 (Quality Modelling Framework) A frame-
work to define, evaluate and improve quality. This usually
includes a quality metamodel as well as a methodology
that describes how to instantiate the metamodel and use
the model instances for defining, assessing, predicting and
improving quality.

3. Critique

All the existing quality models have their strengths and
weaknesses. Especially the latter have been discussed in
various publications. We summarise and categorise these
points of criticism. Please note that different quality models
are designed for different intentions and therefore not all
points are applicable to all models. However, every quality
model has at least one of the following problems.

3.1 General

One of the main shortcomings of existing quality models
is that they do not conform to an explicit metamodel. Hence
the semantic of the model elements is not precisely defined
and the interpretation is left to the reader.

Quality models should act as a central repository of
information regarding quality and therefore the different
tasks of quality engineering should rely on the same qual-
ity model. But today, quality models are not integrated into
the various tasks connected to quality. For example, the
specification of quality requirements and the assessment of
software quality are usually not based on the same models.

Another problem is that today quality models do not ad-
dress different views on quality. In the field of software
engineering, the value-based view is typically considered
of high importance [21]. This view is largely missing in
current quality models [15].

The variety in software systems is extremely large, rang-
ing from huge business information systems to tiny embed-
ded controllers. These differences must be accounted for
in quality models by defined means of customisation. In
current quality models, this is not considered [11, 13, 17].

3.2 Definition models

Existing quality models lack clearly defined decomposi-
tion criteria that determine how complex concepts of quality
are to be decomposed. Most definition models depend on a
taxonomic, hierarchical decomposition of quality attributes.
This decomposition does not follow defined guidelines and
can be arbitrary [3,5,14,15]. Hence, it is difficult to further
refine commonly known quality attributes, such as avail-
ability. Furthermore, in large quality models, unclear de-
composition makes locating elements difficult, since devel-
opers might have to search large parts of the model to assert
that an element is not already contained. This can lead to
redundancy due to multiple additions of the same or similar
elements.

The ambiguous decomposition in many quality models
is also the cause of overlaps between different quality at-
tributes. Furthermore these overlaps are often not explicitly
considered. For example, security is strongly influenced by
availability (denial of service attack) which is also a part of
reliability; code quality is an important factor for maintain-
ability but is also seen as an indicator for security [1].

Most quality model frameworks do not provide ways
for using the quality models for constructive quality assur-
ance. For example, it is left unclear how the quality models
should be communicated to project participants. A common
method of communicating such information are guidelines.
In practice, guidelines that are meant to communicate the
knowledge of a quality model experience various problems.
Often these problems are directly related to corresponding
problems of the quality models itself; e.g. the guidelines are
often not sufficiently concrete and detailed or the document
structure of the guideline is not aligned according to an ev-
ident schema. Also rationales are often not given for the
rules the guidelines impose. Another problem is that the
quality models do not define tailoring methods to adapt the
guidelines to the application area.

3.3 Assessment models

The already mentioned unclear decomposition of qual-
ity attributes is in particular a problem for analytical quality
assurance. The given quality attributes are mostly too ab-
stract to be straightforwardly checkable in a concrete soft-
ware system [3,5]. Because the existing quality models nei-
ther define checkable attributes nor refinement methods to
get checkable attributes, they are hard to use in measure-
ment [9, 15].

In the field of software quality, a great number of met-
rics for measurement have been proposed. But these met-
rics face problems that also arise from the lack of struc-
ture in quality models. One problem is that despite defining
metrics, the quality models fail to give a detailed account

of the impact that specific metrics have on software qual-
ity [15]. Due to the lack of a clear semantics, the aggrega-
tion of metric values along the hierarchical levels is prob-
lematic. Another problem is that the provided metrics have
no clear motivation and validation. Moreover, many exist-
ing approaches do no respect the most fundamental rules of
measurement theory and, hence, are prone to generate du-
bious results [7].

Due to the problems in constructive and analytical qual-
ity assurance, also the possibility of certification on basis of
quality models experiences elementary problems [9].

It has to be noted that measurement is vital for any con-
trol process. Therefore the measurement of the most im-
portant quality attributes is essential for an effective quality
assurance processes and for a successful requirements engi-
neering.

3.4 Prediction models

Predictive quality models often lack an underlying defi-
nition of the concepts they are based on. Most of them rely
on regression using a set of software metrics. This regres-
sion then results in equations that are hard to interpret [8].

Furthermore, prediction models tend to be strongly
context-dependent, also complicating their broad applica-
tion in practice. Many factors influence the common predic-
tion goals and especially which factors are the most impor-
tant ones varies strongly. Usually these context conditions
are not made explicit in prediction models.

