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Joint Network-wide Opportunistic Scheduling
and Power Control in Multi-cell Networks

Jeong-woo Cho, Jeonghoon Mo, and Song Chong,Members, IEEE

Abstract—We present a unified analytical framework that
maximizes generalized utilities of a wireless network by network-
wide opportunistic scheduling and power control. That is, base
stations in the network jointly decide mobile stations to be
served at the same time asthe transmission powers of base
stations are coordinated to mitigate the mutually interfering
effect. Although the maximization at the first glance appears to be
a mixed, twofold and nonlinear optimization requiring excessive
computational complexity, we show that the maximization can be
transformed into a pure binary optimization with much lower
complexity. To be exact, it is proven that binary power control
of base stations isnecessary and sufficientfor maximizing the
network-wide utilities under a physical layer regime where the
channel capacity is linear in the signal-to-interference-noise ratio.
To further reduce the complexity of the problem, a distributed
heuristic algorithm is proposed that performs much better than
existing opportunistic algorithms. Through extensive simulations,
it becomes clear that network-wide opportunistic scheduling and
power control is most suitable for fairness-oriented networks
and underloaded networks. We believe that our work will serve
as a cornerstone for network-wide scheduling approaches from
theoretical and practical standpoints.

Index Terms—Opportunistic scheduling, wireless network,
power control, max-min fairness, proportional fairness.

I. I NTRODUCTION

RESOURCE allocation in wireless data network in a
system perspective has drawn many attentions for the

last ten years. As people from the networking research have
paid more attentions to wireless networks, more progressesare
made in the wireless network scheduling and power control.
They have considered various system objectives such as total
throughput maximization (or max-C/I) [1], max-min fairness
[2], and proportional fairness [3] and proposed schedulers
to achieve the given system objective. The max-min fair
scheduler, though it is one of the most popular ones in wired
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networks, turns out to be less efficient due to thesolidarity
propertyof wireless networks: the throughput of each user is
equalized to the smallest user throughput [4]. They claimed
proportional fair scheduler can be a better candidate in the
wireless networks since it is easy to implement and provides
a good balance between fairness and efficiency. Viswanathet
al. [5] and Borst [6] showed that proportional fairness becomes
equivalent to equal-time fairness under some assumptions.

Opportunistic scheduling concept was introduced in wireless
data networks to increase the average throughput of wireless
channels by exploiting the time-varying characteristics of
wireless channel [1], [5]–[7]. Since channel conditions ofusers
are good and bad randomly, higher throughput can be achieved
by scheduling a flow whose instantaneous channel condition
is relatively better than others. To exploit this diversityfurther,
Viswanathet al. [5] proposed a proactive beamforming scheme
in which fast channel fluctuations are artificially induced by
multiple transmit antennas in a pseudorandom manner.

Even with aforementioned advances in wireless data net-
works, little work has been done in multi-cell network-wide
scheduling. Both theoretical difficulty and impracticality pre-
vent people from pursuing the multi-cell network scheduling
problem. Instead, multi-cell problems with different objectives
have been considered: load balancing among cells [8], [9], and
a low data rate problem of cell boundary users [10].

Sang et al. considered multi-cell problem in a slightly
different angle of load balancing in their seminal work [8].
They proposed anintra-cell opportunistic downlink scheduling
algorithm where each BS (base station) exploits user diversity
gain in the corresponding cell independently to achieve(w, α)-
proportional fairness, that was proposed by Moet al. [11].
When α = 0, an MS (mobile station) having the strongest
channel is picked out by the scheduler (max-C/I). Whenα = 1
and α → ∞, proportional fairness and max-min fairness
are achieved, respectively. The central server participates in
load balancing by adjustingα value of each cell, named as
cell breathing in which α is a flexible knob to balance the
time-slots allocated to MSs close to the BS and MSs at cell
boundaries. Forload balancing, each MS adapts to its channel
variation and the load fluctuations by initiating the load-aware
handoff and cell-site selection where their own condition is
adopted rather than network-wide proportional fairness.

