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Abstract

We consider the energy consumed in radio transmis-
sion of a set of sensors forming a data gathering wire-
less network. Our objective is to enhance the lifetime of
such networks by exploiting three system-level opportuni-
ties. Firstly, the number of bits to be transmitted can be
reduced by taking advantage of the redundancy induced
by spatio-temporal correlation in sensor data. Secondly,
channel coding allows us to reduce transmission energy at
the cost of increased transmission time. Thirdly, sensor
nodes can be expected to operate collaboratively, allow-
ing optimal management of distributed energy resources.
Our main contribution lies in providing a framework to
merge these ideas for energy conscious networking. We
pose the problem of maximizing network lifetime as an op-
timal scheduling problem. We first consider a special case
where data rate is linearly proportional to received signal
power. In this scenario, we investigate both static and dy-
namic scheduling strategies. The optimal static schedule
turns out to have a very simple form. For the dynamic case,
we obtain an integer linear program formulation to find the
optimal strategy. We then propose an efficient algorithm
that exploits the special nature of the problem setting to
quickly find the optimal solution. Finally, we consider the
general case where data rates and signal power need not
be linearly related and propose an algorithm to find the op-
timal transmission times subject to the deadline constraint
imposed by the system.

1 Introduction

This paper considers the problem of maximizing the life-
time of a data gathering wireless sensor network in which
a set of sensors periodically sample a field and transmit the
data to a central location or base station. It is expected that
these sensor nodes will run on tiny non-renewable batteries
and in many instances be placed in inaccessible locations,
making it impossible to replace dead nodes. In such a sce-
nario, a key challenge is to devise system-level strategies to

optimally utilize finite energy resources. Sensor nodes con-
sume energy in sensing/actuating, computation and com-
munication. Advances in device technology and low-power
electronics have greatly reduced the energy cost of sensing
and computation. However, the energy cost of communi-
cation is determined by the harsh nature of wireless links
and has the potential to be a significant bottleneck. We de-
fine network lifetime to be the time until the first node runs
out of energy. This is a popular definition [1, 2] and is par-
ticularly appropriate when a single node failure can be dis-
astrous (for example, reducing sensor coverage or causing
network partition). We note that other definitions of net-
work lifetime used in literature include fraction of surviving
nodes in a network [3] and mean expiration time [4]. In this
paper, we are interested in managing the energy expended
by nodes for communication purposes, with the objective of
maximizing the operating lifetime of sensor networks. We
limit ourselves to the case where nodes communicate to the
base station in a single hop. This model, apart from being
useful for small networks, is also applicable to sensor clus-
ters within a large network [5].

With this simple network model, we exploit three avail-
able opportunities to meet the challenge of enhancing net-
work lifetime. Firstly, the number of bits to be transmit-
ted can be reduced by taking advantage of the redundancy
induced by spatio-temporal correlation in sensor data. In
[6], Slepian and Wolf show that it is possible to compress a
set of correlated sources down to their joint entropy, with-
out explicit communication between the sources. Practi-
cal techniques [7] based on distributed Slepian-Wolf source
coding have also been proposed recently. Another possi-
bility of exploiting source redundancy opens up when the
base-station is not energy constrained. In this case, the base
station can assume most of the burden of communication
[8] and the need for sophisticated source coding disappears.
Secondly, channel coding [9] allows us to reduce the energy
required for transmission at the cost of increased transmis-
sion time. Finally, sensor nodes are cooperative allowing
optimal management of distributed energy resources. Our
main contribution lies in providing a framework to merge
these ideas to control the energy cost of radio transmission
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to maximize network lifetime.

There is much related work in this area. Cooperation
among sensor nodes has been exploited mainly via energy
efficient routing [1, 10, 11, 12, 13, 14]. Our study was
motivated by previous research in [16, 15] which explic-
itly incorporate aggregation costs in gathering sensor data.
In [15], the authors consider the problem of correlated data
gathering by a network with a sink node and a tree com-
munication structure. Their goal is to minimize the total
transmission (energy) cost of transporting information. The
first part of [16] considers a model similar to our, namely,
that of several correlated nodes transmitting directly to a
base station. However, both [15, 16] are interested in mini-
mizing total energy expenditure, as opposed to maximizing
network lifetime. In the latter case, the optimal solution
is shown in both papers to be a greedy solution based on
ordering sensors according to their distance (which reflects
data aggregation cost) from the base station. However, we
show that this solution is not optimal for maximizing net-
work lifetime. Moreover, to the best of our knowledge, a
thorough investigation of joint source-channel coding for
maximizing lifetime is lacking and this paper is an attempt
in that direction.