4. Usage scenarios

In order to specify requirements for software quality
models, we first need to know how the models shall be used.
The usage purpose and context have a strong influence on
the structure as well as the content of the model, indepen-
dent of whether it is used for definition, assessment or pre-
diction purposes.

Definition models are used in various phases of a soft-
ware development process. During requirements engineer-
ing, they define quality attributes and requirements for
planned software systems [15, 23] and thus constitute a
method to agree with the customer what quality means [15].
During implementation, quality models serve as basis of
modelling and coding standards or guidelines [6]. They
provide direct recommendations on system implementa-
tion and thus constitute constructive approaches to achieve
high software quality. Furthermore, quality defects that are
found during quality assurance are classified using the qual-
ity model [6]. Apart from their use during software develop-
ment, definitional quality models can be used to communi-
cate software quality knowledge during developer training
or student education.

Assessment models often naturally extend quality defini-
tion model usage scenarios to control compliance. During
requirement engineering, assessment models can be used
to objectively specify and control stated quality require-
ments [15]. During implementation, the quality model is
the basis for all quality measurements, i.e. for measuring
the product, activities and the environment [6, 20, 22]. This
includes the derivation of guidelines for manual reviews [5]
and the systematic development and usage of static analy-
sis tools [6, 19]. During quality audits, assessment models
serve as a basis of the performed audit procedure. Thereby,
internal measures that might influence external properties
are monitored and controlled [15]. Apart from their use dur-
ing software development, assessment models furthermore
constitute the touchstone for quality certifications.

Prediction models are used during project management.
More specifically, such models are used for release planning
and in order to provide answers to the classical “when to
stop testing” problem [18].

5. Requirements

Based on the collected points of criticism as well as
the usage scenarios of existing quality models, we derive
general requirements as well as requirements for definition
models, assessment models and prediction models sepa-
rately. In the following, we use the term quality criterion
for an element of a quality model.

5.1. General requirements

Any quality model shall define how it can be integrated
with the development tasks. These range from requirements
engineering to quality assurance tasks. More specifically,
the focus and context of the model has to be clearly speci-
fied. Using this information, the process engineer can define
when and how the model has to be used in the development
process.

5.2. Definition models

For the highest unambiguousness and structuredness, it
is necessary for definition models to have an explicit meta-
model that defines the constructs and rules used to build and
extend the definition model [5, 14]. In order to clarify the
further discussion, this allows to separate the requirements
into model and metamodel requirements. Hence, a defini-
tion model shall be based on an explicit metamodel.

The metamodel shall define the structure of the defini-
tion model and an unambiguous decomposition mechanism
for its content [5, 14]. This results in a structured content
that allows a clear and unambiguous representation of qual-

ity criteria. Furthermore, the model can be extended and
refined without introducing ambiguity.

The decomposition mechanism enables the requirement
that the definition model shall support different levels of
specificness [22, 23]. Very high-level quality criteria have
a wide scope and hold for many different software systems
but are only of limited use. In order to integrate quality
criteria into the development process, more detail is neces-
sary [5]. In the model, all these levels are needed.

Moreover, the metamodel shall ensure that all quality cri-
teria in the model have a defined justification. It is essential
for the use and acceptance of the definition model that for
each quality criterion it shall be explained what is the rea-
son for its existence. For example, it can be derived from a
business goal or be part of a prescribed standard. Building
on this, a definition model shall define a notion of complete-
ness and be complete w.r.t. that notion. Using the examples
again, the quality model is complete if it covers the corre-
sponding business goals and the prescribed standards of the
software product.

Quality criteria often have more than one justification
and can influence each other. Therefore, there can be over-
laps between them. These overlaps shall be made explicit
and especially conflicting justifications and criteria shall be
detectable. For example, the addition of an authentication
mechanism may secure the data in a system but may also
render its normal usage more difficult.

As was shown by Garvin [10], there are several different
views on quality, such as the user view, the manufacturing
view or the value-based view. Clear views shall be defined
and it shall be possible to take these different views in the
definition model [15, 22, 23]. A comprehensive definition
model shall cover both internal product characteristics and
externally visible product characteristics [3, 5, 6].

Using the support for different levels of specificness of
the metamodel, the model shall be structured into a gen-
eral base model and several specific purpose models [23].
Experience has shown that there is a considerable amount
of quality criteria that are independent of a specific context
such as the programming language or the application do-
main. These can be reused in the base model. The specific
purpose models then capture the variability.