Bu et al. [9] also considered a similar problem and proposed
load balancingschemes that achieve network-wide propor-
tional fairness if the channel capacity tends to be linear in
the SINR (signal-to-interference-noise), while the load bal-
ancing scheme proposed in [8] did not directly tackle the
network-wide proportional fairness due to its complexity.They
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showed that the general problem is NP-hard and provided
efficient offline and online heuristic algorithms to solve an
approximated problem. Kauffmannet al. [12] proposed two
distributed algorithms, based on the annealedGibbs sampler
[13], for channel selectionfor interference mitigation, and
user association(load balancing) for fair and optimal resource
allocation in WLANs (Wireless Local Area Network). They
also proved that the distributed algorithms lead to efficient
spectrum usage and improved performance in the context
of minimal potential delay fairness. As the proposed algo-
rithms do not require explicit coordination among stations,
the applicability latent within the Gibbs sampler technique is
noticeable.

So called SSDT (Site Selection Diversity Transmission),
which is an idea of BS coordination payingno regard to
scheduling, was once considered in 3GPP WCDMA system
[14]. In SSDT, an MS selects the BS with the largest SINR
using rapid physical layer signaling. The main weak point of
SSDT is that an MS to be served is decided by a scheduler
(possibly controlling multiple BSs) in advance and SSDT
decides only whether or not to turn off some BSs. In this sense,
SSDT does not pertain to achieving network-wide fairness.

Recently, the insufficient data rate problem of cell boundary
users in the OFDMA system attracted the most attentions ever
due to popularity of new standards such as the IEEE 802.16e
[15] and the evolved UTRA [16]. Many people considered
different frequency reuse schemes. However, [17] observed
high throughput loss with the frequency reuse schemes and
recommended reuse factor of one. Our work can be considered
as an extension of [17] from the fixed frequency reuse scheme
to a dynamic one.

Bonaldet al. [10] considered a novel notion of scheduling,
that is to say, coordination of transmissions among BSs. Unlike
[8], [9] where all BSs transmit at full power all the time, they
formulated an optimization problem which opportunistically
coordinates instantaneous transmission powers of BSs in order
to provide favorable channels to MSs at the cell boundaries.
However, they did not consider the objective of network-wide
proportional fairness and opportunistic scheduling. In a similar
context, Kianiet al. [18] addressed the problem ofdistributed
inter-cell coordinationwhere BS transmission can be switched
off to maximize the total throughput. A unique feature that
makes this work noteworthy is that each cell makes a decision
regarding its transmission power based only on the SINR of
the users within the cell. In addition, the proposed distributed
algorithm lends itself to exploiting multiuser diversity.

From a quite different angle, Karakayaliet al. [19] proposed
a network-wide coordination of the BS transmissions so as to
mitigate inter-cell interference. They showed that an improved
form of signal-level coordination is obtained when a zero-
forcing equalizer is combined with dirty paper coding. Since
the performance metric for comparisons was the max-min rate
achievable subject to per BS power constraints, the proposed
signal-level coordination was turned out to improve the system
capacity significantly. In Section IV-C, we explain why inter-
cell interference mitigation is favorable for max-min fairness.

Recently, Li and Liu in their work [20], [21, Chapter 7] con-
sidered a semi-distributed radio resource allocation scheme in

OFDMA networks where radio resource allocation is divided
into two algorithms,i.e., an RNC (radio network controller)
algorithm and a BS algorithm. That is, RNC coordinates inter-
cell interference between BSs at super-frame level and eachBS
makes its channel assignment decision on frame level based
on users’ traffic conditions. However, because a BS algorithm
follows RNC’s decision when all users in the BS have traffic
to send in each frame, their scheme can be viewed as an RNC-
centric radio resource allocation where each BS exploits only
thetraffic diversity[20]. Besides, they also did not consider the
objective of network-wide proportional fairness but the total
throughput maximization.

