
Tree Slotted Aloha: a New Protocol for Tag Identification in RFID Networks

Maurizio A. Bonuccelli and Francesca Lonetti∗

Dipartimento di Informatica, Università di Pisa
56100 Pisa, Italy

{bonucce,lonetti}@di.unipi.it

Francesca Martelli
ISTI “A. Faedo”, Area della Ricerca CNR

56100 Pisa, Italy
f.martelli@isti.cnr.it

Abstract

In this paper, we approach the problem of identifying a
set of objects in an RFID network. We propose a modified
version of Slotted Aloha protocol to reduce the number of
transmission collisions. All tags select a slot to transmit
their ID by generating a random number. If there is a col-
lision in a slot, the reader broadcasts the next identification
request only to tags which collided in that slot. Simula-
tion results show that our approach performs better than
Framed Slotted Aloha and query tree based protocols, in
terms of number of slots needed to identify all tags, which
is a commonly used metric, strictly related to delay.

1 Introduction

Automatic object identification is very useful in many
(old and new) applications. For instance, fast and reliable
reading of labels (tags) attached to different objects stowed
in warehouses can greatly speed up operations such as lo-
calization and retrieval. Among the countless applications,
we can cite public transportation and ticketing, access con-
trol, production control, checkout speed-up in shops, secure
operations in dangerous environments, localization of ob-
jects (like cars in parking lots, or books in libraries) and
people. Radio frequency identification (RFID) systems of-
fer a promisingly affordable, cheap and flexible solution for
object identification [1]. An RFID system consists of ra-
dio frequency (RF) tags attached to the objects that need
to be identified, and one (or more) networked electromag-
netic reader. The reader is an entity with great computation
power and memory, while tags have (very) limited compu-
tational resources.

In these systems there is a single communication chan-
nel, and messages are exchanged between reader and tags,
which are not able to communicate each other. Typically,
the reader broadcasts a message to tags, which, in case,

∗Maurizio Bonuccelli and Francesca Lonetti are also at ISTI-CNR.

send back an answer. If many tags simultaneously answer,
a collision occurs, i.e. their transmissions will merge in a
meaningless message, and the reader is not able to capture
any answer: it can only realize that more than one tag is
communicating. Instead, if only one tag at a time trans-
mits its ID, the reader can identify it. Tags can be active
or passive, according to their technology. Active tags are
provided with batteries that continuously power the com-
puting and transmitting circuits. Passive tags, instead, rely
only on the RF energy induced by electromagnetic waves
emitted by the reader. The energy induced by the reader is
very low, so it is desirable that tags implement very simple
computation procedures, so reducing as much as possible
their power consumption. This is also useful for reducing
tags cost.

As outlined above, concurrent tags transmissions result
in a collision, that is, the reader receives a mixture of scat-
tered waves and is not able to identify any single signal.
Therefore, a mechanism for limiting and solving collisions
is required. As in all multiple access systems, there are two
families of protocols for approaching the contention reso-
lution problem: probabilistic protocols, and deterministic
ones. We are interested in probabilistic protocols, and in
this paper we show an Aloha-based protocol which reduces
the number of “recollisions”, by solving the collisions as
soon as they happen.

The paper is organized as follows. In Section 2, we
briefly survey the prominent protocols proposed for the
above problem, focusing on probabilistic protocols. In Sec-
tion 3, we describe our approach, by highlighting the as-
sumptions we made. In Section 4 we report the results
of simulation experiments performed to get insights into
our protocol performance. Conclusions and open problems
(Section 5) terminate the paper.

2 Related work

In RFID networks, a reader recognizes objects through
wireless communications with tags, and it must be able to
identify all tags as quickly as possible.

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

The problem approached in this paper is the tag colli-
sion one, that occurs when several tags try to answer at the
same time to a reader query. The reader queries the tags
for their ID by broadcasting a request message. Upon re-
ceiving such message, all tags send an answer back to the
reader. If only one tag answers, the reader identifies the tag.
If more than one tag answer, their messages will collide on
the RF communication channel, and the reader cannot iden-
tify these tags. This is a special case of the medium access
control problem, and has been extensively studied very re-
cently [2, 3, 4, 5, 9]. In [6], a similar problem has been
studied. In that paper, tags are assumed to have collision de-
tection capability, which (greatly) helps in solving the MAC
problem, at the cost of additional expensive and power con-
suming hardware in tags. Besides, in [6] it is also assumed
that the reader knows the exact number of tags to be iden-
tified, an assumption quite uncommon in practice. Actual
RFID applications introduce a more challenging side to the
MAC problem. Given the low functional power and energy
constraints in each tag, it is unrealistic to assume that tags
can communicate with each other directly, and that they can
notice their neighboring tags or detect collisions.