One main usage scenario of definition models is to agree
with the customer on a definition of quality and to use
them for requirements elicitation. Hence, the content of the
model shall be easy to interpret and usable in discussions
with the customer. In many cases that means prose quality
criteria are preferable to complex formalisms.

The model shall be usable for constructive quality assur-
ance. In detail that includes the quick access to information
in the model for software engineers. For a fast overview,
it shall support the (automatic) derivation of concise guide-
lines for modelling and implementation. It shall also sup-

port the derivation of more detailed guidelines including all
the information of the model to give justifications for the
proposed rules, to give assessable rules and to structure the
guideline well. In principle, this is mainly a requirement for
the tool support. However, also the model itself has to pro-
vide the necessary information and structure to derive such
guidelines.

5.3. Assessment models

An assessment model also contains quality criteria but
in a way suitable for quality assessments. Hence, all quality
criteria in an assessment model shall be assessable. If the
assessment model supports decomposition, the assessment
shall at least be possible at its lowest levels.

In principle, the assessment of the quality criteria can
be qualitative or quantitative. As far as possible, the qual-
ity criteria shall be described with measures. Criteria that
are not directly measurable shall be described qualitatively.
This ensures that it can be used for the objective specifica-
tion of quality requirements. However, the model shall not
be limited to automatically measurable metrics but may also
contain measures that require manual evaluation. A clear
distinction between these two types of metrics is necessary.
As manual assessment of software systems is very elabo-
rate, it should be well supported and minimised by tools.
Hence, the measurement shall be as automatable as possi-
ble.

Nevertheless, the provided metrics must be clearly mo-
tivated – ideally supported by a description model – and
validated. That means all measures shall be consistent with
measurement theory [7]. Especially the aggregation of met-
ric values should be taken into account.

Several quality criteria with associated metrics are usu-
ally combined in an assessment model. Hence, the model
content is a combination of a set of metrics. For a sensi-
ble quality assessment, this combination needs to be under-
standable by the assessor. Hence, the content of an assess-
ment model shall be easy to interpret by all project partici-
pants.

Today’s software systems are large and incorporate a va-
riety of different functionalities. Quality requirements are
often not equal across the whole system. Therefore, an as-
sessment model shall support the specification of different
required quality profiles for different parts of the software
product [14].

For the assessment, the model shall describe with what
techniques each quality criterion can be assessed, i.e. dy-
namic tests, automated static analysis, or manual review. A
clear assessment description helps in generating checklists
and test guidelines for the criteria.

If applied in a continuous fashion, assessment models
must provide high precision of results in order to be adopted

by developers. In contrast, sporadic audits can, due to their
non-continuous nature, better cope with false positives and
thus potentially require a different trade-off between com-
pleteness and precision of assessment results.

In many contexts certification is necessary. Hence, the
assessment of quality using a model shall also serve as a
basis for a certification of that quality.

5.4. Prediction models

For prediction models, all requirements to assessment
models hold as well. Additionally, we see the following
requirements as necessary.

Prediction models are often built using statistical re-
gression of a set of metrics. Depending on the regression
method, this can lead to rather complex and artificial equa-
tions. For a sensible use of prediction models in practice,
however, the equations need to be comprehensible. Hence,
the content of a prediction model shall be easy to interpret.

In order to support the most important usage scenarios
of quality prediction models, they shall support predictions
to aid the planning of test phases and release cycles. It pre-
dicts, for example, the number and occurrences of defects
and thereby the maturity of a software.

6. Related work

There is a huge amount of work on various forms of qual-
ity models. However, comprehensive overviews and classi-
fications are scarce. A first, broad classification of what he
called “quality evaluation models” was proposed by Tian
[20]. He distinguishes between the specificness levels gen-
eralized and product-specific. These classes are further par-
titioned along unclear dimensions. For example, he distin-
guishes segmented models for different industry segments
from dynamic models that provide quality trends. Two of
the authors built on Tian’s work and introduced further di-
mension. Wagner discussed in [22] the dimensions purpose,
quality view, specificness and measurement where the pur-
poses are construction, assessment and prediction. This was
further extended by Wagner and Deissenboeck [23] with the
dimensions phase and technique. A thorough discussion of
critique, usage scenarios and requirements along these di-
mensions is not provided in any of these contributions.

7. Conclusions

An impressive development of quality models has taken
place over the last decades. These efforts have resulted in
many achievements in research and practice. As an exam-
ple, take a look at the field of software reliability engineer-
ing that performed a wide as well as deep investigation of

reliability growth models. In some contexts these models
are applied successfully in practice. The developments in
quality definition models even led to the standardisation in
ISO 9126 that is well known and serves as the basis for
many quality management approaches.