In this paper, we consider network-wide opportunistic
scheduling problem under a multi-cell environment based on
the optimization problem proposed in [8]. We would like to
answer the following questions in particular:

How much improvement can we make by considering inter-
cell coordination? For what kind of network is inter-cell
coordination most suitable?

To answer the questions, we formulate an optimization
problem which maximizes generalized utilities of a multi-
cell network by network-wide opportunistic schedulingand
network-wide opportunistic power control rather than by load
balancing. Since load balancing without considering network-
wide opportunistic power control is already too complicated
[9], it is not treated in this paper to better focus on our
problem.

Although the maximization in the first formulation appears
to be a mixed, twofold and nonlinear optimization requiring
excessive computational complexity, we prove that the maxi-
mization can be transformed into a pure binary optimization.
Correctly speaking, we prove that binary power control of
base stations isnecessary and sufficientfor maximizing the
network-wide utilities under situations in which the chan-
nel capacity tends to be linear in the SINR. Consequently,
network-wide opportunistic schedulingabsorbsnetwork-wide
opportunistic power control. For distributed operation of
network-wide optimization in real networks, a heuristic al-
gorithm using local information of neighbor BSs is proposed.
Through extensive simulations, we show that network-wide
opportunistic scheduling and power control improve various
performance indices considerably.

The rest of the paper of organized as follows: The first
formulation including network-wide opportunistic scheduling,
power control and load balancing is presented and simplified
in Section II. Since the simplified problem is still intractable,
we propose a distributed heuristic algorithm with much lower
complexity in Section III. The performance of our proposed
algorithm is verified in Section IV. Then we conclude this
work with answering the questions brought up in this section.

II. N ETWORK-WIDE UTILITY OPTIMIZATION

The first formulation of network-wide utility optimization
incorporates not only network-wide opportunistic scheduling
and power control but also load balancing,i.e., an MS can be
associated with any BS in the network.
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A. Problem Formulation

Suppose that there areN BSs andK MSs in a multi-
cell network and the sets of BSs and MSs are denoted by
N

.
= {1, . . . , N} and K

.
= {1, . . . , K}, respectively. Each

BS chooses only one MS for each time-slott for downlink
transmission of data,i.e., there is a one-to-one mapping ofN
into K. Network-wide optimization of generalized network-
wide utility U(t) at time-slott can be formulated as follows:

max
{Ikn(t)}

max
{pn(t)}

U(t), (1)

s.t. U(t) =
∑

k∈K

Uk(r̄k(t)), (2)

r̄k(t) =
1

t

t∑

τ=1

∑

n∈N

rkn(τ)Ikn(τ), (3)

∑

k∈K

Ikn(t) = 1, (4)

∑

n∈N

Ikn(t) ≤ 1, (5)

rkn(t) = B · C

(
pn(t)gkn(t)

σ2
k +

∑
i∈N ,i6=n pi(t)gki(t)

)
, (6)

0 ≤ pn(t) ≤ p, (7)

whereUk(r̄k(t)) is the utility function of r̄k(t), the average
throughput of MSk up to time-slott. It is reasonable to let
Uk(·) be a function of onlȳrk(t) as in [8], [9], [22]. Besides,
r̄k(t) is a function of the instantaneous channel rates from BSs
to MSs,{rkn(τ) | 1 ≤ τ ≤ t}, and the scheduling indicator
matrices,I(t)

.
= {Ikn(τ) | 1 ≤ τ ≤ t} where

Ikn(t) =

{
1, MS k is assigned to BSn at time-slott,
0, otherwise.