Tags anti-collision protocols can be deterministic or
probabilistic. Among the former, there are the so called
tree-based protocols [2, 3, 9, 10], and the latter are well
represented by Aloha-based ones [4, 5, 7].

Tree-based tag anti-collision protocols do not cause col-
lisions, though they have a relatively long identification de-
lay. The first work on tree search in order to solve the multi-
ple access control problem of independent sources was pre-
sented in [8]. Among tree-based protocols there are binary
tree protocols [10], and query tree protocols [3]. The fea-
tures of these protocols are described next.

In the query tree (QT) protocol [3] the reader asks the
tags to answer if their ID matches a given prefix. If there is
a collision, the reader queries for one bit longer prefix un-
til no collision occurs. Once a tag is identified, the reader
starts a new round of queries with another prefix. In [3],
many improvements of QT protocol have been presented,
for reducing its running time. Among them, the most im-
portant is that one that we call Query Tree Improved (QTI)
[3], that avoids the queries that certainly will produce col-
lisions. Suppose that a query of prefix “q” results in a col-
lision and the query of prefix “q0”, results in a empty slot,
then the reader skips the query prefix “q1” and does only
the queries “q10” and “q11”.

Aloha-based protocols reduce the probability of occur-
rence of tag collisions, since tags answer at distinct time.
In pure Aloha protocol, tags randomly select their arbitrary
response time, while in Slotted Aloha [7], tags can answer
at the beginning of a randomly selected timeslot, to avoid
partially overlapping transmissions. Framed Slotted Aloha
[11] configures a frame with contiguous timeslots, and a

tag transmits its ID only once in a frame. In [12], it is
showed that classical Aloha-based multiple access proto-
cols, namely pure and slotted Aloha, are either not energy-
conserving or lead to unacceptable delays.

In [4], a variant of framed Aloha with variable frame size
is presented. Tags are randomly allocated to slots in this
way: at the beginning of a frame, the reader sends the frame
size and a random value to the tags. Based on these val-
ues, each tag randomly chooses the timeslot during which
it will transmit its ID. In the same paper, a way to set the
proper frame size for each cycle, based on an estimation of
the number of unidentified tags is also given. This estima-
tion is made by using Chebyshev’s inequality1, which esti-
mates how the real number of tags and its expected value are
far. Then, the frame size is adjusted so that this difference
becomes minimal. Performance is better than that of basic
Framed Slotted Aloha. However, this protocol suffers the
problem that the frame size is upper bounded (usually by
256), and cannot be increased at will, as the number of tags
increases, thus leading to a very high number of collisions
when the number of tags is larger than the upper bound.

This maximum frame size problem is solved in [5] (we
call the protocol presented there AFSA) where, by introduc-
ing a modulo operation, it is possible to limit the number of
tags transmitting in the same maximum size frame. When
the reader realizes that the number of unidentified tags is
larger than the maximum frame size, it sets the number of
tag groups which maximizes the global system efficiency
function. This function is given by the ratio between the
number of slots filled with one tag and the current frame size
[5]. The reader then broadcasts the number of tag groups
and a random value. This last value is used by the tags as
a parameter (together with the serial number) to compute
another random number that is divided by the number of
groups. Only tags having remainder zero can transmit in
the current frame. The performance, in terms of system ef-
ficiency, namely the ratio between the number of tags and
the number of time slots needed to identify all of them, is
maintained between 34.6% and 36.8%, [5].

Our protocol takes a different approach and so it is able
to limit the number of collisions, leading to a global average
system efficiency up to 43.44%.

3 Tree Slotted Aloha protocol

In this section, we present our proposal for tag identifi-
cation which we call Tree Slotted Aloha (TSA) protocol.

The basic idea of our TSA identification protocol, is to
solve a collision as soon as it happens. In Framed Slotted
Aloha protocols, two tags not colliding in a frame, can col-
lide in the next frame. In our approach, the above situation

1We use the same estimation function, but in a different way, so we
postpone its definition to Section 3.