In section 2, we present our system model and describe
our notion of instantaneous decoding. In section 3, we con-
sider a scenario that allows us to neglect the impact of trans-
mission time allocation. This is similar to the scenario con-
sidered given in [15, 16]. We present the optimal static
scheduling strategy under instantaneous decoding. The col-
laborative nature of sensor networks is then exploited by
considering dynamic strategies, which are shown to im-
prove lifetime. We also provide a fast algorithm to deter-
mine dynamic strategies. In section 4, we consider a gen-
eral channel model which allows us to consider the joint
impact of source and channel coding on system lifetime.
We provide some insight for this problem and an algorithm
for finding the optimal transmission times. Numerical and
simulation results are provided in section 5.

2 System Model

We consider a network of N battery equipped sensor
nodes strewn uniformly in a coverage area. Initially, sen-
sor node k, 1 < k < N, has access to Ej units of energy.
The wireless channel between sensor k and the base station
is described by a path loss factor dj, that captures various
channel effects such as distance induced attenuation, shad-
owing, and multipath fading. For simplicity, we assume
di’s to be constant. This is reasonable for static networks
and can also be extended to scenarios where the path loss
parameter varies slowly and can be accurately tracked.

The network operates in a time-division multiple access
(TDMA) mode. In each slot, every sensor takes samples of

the coverage area and in its allotted time, communicates its
data to the base station. A discrete random process X} rep-
resents the sampled sensor reading at node k in the n*” time
slot. The entropy of X! is denoted by H(X},). We assume
that sensor readings in any time slot are spatially correlated.
We ignore temporal correlation by assuming that sensor
readings in different time slots are independent. Temporal
correlation can be easily incorporated in our work for data
sources satisfying the Asymptotic Equipartition Property
(AEP). The general problem is to find the optimal rate (the
number of bits to transmit) and transmission times for each
node, which maximize network lifetime. Both the rate and
time allocation are constrained. The rate allocation should
fall within the Slepian-Wolf achievable rate region and the
sum of transmission times should be less than the period of
a time-slot (which is taken to be unity). Finding the optimal
rate allocation is a computationally challenging problem as
the Slepian-Wolf achievable rate region for N nodes is de-
fined by 2V — 1 constraints. We simplify the problem by
insisting that decoding at the base-station be instantaneous
in the sense that once a particular node has been polled, the
data generated at that node is recovered at the base-station
before the next node is polled. This reduces the rate alloca-
tion problem to finding the optimal scheduling order, albeit
at some loss of optimality. Let II be the set of permutations
of the set, {1,2, ..., N}. The polling schedule followed by
the network in any time slot corresponds to a permutation,
7 € TI. Let (k) denote the k™ node to be scheduled. In-
stantaneous decoding implies that the amount of data to be
transmitted by node 7 (k) is the conditional entropy of the
data source at node 7(k), given the data generated by all
previously polled nodes. We denote the amount of infor-
mation generated by node 7(k) by H]. Our aim is to find
the scheduling strategy (scheduling order and transmission
time allocation) that maximizes network lifetime.

3 Small Rate Region Approximation

In this section, we assume that transmission rate is lin-
early proportional to signal power. This assumption is mo-
tivated by Shannon’s AWGN capacity formula which is ap-
proximately linear for low data rates. The energy expended
by a node to transmit H units of information is given by
H x d, where d is the suitably normalized path loss fac-
tor between the node and the base station. The linear rate
assumption implies that transmit energy is independent of
transmission time. Hence, the optimal time allocation prob-
lem is trivial and we only need to find the optimal schedul-
ing order. We consider two kinds of schedules, namely,
static and dynamic. In static scheduling, the nodes follow
the same fixed scheduling order in all time slots until the
network dies. Under dynamic scheduling, we allow nodes
to collaborate further by allowing them to employ different
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schedules in different time slots.
3.1. Static scheduling

In static scheduling, each permutation, 7 € II corre-
sponds to a TDMA schedule. The number of bits transmit-
ted by node 7(k) (under instantaneous decoding) is given
by H(X5 (k)| Xx(k=1)s - - - » Xr(1))- The optimal scheduling
order is given by the solution to the following max-min op-
timization problem.