(8)
The two constraints regardingIkn(t), (4) and (5), imply that
each BS serves exactly one MS and each MS can be served by
at most one BS, respectively, at each time-slot. The average
throughput of MSk up to t, r̄k(t), is the ensemble average of
the instantaneous channel rates,rkn(t), which are determined
by the channel capacity model (6) whereB is the bandwidth in
hertz, C(·) is the normalized channel capacity in bits/s/hertz
that is a function of the instantaneous SINR. In the SINR
expression,gkn(t) > 0 is the signal gain from BSn to MS
k that characterizes the propagation loss of the transmission
powerpn(t), the fast Rayleigh fading, and the large time-scale
log-normal fading. Assuming that Gaussian signalling is used
by all nodes, the interference terms are also Gaussian and
the channel capacity within a given time-slot follows AWGN
Shannon capacity. The transmission powers of BSs,pn(t), are
upper-bounded byp at all time slots as shown in (7), but it can
be easily verified that all results in this paper hold even if the
upper-bounds vary time. Before taking up the main subject, it
is noteworthy that network-wide optimization is reduced toN
independent intra-cell scheduling problems if there is neither
load balancing nor power control. (For readability, all proofs
in this paper are in Appendix.)

Observation 1. If we assume that all BSs are transmitting with
its full power and each MS is associated with a predetermined

BS, then network-wide optimization given by (1)∼(8) is re-
duced toN independent intra-cell optimizations.

This observation signifies that the existing intra-cell oppor-
tunistic scheduling is the best way to optimize the network-
wide utility if load balancing is not used and transmission
powers of BSs are constant,e.g., pn(t) = p. It should be
remarked that the intra-cell opportunistic scheduling possesses
a desirable convergence property. That is, it is shown in [22]–
[24] that its gradient algorithm leads to long-term asymptotic
optimality under various assumptions.

The given optimization problem is very complicated due
to the nonlinearities of (1) and (6), combination of binary
variables{Ikn} and real variables{pn(t)}, and twofoldness
in (1). But we have found that the problem becomes more
tractable if it is separated into two subproblems: (i)the outer
problem– maximizingU(t) by varying{Ikn(t)} for a given
{pn(t)} , and (ii) the inner problem– maximizingU(t) by
varying {pn(t)} for a given {Ikn(t)}. Note that the outer
problem does not have (6) as constraints because{pn(t)}
is given. Similarly, the inner problem does not have (4) and
(5) as its constraints. Since the inner problem has a special
characteristic which is to be revealed in Section II-B and
has made our analysis possible, we will focus only on the
inner problem for the moment until a simplified optimization
is reformulated in Section II-C.

To simplify the optimization problem by assuming{Ikn} is
predetermined, let us definek(n,t) as the index of the MS to
be served by BSn at time-slott. More formally, the set of
pairs(n, k(n,t)) is be defined as:

Ω(t)
.
=
{
(n, k)

Ikn(t) = 1, k ∈ K andn ∈ N
}

.

Since a BS chooses only one MS for each time-slot, the
cardinality ofΩ(t) is N . Whenever we use the notationk(n,t)

in this section, we are assuming thatΩ(t) is determined in
advance and(n, k(n,t)) ∈ Ω(t). By denotingǫt

.
= 1

t
, we can

rewrite (3) compactly in the form of the following running
average equation:

r̄k(n,t)(t) = r̄k(n,t) (t − 1) + [rk(n,t)n(t) − r̄k(n,t) (t − 1)] ǫt.
(9)

If the initial condition U(0) = 0 is used, the network-wide
utility becomes:

lim
t→∞

U(t) = lim
t→∞

t∑

τ=1

[U(τ) − U(τ − 1)] . (10)

Here ∆U(t)
.
= U(t) − U(t − 1) corresponds to the utility

difference that should be maximized at each time-slott without
the knowledge ofrkn(τ) for τ > t. If we make use of the
Taylor expansion of∆U(t), it becomes

∆U(t)=
∑

k∈K

Uk(r̄k(t)) − Uk(r̄k(t − 1))

=
∑

k∈K

∂Uk(r̄k(t−1))
∂r̄k

[r̄k(t) − r̄k(t − 1)] + O(ǫ2t )