2

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

is avoided, since when a collision occurs in a slot, only the
tags that generate such collision are queried in the next read
cycle. This results in a better performance.

We consider an RFID system consisting of a reader and
a set of n passive tags. Each tag t ∈ {0, ..., n − 1} has
a unique ID string tid ∈ {0, 1}k, where k is the length of
the ID strings. We assume that the reader does not know
the exact number n of tags present in its communication
range, but it can estimate it. Such an estimation l0 is the
starting frame size. In this paper, we show that such initial
estimation does not affect the performance in considerable
manner: our protocol has a good efficiency even if the initial
estimation is far from the actual number of tags in the reader
communication range, as shown in Section 4.

The protocol is performed in several tag reading cycles.
A reading cycle consists of two steps: in the first step, the
reader broadcasts a request for data by specifying the frame
size li, in the second step each tag in the communication
range of the reader, selects its response slot by generating a
random number in the range [1, ..., li] and transmits its ID
in such a slot. The reader identifies a tag when it receives
the tag ID without collisions. The behavior of the protocol
follows a tree structure. The root node is the frame in the
first reading cycle. Let l0 be the size of such a frame, Ni

being the number of tags transmitting their ID in slot i, with
i ≤ l0, Ni ≥ 0,

∑
i Ni = n. If Ni ≥ 2, there is a collision

in slot i. At the end of each reading cycle, if the reader real-
izes that collisions occurred, it starts a new reading cycle for
each slot where there was a collision. This corresponds to
adding new nodes in the tree, as sons of the node represent-
ing the above reading cycle, one son for each slot with col-
lisions. The size of such new cycles is defined as described
later, and the reader broadcasts such a size, together with the
slot number of the previous frame (to address only the tags
colliding in that slot), and the level of the tree. In each read-
ing cycle, tags store the generated random number (i.e. the
slot in which they transmitted their ID) and increase by one
their own tree level counter, so that they can realize when
are involved in later communications. Obviously, in each
new reading cycle, collisions can occur. Each time a colli-
sion is sensed, a new node (son of the node representing the
previous cycle) is inserted in the tree, and another reading
cycle is started. The whole process is recursively repeated
until no collisions are detected in a cycle. The reader and
tags procedures are shown in Table 1, and an example of
protocol execution is shown in Figure 1.

Like in Framed Slotted Aloha, TSA is not memoryless,
since each tag has to remember the random number gen-
erated in the previous cycle, and the level of the tree, as
said before. Notice that the amount of memory needed by
each tag is very small, namely few bits to remember the tree
level and the slot number of the previous reading cycle. In
Section 4, we show that TSA performs better than AFSA

Table 1. Reader and Tag procedures in TSA.

Reader procedure:
level = 0;
l0 = initialEstimation;
s = −1;
collisionResolution(level,s,l0).

collisionResolution(level,slot,li):
broadcast(level,slot,li);
for s = 1 to li do receiveIDs;
li+1 =tagsEstimation(li);
for s = 1 to li do

if (collision[s]= 1) then
identify tag and sendAck;

else if (collision[s]> 1) then
level + +;
collisionResolution(level,s,li+1);

int tagsEstimation(li):
compute c0, c1, ck, obtained in frame of length li;
compute tag number estimation ni by using equation (1);
ni = ni − c1;
return

⌊
ni
ck

⌋
;

Tag procedure:
identified = false;
myLevel = 0;
previousV alue = −1;
while (not identified) do

receive(level,slot,li);
if ((level = myLevel) ∧ (previousV alue = slot)) then

s = randomNumber mod li;
myLevel + +;
previousV alue = s;
send myID in slot s;
if (receivedAck) then identified = true;

in terms of number of slots needed to identify all tags. As
we shall see, our experimental outcomes are confirmed by
the analytical result presented in [13] about the average size
of a random hash tree, which is asymptotic to 2.3020238n,
where n is the number of uniformly distributed random en-
tries to be placed in the tree. The tree built by TSA protocol
is identical to such random hash tree, if we would know the
exact number of tags. So, if this is the case, we can as-
sert that the average number of slots needed to identify n
tags is 2.3020238n. In other words, if we define the system
efficiency as the ratio between the number of tags and the
number of slots needed to identify them like in [5], it results
that the average system efficiency of TSA protocol is given
by n/2.3020238n = 0.4344. In the same paper [13], the
average height of a random hash tree is also shown. Such
an height is proved to grow as lg2 n, in probability, with
uniform distribution. So, in TSA the amount of bits needed
to represent the tree level is equal to lg2 lg2 n. Such amount
is actually very small: for instance, up to n = 65536, only
lg2 lg2 216 = lg2 16 = 4 bits are needed to represent the

3

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

level=0

level=1

level=2

level=3

Figure 1. Example of TSA protocol execution

level of TSA tree (in addition to that ones needed to store
the slot number).