. Er k)
max min

7€l 1<K<N do () H (X () [ Xr (k1) - - -

1
 Xr1) %

The objective function represents the lifetime of node 7 (k)
under the given static schedule m. We describe next a
scheduling strategy, Minimum Cost Next (MCN), which
turns out to be an optimal static scheduling strategy. When
a scheduling decision needs to be taken, MCN chooses that
node (among the unpolled ones) which will consume the
least amount of energy. The algorithm is given as follows.
The MCN schedule is denoted by 7.

Algorithm: MCN

S : set of all N nodes.
A : set of nodes whose polling order has been computed.
Initialization: A = ¢, k = 1.
while(k < N)
m(k) = argmin;eg— 4
A= AUn(k).
k=k+1

diH(X;|A)

7

NN L AW

Theorem 1 The Minimum Cost Next schedule is an optimal
static schedule.

Proof: Omitted for brevity. ]
3.2. Dynamic scheduling

In this section, we explore how network lifetime can be
increased by employing multiple schedules. Instead of re-
stricting the network to follow a single schedule, we allow
the system to employ different schedules over time. There
are N! possible schedules to choose from. Let H; be the
number of information bits generated per slot by node &k un-
der the 3" schedule, 1 < k < N, 1 <4 < N!. The optimal
lifetime L, in this case is found as follows

N!
L=max} 7
=1
N .
s.t. Z diHym < E 2)
=1

(2

7; 1s the number of slots for which the z'th schedule is used.
The constraints ensure that the time assignment is feasible
for each node with respect to its energy capability. Note
that (2) in an integer linear program problem. However,
for most sensor applications, slot durations will be a small
fraction of network lifetime. So, it is reasonable to model
7;’s as real numbers rather than integers and to treat (2) as
a linear program. A dynamic schedule, 7, is given by the
set {7; }. A static schedule can also be thought as a dynamic
schedule where only one of the 7;’s is non-zero.

Given N! variables, in general, there seems to be no easy
way to solve (2) to compute the optimal 7; values. However,
the special nature of our problem can be exploited to yield
efficient methods. It is reasonable to assume that sensor
readings at a node are strongly correlated only with neigh-
boring nodes. For any schedule, the energy consumed by a
node will then depend primarily on its relative order in the
schedule with respect to its neighbors. This clustering phe-
nomena leads to considerable reduction in computational
effort. Moreover, the max-min nature of our optimization
problem simplifies the search for an optimal schedule and
allows us to easily determine when a schedule is optimal.
Both these properties are exploited in our algorithm which
we refer to as Lifetime Optimal Clustering ALgorithm (LO-
CAL) and describe as follows.

Algorithm: LOCAL

1 kzO,C?:w(j),Rk:N.
2 repeat
3 for(j = 1to Ry)
4 Solve eqn (2) for nodes in C*.
5 Find lifetime L¥ = min;e o 1k,
6 s = argmini<;<gr, L?.
7 if (LF ==Lk )
8 then L = L¢. BREAK.
9 else
10 Merge C¥ and C¥ .
11 Ry = Ry, — 1.
12 k=Fk+1.