=
∑

k∈K

∂Uk(r̄k(t−1))
∂r̄k

[rk(t) − rk(t − 1)︸ ︷︷ ︸
given att

]ǫt + O(ǫ2t ) (11)
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where the third equality holds by (9). Note thatr̄k(t− 1) has
no effect on the maximization of∆U(t) since it is given at
time-slot t. We adopt the generalized proportional fair utility
function introduced in [11] whereUk(r̄k(t)) is given by:

Uk(r̄k(t)) =

{
wk

r̄k(t)1−α

1−α
, α ≥ 0, α 6= 1 andwk > 0,

wk log r̄k(t), α = 1 andwk > 0.
(12)

which is called(w, α)-proportional fair utility. Forα = 1,
Uk(r̄k(t)) = wk log r̄k(t) is called proportional fair utility
function. If we apply this substitution to (11) and neglect
O(ǫ2t ), maximizing∆U(t) becomes equivalent to the follow-
ing simple form:

max
Ω(t)

max
{pn(t)}

∑

n∈N

wk(n,t)

rk(n,t)n(t)

[r̄k(n,t)n(t − 1)]α
, (13)

which bears a close resemblance to the Weighted Alpha-Rule
scheduling algorithm in [8]. Note that the utility difference
∆U(t) is a linear combination of instantaneous channel rates
rk(n,t)n(t) for given weights

w
k(n,t)n

[r̄
k(n,t)n

(t−1)]α .
It turns out that the form of the objective function given by

(13) can be viewed as a gradient algorithm adopted in [22]–
[24]. The only difference here is that (13) requires the two-
dimensional network-wide selection of an index set,Ω(t), and
transmission powers of BSs,pn(t), while [22]–[24] requires
N independent cell-wide selections of one MS in each cell.
Note also that, to the best of our knowledge, the gradient
algorithm represented by (13) is the only way to exploit
multiuser diversitysimultaneously withkeeping full control
of network-wide fairness through the flexible control knobα
in multi-cell networks.

B. On the Optimality of Binary Power Control

For a givenΩ(t), the inner problem is equivalent to a
problem of assigning transmission powers to BSs. To give a
shape to the instantaneous channel ratesrkn(t) which depend
on normalized channel capacity function C(·), we consider the
following channel capacity model.

• C(x) = x
log 2 : Since log2(1 + x) ≈ x

log 2 for x ≈ 0, this
model closely approximates Shannon’s channel capacity
if SINR is not too large. Particularly, this model is well
suited for wide-band systems [15], [16] (whereB is large)
and low-power systems (wherep is small) for which
Shannon’s channel capacity becomes more linear.

Even with linear channel capacity model, (6) still complicates
the analysis due to its nonlinear relations to transmission
powers of other BSs. However, we have found that the
inner problem with the linear channel capacity model has an
interesting property described by Theorem 1. To prove it, we
need a proposition showing an advanced convexity of a certain
function.

Proposition 1. Let us assume thata > 0, ai ≥ 0, bi > 0,
∀i = 1, . . . , M . Consider the following problem:

max
x

ax +
M∑

i=1

ai

bi + x
,

s.t. 0 ≤ x ≤ x.

The above objective is strongly quasiconvex [25], and maxi-
mized at eitherx = 0 or x = x.

Theorem 1 (Binary Power Control). For given Ω(t), if
C(x) = x

log 2 and the error termO(ǫ2t ) in (11) is neglected§,
the network-wide utility

U(t) =

{ ∑
k∈K wk

r̄k(t)1−α

1−α
, α ≥ 0, α 6= 1 andwk > 0,∑

k∈K wk log r̄k(t), α = 1 andwk > 0.
(14)

cannot be maximized ifpn(t) /∈ {0, p} for anyn ∈ N .

Considering a downlink CDMA data network and a multi-hop
wireless network, Radunovićet al. [26] and Bedekaret al.
[27] respectively obtained a similar result forα = 0 and the
channel capacity model is linear, which coincides with a part
of Theorem 1. Recently, Gjendemsjøet al. [28] generalized
this result and proved that binary power control is optimal for
α = 0 and identicalwi not only if SINR factors are very low
but also if they are highly concentrated. However, little can
be said for the caseα 6= 0 because it can be easily shown
that the arithmetic mean-geometric mean approximation used
in [28] depends on time-varying factors (weights in (13)) in
this case. The main point may be summarized as follows.