The size of the frame in each reading cycle is computed
by using a particular estimation function, similar to that
used in [4], and defined as follows. At each reading cy-
cle, we obtain a triple < c0, c1, ck > quantifying the empty
slots, slots filled with one tag and slots with collisions, re-
spectively. We use Chebyshev’s inequality asserting that the
outcome of a random experiment involving a random vari-
able X , is most likely somewhere near the expected value of
X . We use this property to compute the distance between
the effective result < c0, c1, ck > and the expected result
< a0, a1, ak > of a reading cycle. By minimizing such a
distance, defined in equation (1), it is possible to estimate
the number n of tags transmitting in such a cycle.

ε(N, c0, c1, ck) = min
n

∣∣∣∣∣∣∣

⎛
⎜⎝

aN,n
0

aN,n
1

aN,n
≥2

⎞
⎟⎠ −

⎛
⎝ c0

c1

ck

⎞
⎠

∣∣∣∣∣∣∣
(1)

The triple < a0, a1, ak > entries indicate the expected
number of empty slots, slots filled with one tag, and slots
with collision, respectively. N and n denote the frame size
in the reading cycle and the number of tags, respectively.
When the reader uses a frame size equal to N , and the num-
ber of responding tags is n, the expected value of the num-
ber of slots with r responding tags is given by

aN,n
r = N ×

(
n

r

) (
1
N

)r (
1 − 1

N

)n−r

.

We assume that the ε value in equation (1) is searched
by varying n in the range [c1 + 2ck, ..., 2(c1 + 2ck)], where
c1 + 2ck represents the minimum possible value of n. That
is, since c1 tags have been identified, and if there are ck

collisions, at least 2ck tags collided [4]. We set the upper
bound of the range equal to 2(c1+2ck), since by simulation
we saw that there is no further accuracy in the estimation,
if we set it to higher values. Our tag estimation function
computes the frame size li+1 of reading cycle i + 1 as

li+1 =
⌊

ni − ci
1

ci
k

⌋

where ni, ci
1 and ci

k are the estimation, the number of iden-
tified tags, and the number of slots with collisions related to
reading cycle i respectively. In our tag estimation function,
we assume that if ni is the number of transmitting tags in
reading cycle i, the number of tags transmitting in reading
cycle i + 1 will be that one, minus the number of identified
tags (ci

1) in reading cycle i. Besides, since we assume uni-
form distribution of collisions, the number of unread tags in
cycle i + 1 will be the estimated number of colliding tags
in cycle i divided by the number of slots with collision ci

k.
This function is applied for each reading cycle.

Tag identification protocols are usually compared ac-
cording to two main performance metrics: time complexity
and bit complexity. The former is the number of slots is-
sued by the reader for identifying all tags. The latter is the
amount of transmitted bits by the reader and/or by the tags,
and represents the energy spent in communication. We an-
alyze more in depth the time complexity, since this is the
most used metric. Besides, as we will show in the next sec-
tion, by reducing the total number of collisions, our protocol
reduces also the bit complexity (with respect to the Framed
Slotted Aloha protocol). Notice that, since in TSA tags store
the number of the last slot in which they transmitted, it is
possible to reduce the bit complexity by changing the pro-
tocol in this way: instead of always sending the whole serial
ID number, tags can answer the reader by sending only one
bit in each (micro)slot, and later the reader can query only
the not colliding tags by asking for their ID. This is true
if we assume that the reader can detect collisions by signal
strength inspection.

4 Simulations

We implemented the Tree Slotted Aloha (TSA) protocol
described before, together with Advanced Framed Slotted
Aloha (AFSA) [5], Query Tree (QT) [3], and Query Tree
Improved (QTI) [3]. We implemented also a TSA version,
called Limited Tree Slotted Aloha (LTSA), which differs
from basic TSA in this: after computing the expected num-
ber of tags transmitting in the previous reading cycle with
the estimation function ε presented in Section 3, LTSA ad-
justs the frame size according to the values given in Table 2.
The same frame adjustment is done also by AFSA, as it is
reported in [5]. We implemented also another Framed Slot-
ted Aloha, where frame size does not have limitations: in
other words, the frame size is exactly equal to the estima-
tion ε−c1, where ε is obtained by means of equation (1). We
call this protocol Dynamic Framed Slotted Aloha (DFSA).