Starting with the MCN schedule defined earlier, LOCAL
proceeds in stages by successively yielding better schedules
till no further improvement in lifetime is possible. Initially
each node forms its own cluster. Let R be the number of
clusters in stage k£ and Cj’?,l < j < Ry denote the jth
cluster. The lifetime L¥ of C¥, under any dynamic sched-
ule is the minimum of the lifetimes of the nodes in CJ’?.
Given a set of clusters, LOCAL considers only those sched-
ules which maintain the clustering order. In other words,
all nodes in cluster Cf will be scheduled before any node
in the clusters, Cl’“, 7+ 1 <1 < Rj. Within a clus-
ter however, nodes are dynamically scheduled to maximize
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cluster lifetime. This reduces the problem of scheduling NV
nodes in (2) to scheduling only the nodes within a cluster,
decreasing computational complexity. At each stage then,
the lifetime of each node is calculated using (2) for intra-
cluster scheduling. Cluster formation in LOCAL follows a
greedy approach inspired by the max-min definition of net-
work lifetime. At the beginning of stage k, consider the
lifetimes of the clusters formed in stage £ — 1 under the dy-
namic schedule 7%~!. Let cluster Cf ~1 have the minimum
lifetime among all clusters. If there are more than one such
cluster, we choose the cluster with the lowest index. If the
lifetime of the last cluster, Cﬁ;}l, is equal to the minimum
lifetime, then the algorithm terminates. If not, merge the
nodes in cluster C’f ~1 and cluster C’f;ll to form a new clus-
ter in stage k and repeat the process. Note that in the worst
case, LOCAL will reduce to (2) if all the nodes merge into
one single cluster. Our simulations results show that such
an event is very unlikely even for fairly large networks.

A further optimization is achieved by exploiting the
max-min nature of our problem as follows. Suppose that,
after stage k, the cluster lifetimes are such that for some !

min L7 >  max Lf 3)
1<j<1t 1+1<j<Ry

Note that network lifetime can never be improved by
scheduling nodes in the first [ clusters after other nodes in
the network. Hence we can ignore the scheduling of nodes
in the first [ clusters and focus only on the remaining nodes.

Lemma 1 LOCAL is optimal.

Proof: Omitted for brevity. ]

4. General case

So far, we have assumed that transmission rate is lin-
early proportional to received signal power. However, in
general, this assumption is not valid. For example, by in-
verting Shannon’s channel capacity formula for the AWGN
channel, it is straight forward to show [9] that transmission
energy is a strictly decreasing convex function of transmis-
sion time. Other channel coding situations lead to a similar
result. In such a scenario, not only do we have to find the
optimal (static or dynamic) scheduling order but also the
optimum transmission times for each node. Let f(h, z) be
the energy required to transmit A bits of information in x
units of time with unit path loss. Based on our discussion,
we model the energy function f(h, ) as follows.

1. f(h,z) is a strictly decreasing continuous positive
function in x.

2. limy_o f(h,z) = 00

As before, we denote by H}C the number of information
bits generated per slot by node k € [1 ... N] under the i*"
schedule, 1 < ¢ < N!. Let wz be the corresponding trans-
mission time alloted to node k. The optimal static schedule
is the solution to the following optimization problem.

2L ®

st. L'f(Hi,wi)dy < Ey
N
Zw}; <1, w,iC >0
k=1

Here L is the lifetime achievable by the system under the

it schedule. Note that lifetime is integer-valued but as in
section 3, we will continue to treat it as a real number.

The solution to the optimal scheduling problem for the
general case turns out to be very different from the solution
considered in section 3. Firstly, nodes can collaborate with
each other to a much greater extent than before by varying
their transmission times. For example, nearby nodes can
finish their transmissions sooner allowing far away nodes
more time to transmit in order to improve system lifetime.
Secondly the optimal scheduling order is dependent on the
correlation structure as well as the energy function and
greedy algorithms such as MCN are, in general, not optimal.
Our initial research appears to suggest that the problem of
finding the optimal schedule is non-trivial and may even be
NP-hard. Since our model is more applicable to sensor clus-
ters rather than sensor networks themselves, a brute force
approach to find the optimal scheduling algorithm may well
suffice. The challenge then is to find the optimal allocation
of transmission times, given a particular scheduling order.
The key to finding the optimal transmission times lies in the
following lemma.

Lemma 2 Given a schedule, there exists a unique set of
transmission times {wy, } which maximizes network lifetime.
Moreover, a set of transmission times is optimal if and only
if Z]kvzl wr = 1 and all the nodes consume the same
amount of energy.

Proof: Omitted for brevity. ]
Lemma 2 implies that, in the optimal scenario, all nodes
run out of energy at the same time. We leverage lemma 2 to
devise an algorithm to find the optimal transmission times.
We call this algorithm the Channel Aware algorithm (CA).
The CA algorithm proceeds as follows. Assume Lg is a
feasible value of network lifetime and H}, is the number of
bits which node k needs to transmit. Let § be an arbitrarily
chosen positive step value.