• For all types of network-wide(w, α)-proportional fair-
ness,only binary power control is optimalif the under-
lying physical layer is in the linear regime.

It is worth noticing that multi-carrier systems employing
binary power control can suffer from high PAPR (peak-to-
average power ratio). A number of PAPR reduction techniques
have been proposed and it is well-known that there is a tradeoff
between data rate and PAPR reduction [29]. Therefore, the
net effect of binary power control considering its adverse
effect should be investigated so that we can decide whether
to employ binary power control or not in a specific system.
In this paper, we propose a nonnegative lower-bound for the
transmission powers of BSs,p ≥ 0, so that transmission
powers can be eitherp or p. Then p can serve as a flexible
control knob to balance the favorable and adverse effects of
binary power control. Note that it is easy to show that Theorem
1 also holds forp 6= 0.

C. A Simplified Formulation

The original optimization problem given in Section II-A
is extremely complicated and we are going to reduce its
complexity by simplifying the power assignment: we assume
thatpn(t) ∈ {0, p} by appealing to the fact that binary power
control is optimal for linear channel capacity model thoughit
is not true when the physical layer regime is nonlinear¶. In
other words, if we revisit the original formulation laid outin
(1)∼(8), its complexity is alleviated due to the property of the
inner problem revealed in Section II-B. The essential pointin

§If α = 0, the error termO(ǫ2
t
) in (11) becomes0. Thus there is no

approximation in this case.
¶If the channel capacity is logarithmic in the SINR, it can be proven that

binary power control is optimalif and only if wk

[r̄k(t−1)]α
=

wj

[r̄j(t−1)]α
for

all k, j ∈ K and there are at most two BSs in a wireless network. The “if”
part of this proposition can be proven by applying techniques used in [28],
[30] to ∆U(t). The other part can be easily proven by counterexamples.
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the following formulation is thatnetwork-wide opportunistic
power control assimilates into network-wide opportunistic
scheduling.

max
{Ĩkn(t)}

∆U(t), (15)

s.t. rk(t) = B
∑

n∈N

C




gkn(t)Ĩkn(t)
σ2

k

p
+
∑

i∈N

i6=n

gki(t)Ĩ·i(t)




, (16)

Ĩ·n(t)
.
=
∑

k∈K

Ĩkn(t) ≤ 1, (17)

∑

n∈N

Ĩkn(t) ≤ 1. (18)

Here the instantaneous channel raterk(t) does not have
the subscript regarding BSs anymore. We introducecom-
bined scheduling indicator matrix,̃I(t) = {Ĩkn(t)} where
Ĩkn(t)

.
= Ikn(t) · pn(t)

p
. The binary control assumption,

i.e., pn(t) ∈ {0, p}, keeps Ĩkn(t) ∈ {0, 1} satisfied. The
constraint (17) allows the inequality that was not allowed in
(4), because a BS with zero power does not serve any MS,
i.e.,

∑
k∈K Ĩkn(t) = 0, wheren is the index of the BS. It is

remarkable that the mixed, twofold and nonlinear optimization
(1) is now unfolded into aflat binary optimization(15) where
the only variables to be optimized are{Ĩkn(t)}. The network-
wide utility can be written as:

∆U(t) =
∑

k∈K

wkrk(t)

[r̄k(t − 1)]
α . (19)

Note that this objective takes an opportunistic scheduler form
that opportunistically picks out MSs having relatively high
rk(t) at time-slott if gkn(t) is fluctuating.

D. On the Complexity of the Simplified Formulation

To better understand the complexity of the simplified prob-
lem presented in Section II-C, we will derive the exact number
of possible ways satisfying the two inequalities, (17) and (18).
This will show that the simplified problem is still complex and
it is necessary to develop a distributed heuristic algorithm.