We considered the following simulation parameters: the
number n of tags in the reader communication range; the
initial frame size l0; the length tid of ID strings, which im-
plies the total number of tags (the “universe” size is 2tid);
the tag IDs distribution: the uniform one, and another dis-

4

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

Table 2. Frame size in LTSA and AFSA.
Estimated unread tags (Ni) Frame size (li) Groups

1 - 11 8 1
12 - 19 16 1
20 - 40 32 1
41 - 81 64 1

82 - 176 128 1
177 - 354 256 1
355 - 707 256 2
708 - 1416 256 4

...

tribution where groups of tag IDs are consecutive. In some
applications, a distribution of tags IDs in groups, with con-
secutive numbered IDs in each group, is more realistic than
purely uniform distribution. Consider, for instance, a shop
inventory: a block of tags are initially (bought and) attached
to all objects present at that moment. Very likely, such tags
will have consecutive IDs, since have been produced in se-
quence. Then, some objects will be sold, and some new
will be inserted in the RFID system, thus creating groups of
blocks.

We implemented the protocols in C language, compiled
with gcc tool; all tests ran on Pentium III, 800 Mhz, 256
RAM, with Fedora Linux distribution as operating system.
Each test was defined by tuning the above cited parameters.
For each test, we ran 100 cases by randomly generating the
IDs of tags to be identified. The definition of one ID is
done by composing a string of randomly generated bits. In
case of IDs distributed in groups, the maximum group size
g was set equal to 10% of the number of tags n to be iden-
tified, and it was used in the ID generation in the following
way. Together with the beginning of a group, which was
uniformly generated, the size was set by generating another
integer random number uniformly distributed in the range
[0..g−1]. The group definition procedure checked also pos-
sible overlappings with already generated groups. In such a
case, another ID for a group beginning was generated, until
no overlapping was achieved.

As performance measure, we use the time complexity
represented by the total number of slots required to iden-
tify all tags. For QT and QTI protocols, we consider the
number of queries needed to identify all tags, and we as-
sumed that the time spent in one query is equivalent to one
time slot. We represent the time complexity by means of
the system efficiency defined as the ratio between n and the
total number of slots required to identify all tags. We com-
pared the performances of TSA and LTSA, with those of
AFSA, DFSA, QT and QTI. The results of our simulations
are presented in Figures 2 and 3, by varying n value from
5 to 100 and from 100 to 3000, respectively, when IDs are
uniformly distributed. As we can see, our protocol performs
better than the others when the number n of tags to be iden-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

Sy
st

em
 E

ffi
ci

en
cy

Number of Tags

TSA
LTSA
DFSA
AFSA

QT
QTI

Figure 2. System efficiency vs. Number of
tags n, 5 ≤ n ≤ 100, l0 = 128, tid = 48.

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0 500 1000 1500 2000 2500 3000
Sy

st
em

 E
ffi

ci
en

cy
Number of Tags

TSA
LTSA
DFSA
AFSA

QT
QTI

Figure 3. System efficiency vs. Number of
tags n, 100 ≤ n ≤ 3000, l0 = 128, tid = 48.

tified exceeds 50. For a smaller number of tags, query tree
protocols are faster in identifying the tags. In our opinion,
this is due to the choice of initial frame size in Slotted Aloha
based protocols. In fact, in these test cases, the frame size
was initially set to 128, which is too large for small num-
ber of tags. As a result, we have at least 128 slots even if
n is very small. We performed a set of simulation tests in
which the initial frame size l0 was let to vary from 2 to 256.
In Figure 4 we can see that the choice of initial frame size
does not significantly affect the performance of TSA, when
the number of tags is far from l0. The best performance
is obtained when l0 is close to the number n of tags to be
identified. The same outcome is turned out also for the other
protocols.

Figure 5 shows the system efficiency of TSA compared
to query tree protocols, when IDs are distributed in groups,
as previously described. In such a case, TSA, for its nature,
is not influenced by the IDs distribution, while it happens
for QT and QTI protocols. This is because query tree pro-
tocols need to execute prefix queries until tag IDs are dif-
ferent, and for consecutive IDs this happens only at the last
bit. For this phenomenon, the performance of QT and QTI
degrades also by increasing the ID length.