In the CA algorithm, network lifetime is increased by a
constant step-size 4, till the deadline constraint (7" should
be less than 1) is violated. Then, the step size J, is de-
creased exponentially till a feasible value of lifetime is
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found. Clearly, this algorithm will eventually converge.
From lemma 2, it follows that the lifetime value obtained
by CA is optimal. The quantity e determines the speed of
convergence.

Algorithm: CA

24000

23000 -

22000 -

Network Lifetime

20000 -

19000 -

18000

21000 +

—-=-MCN
——LOCAL
--#--No Correlation

rrrrrrrrrrrrrrr

16 17 18 19
Number Of Nodes

(a)

21

| L=L.
2 Sete>0
3 repeat
4 for(k =1to N)
5 Find ¢), such that f(Hy,tx)d) = %,
Else set t;, = oo.
N
6 Compute T' = Y tj.
k=1
7 if |T— 1.0/ <e
8 then BREAK.
9 if (T —1.0) > e
10 then
11 §=3.
12 L=1-56.
13 else L =L +6.

At this stage, it is natural to ask if dynamic scheduling
can further improve performance. We have seen experimen-
tally that such is indeed the case though the improvement is
not dramatic and we do not report the results here.

5. Results

Our sensor network consists of N nodes uniformly dis-
tributed in a unit circle, with the base station at the cen-
ter. Each node starts out with 10,000 units of energy. Fur-
ther, we model the data generated at the sensors by an N-
dimensional Gaussian vector with zero mean and covari-
ance matrix /. We assume that the correlation between two
sources is distance dependent, so we define the covariance
between nodes ¢ and j as K;; = ge o,

In Fig. 1a, we plot the average network lifetime achieved
by the MCN and LOCAL algorithms for different values of
node density and compare their performances with the per-
formance of a reference scheme that does not exploit the
spatial-correlation among sensor readings. For each node
density value, 500 scenarios' are used to calculate the aver-
age network lifetime. As expected, LOCAL performs con-
sistently better than MCN. Fig. 1b, compares the execution
time of LOCAL with the time taken to solve the linear pro-
gram in (2), denoted BigLP. LOCAL can not only run 10
to 100 times faster than BigLP, but also handle larger net-
works.Fig. 2 compares the CA algorithm with a reference

!Increasing the number of scenarios beyond 500 did not provide quali-
tatively different results.

——BigLP
= LOCAL

N w EN o
L L L L

log(Execution time in Seconds)

2 3 4 5 6
Number of Nodes

(b)

Figure 1. (a) Average network lifetime com-
parison between MCN, LOCAL, and the refer-
ence algorithm. (b) Execution times compar-
ison between BigLP and LOCAL.

scheme that allocates equal transmission times to all nodes.
Both the schemes follow the schedule where the nodes are
polled in the order of their proximity to the base station.

6. Conclusions and Future work

This paper considered the problem of maximizing the
lifetime of a data gathering wireless network. Our contribu-
tion differs from previous research in two respects. Firstly,
we proposed a joint source-channel coding framework to
mitigate the energy cost of radio transmission. Secondly,
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——Equal Transmit Times

log(Network Lifetime)
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Number of Nodes

Figure 2. Comparison of the Channel Aware
(CA) algorithm with the reference scheme.

we have explicitly maximized network lifetime as opposed
to other objective functions such as cumulative energy cost.
In our system model, nodes communicate directly to a base
station in a time division multiplexed manner. With our no-
tion of instantaneous decoding, we show that the network
lifetime maximization problem reduces to finding an op-
timal scheduling strategy (polling order and transmission
time allocation).

Much work remains to be done. A thorough exploration
of the computation complexity of the problems posed in
the paper is required. In this paper, we have assumed that
source and channel coding is optimal, quantization is per-
fect and that a continuum of power levels can be employed.
Network lifetime obtained under these assumptions is an
upper limit to practically achievable performance. It would
be useful to consider the network lifetime problem with
more realistic constraints such as fixed coding schemes,
finite precision quantizers and a small range of available
power levels.
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