Let us consider the set of all possible scheduler indicator
matrices,I

.
= {Ĩ(t)} and denote its cardinality byϕ(N, K).

Since (17) and (18) allow both equality and inequality, it is
clear thatϕ(N, K) is bigger than the cardinality of the set
of the indicator matrices introduced in [8, Section 4.1], where
power assignment problem was not considered at all.

There areNCi possible different ways to choosei BSs
amongN BSs. Let us assume that the transmission powers
of i BSs arep and those ofN − i BSs are0, without loss
of generality. For each ofNCi ways, there existKPi ways
to associatei BSs to K MSs. We provide a more tractable
expression ofϕ(N, K) in the following theorem with the help
of the Rodrigues representationof the associated Laguerre
polynomials[31]:
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Fig. 1. A multi-cell network composed of 37 hexagonal cells in four tiers.

Theorem 2. Assuming that the inequality constraints (17) and
(18) hold, the total number of possible ways to associate BSs
with MSs is

ϕ(N, K) =

∣∣∣∣
dN

dxN

(
e−x−1xK

) ∣∣∣∣
x=−1

. (20)

We can see from (26) thatϕ(N, K) is larger thanKPN ,
which is the number of possible ways satisfying the constraints
in [8, Section 4.1]. Moreover, (20) shows that a centralized
optimization cannot be deployed in practical systems. For
instance,ϕ(37, 740) ≈ 6.1 × 10105.

III. A D ISTRIBUTED HEURISTIC ALGORITHM

The intractable complexity of the network-wide optimiza-
tion formulated by (15)∼(19) makes us feel keenly the neces-
sity of a distributed heuristic algorithm. First of all, we assume
that each MS can be associated only with the BS that is closest
to the MS. By assuming this, we are transferring the task of
load balancing to a centralized entity that should be capable
of transacting a huge amount of computation. Therefore, our
heuristic algorithm tries to approximateonly network-wide
opportunistic scheduling that has already absorbed network-
wide opportunistic power control in Section II-C. If we divide
the set of MSsK into N disjoint sets as we did in the proof
of Observation 1, we get a new constraint,Ĩkn(t) = 0 if
k /∈ Kn, which greatly simplifies the optimization. However,
the number of possible ways satisfying the constraints on
{Ĩkn(t)} is ϕ′(N, |Ki|)

.
=
∏

i∈N (|Ki| + 1), which is still too
large. For example, if there are 37 BSs and each BS has20
MSs, ϕ′(37, 20) ≈ 8.4 × 1048.

To reduce the complexity of the simplified problem, we pro-
pose a heuristic algorithm named Neighbor-Assisted Network-
wide Opportunistic Scheduling algorithm (NANOS), which is
simpler in two regards. Each BS considers only its neighbor
BSs. Furthermore, only a subset of MSs in its neighbors are
considered instead of all MSs in the proposed heuristic. For
example, BS 7 makes use of information from BSs 1, 2, 6,
19, 17 and 18 in Fig. 1. The heuristic consists of three steps.
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Step 1. Local selection of MS candidates: Each BSn makes
a list Λn of candidates that might possibly maximize the sum
of utilities of BSn. We first select a candidate that maximizes
the sum of utilities when all of its neighbors are transmitting
at full power p̄. We repeat the selection process for the cases
in which only one (or none) of its neighboring BSs in (=Ñn−
{n}) is OFF. In the example of Fig. 1, there can be up to 7
possible candidates if each candidate from the above cases is
distinct from the rest. In other words,

Λn(t)
.
= {κj

n(t) | κj
n(t) = arg max

k∈Kn

∆U j
k(t), j ∈ Ñn}, (21)

where the per-MS utility∆U j
k(t) is defined as:

∆U j
k(t)

.
=

wk

[r̄k(t − 1)]
α · C


 gkn(t)

σ2
k

p
+ Ψj

kn(t)


 . (22)

Here, the other-cell interference is defined as:

Ψj
kn(t)

.
=

{∑
i∈N ,i6=n gki(t), if j = n (All BSs are ON);∑
i∈N ,i6=n,i6=j gki(t), otherwise (Onlyj is OFF).