5

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 50 100 150 200 250 300 350 400 450 500

Sy
st

em
 E

ffi
ci

en
cy

Number of Tags

L0=2
L0=4
L0=8

L0=16
L0=32
L0=64

L0=128
L0=256

Figure 4. System efficiency of TSA, by vary-
ing the initial frame size l0.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sy
st

em
 E

ffi
ci

en
cy

Number of Tags

QT48
QT96

QT128
QT256
QTI48
QTI96

QTI128
QTI=256

TSA

Figure 5. System efficiency of QT and QTI vs.
ID length, IDs distributed in groups.

5 Conclusions

In this paper, we investigated the tag identification prob-
lem in RFID systems. Firstly, we surveyed the existing pro-
posals for this problem, in particular the probabilistic proto-
cols. Then, we proposed a new probabilistic protocol based
on a modified version of Slotted Aloha protocol to reduce
the number of transmission collisions. All tags select a slot
to transmit their ID by generating a random number. If there
is a collision in a slot, the reader broadcasts the next identi-
fication request only to tags which collided in that slot. We
evaluated its performance in terms of number of slots, that is
strictly related to the delay for identifying all tags. We com-
pared our protocol performance with that of other Framed
Slotted Aloha based and query tree based protocols by sim-
ulation. The results of the simulation experiments show that
our protocol behaves better than the others. Specifically,
TSA achieved a performance of about 37%, with peaks of
over 41%, while all the others did not exceed 36%.

Some problems need further investigation. For instance,
it would be interesting to assess the performance of our pro-
tocol when the reader moves, namely when the set of tags
to be identified changes over time. Another issue is a sim-

plification of the tags procedure and of its hardware require-
ments.

References

[1] K. Finkenzeller, RFID Handbook: Fundamentals and
Applications in Contactless Smart Cards and Identifi-
cation, 2nd ed. John Wiley & Sons, March 2003.

[2] J. Myung and W. Lee, “An adaptive memoryless tag
anti-collision protocol for RFID networks,”. Poster pa-
per at IEEE INFOCOM 2005, Miami, FL, March 2005.

[3] C. Law, K. Lee, and K.-Y. Siu, “Efficient memory-
less protocol for tag identification (extended abstract),”
Proc. of DIALM ’00, New York, NY, 2000, pp. 75–84.

[4] H. Vogt, “Efficient object identification with passive
RFID tags,” Proc. of Pervasive 2002, pp. 98–113.

[5] S. Lee, S.D. Joo, and C.W. Lee, “An enhanced dynamic
framed slotted aloha algorithm for RFID tag identifica-
tion,” Proc. of Mobiquitous 2005, pp. 166-172.

[6] A. Micic, A. Nayak, D. Simplot-Ryl, and I. Stojmen-
ovic, “A hybrid randomized protocol for RFID tag iden-
tification,” Proc. of WoNGeN ’05.

[7] L. G. Roberts, “Extensions of packet communication
technology to a hand held personal terminal,” Proc. of
Spring Joint Computer Conference, AFIPS Conference,
1972, vol. 40, 1972, pp. 295–298.

[8] J. I. Capetanakis, “Tree algorithms for packet broadcast
channels,” IEEE Trans. on Information Theory, vol. IT-
25, pp. 505–515, September 1979.

[9] D. R. Hush and C. Wood, “Analysis of tree algorithms
for RFID arbitration,” Proc. IEEE Intern. Symposium
on Information Theory, Boston, USA, August 1998.

[10] M. A.-I. Center, “Draft protocol specification for a
900 MHz class 0 radio frequency identification tag,”
http://www.epcglobalinc.org, February, 23rd, 2003.

[11] F. C. Schoute, “Dynamic frame length aloha,” IEEE
Trans. on Communications, vol. COM-31, no. 4, pp.
565–568, April 1983.

[12] I. Chlamtac, C. Petrioli, and J. Redi, “Energy-
conserving access protocols for identification net-
works,” IEEE/ACM Trans. on Networking, vol. 7, pp.
51–59, February 1999.

[13] L. Devroye, “The height and size of random hash
trees and random pebbled hash trees,” SIAM Journal
on Computing, vol. 28, no. 4, pp. 1215–1224, 1999.

6

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