However, the whole field of software quality models is
diverse and fuzzy. There are large differences between
many models that are called “quality models”. Moreover,
despite the achievements made, there are still open prob-
lems, especially in the adoption in practice. Because of this,
current quality models are subject to a variety of points of
criticism that have to be acted on.

We provide a comprehensive definition of a quality
model based on the purpose the model has. Using this tri-
partion in definition models, assessment models and pre-
diction models (DAP), we summarised the existing critique
and collected a unique collection of usage scenarios of qual-
ity models. From this, we derived a comprehensive set of
requirements, again ordered in terms of the DAP classifi-
cation, that can be used in two contexts: (1) evaluation of
existing models in a specific context or (2) further develop-
ments and improvements of software quality models.

Acknowledgements

This work has partially been supported by the German
Federal Ministry of Education and Research (BMBF) in the
project QuaMoCo (01 IS 08023B).

References
[1] V. Basili, P. Donzelli, and S. Asgari. A unified model of

dependability: Capturing dependability in context. IEEE
Software, 21(6):19–25, 2004.

[2] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.
Macleod, and M. J. Merrit. Characteristics of Software
Quality. North-Holland, 1978.

[3] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying
maintainability. In Proc. 4th Workshop on Software Qual-
ity (4-WoSQ), pages 21–26. ACM Press, 2006.

[4] D. Coleman, B. Lowther, and P. Oman. The application of
software maintainability models in industrial software sys-
tems. J. Syst. Softw., 29(1):3–16, 1995.

[5] F. Deißenböck, S. Wagner, M. Pizka, S. Teuchert, and J.-F.
Girard. An activity-based quality model for maintainability.
In Proc. 23rd International Conference on Software Mainte-
nance (ICSM ’07). IEEE Computer Society Press, 2007.

[6] R. G. Dromey. A model for software product quality.
IEEE Transactions on Software Engineering, 21(2):146–
162, 1995.

[7] N. Fenton. Software measurement: A necessary scientific
basis. IEEE Trans. Softw. Eng., 20(3):199–206, 1994.

[8] N. E. Fenton and M. Neil. A critique of software defect
prediction models. IEEE Trans. Softw. Eng., 25(5):675–689,
1999.

[9] C. Frye. CMM founder: Focus on the product to improve
quality, June 2008.

[10] D. A. Garvin. What does “product quality” really mean?
MIT Sloan Management Review, 26(1):25–43, 1984.

[11] E. Georgiadou. GEQUAMO—a generic, multilayered, cu-
somisable, software quality model. Software Quality Jour-
nal, 11:313–323, 2003.

[12] ISO. Software engineering – product quality – part 1: Qual-
ity model, 2001.

[13] S. Khaddaj and G. Horgan. A proposed adaptable quality
model for software quality assurance. Journal of Computer
Sciences, 1(4):482–487, 2005.

[14] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni.
The SQUID approach to defining a quality model. Software
Quality Journal, 6:211–233, 1997.

[15] B. Kitchenham and S. L. Pfleeger. Software quality: The
elusive target. IEEE Software, 13(1):12–21, 1996.

[16] M. R. Lyu, editor. Handbook of Software Reliability Engi-
neering. IEEE Computer Society Press and McGraw-Hill,
1996.

[17] J. Münch and M. Kläs. Balancing upfront definition and cus-
tomization of quality models. In Workshop-Band Software-
Qualitätsmodellierung und -bewertung (SQMB 2008). Tech-
nische Universität München, 2008.

[18] J. Musa and A. Ackerman. Quantifying software validation:
when to stop testing? IEEE Software, 6(3):19–27, 1989.

[19] R. Plösch, H. Gruber, A. Hentschel, C. Körner,
G. Pomberger, S. Schiffer, M. Saft, and S. Storck.
The EMISQ method and its tool support – expert based
evaluation of internal software quality. Journal of In-
novation in Systems and Software Engineering, 4(1),
2008.

[20] J. Tian. Quality-evaluation models and measurements. IEEE
Software, 21(3):84–91, 2004.

[21] S. Wagner. Using economics as basis for modelling and
evaluating software quality. In Proc. First International
Workshop on the Economics of Software and Computation
(ESC-1), 2007.

[22] S. Wagner. Cost-Optimisation of Analytical Software Qual-
ity Assurance. VDM Verlag Dr. Müller, 2008.

[23] S. Wagner and F. Deissenboeck. An integrated approach
to quality modelling. In Proc. 5th Workshop on Software
Quality (5-WoSQ). IEEE Computer Society Press, 2007.