(23)
The first case in whichj = n is when all neighbor BSs are
transmitting while the other case is when one of neighbor
interference terms,gkj(t), is excluded from the normalized
interference sum of MSk. Therefore,κj

n(t) corresponds to the
MS index which maximizes (19) if neighbor BSj is turned
off. Similarly, κn

n(t) is obtained if no neighbor BS is turned
off. In brief, Step 1 serves to decrease the number of MSs to
be considered in Step 3.

Step 2. Broadcasting of list: Each BS n broadcasts the
candidate listΛn(t) to its neighbor BSs (=̃Nn −{n}) through
the backhaul network.

Step 3. Finding a locally optimal solution: In this step,
each BS n finds a local optimal solution by solving a
problem composed of the neighbor BS setÑn and MSs
K̃n

.
=
⋃

n∈Ñn
Λn(t)‖. The local optimization at each BSn

is solved as if the BS setN and the MS setK were replaced
by Ñn andK̃n, respectively. Note that the cardinality of index
setΛn(t) is less than or equal tomin

[
|Kn|, |Ñn|

]
. In addition

to this, since it is likely thatκj
n(t) are repeated for different

j′, it can be even smaller. Once a local optimal solution
{Ĩ∗km(t)|k ∈

⋃
n∈Ñn

Λn(t), m ∈ Ñn} is determined, BSn
serves an MS whose indexk satisfiesĨ∗kn(t) = 1. Note that
BS n may not transmit at all if̃I∗kn(t) = 0 for all k ∈ Λn(t).
Even though BSn solves the problem including neighboring
BSs, it only uses a subset of the solution and disregards all
solutions of neighbor BSs.

The MS selection algorithm is based on the following
observations. Firstly, if the setΛn(t) is decided under the
assumption that all BSs transmit at full power, MSs located
around cell boundaries are rarely selected sincerk(t) of them
are underestimated due to interference signal from neighbor
BSs. That is, MSs that might be served more frequently after
coordinating transmission powers of BSs are discriminated
against. This certainly diminishes the network-wide utility.

‖We assume that BSs not iñNn are turned on.

Secondly, the situations in which two consecutive BSs do
not transmit anything rarely coincide with the optimal power
assignments∗∗. For instance, consider an MS in the middle of
the two BSs as shown in Fig. 1, where the strongest interferers
of the MS correspond to BS 5 and 14 due to their closeness to
the MS. If BS 5 serves the MS and BS 14 does not transmit,
the instantaneous channel rate of the MS becomes quite large
because the main interferer is removed. Therefore, it is more
plausible that the network-wide utility is increased if oneof
them transmits data at full power. Thus it is imperative that
we should introduceΨj

kn(t).
Even though the proposed heuristic is simpler than the

optimal algorithm, we should admit there are many challenges
in implementing it. For example, ifK is sufficiently large,
|Λn(t)| approaches|Ñn| and the complexity of an exhaustive
search becomes(|Ñn|+1)|Ñn| ≈ 2×106 with |Ñn| = 7. How-
ever, it isvirtually impossible to finish the global optimization
laid out in (15)∼(19) even if there is no load balancing,
due to its extreme complexity,e.g., ϕ′(37, 2) ≈ 4.5 × 1018,
ϕ′(37, 4) ≈ 7.3×1025 andϕ′(37, 20) ≈ 8.4×1048. As of now,
we claim that our heuristic is the only possible way to evaluate
the performance of network-wide opportunistic scheduling.

We see that there are many possible ways to decrease the
complexity of the proposed heuristic algorithm. For example,
let us assume that a cell can be divided into 3 or 6 sectors
such that each of the sectors is allocated1/3 or 1/6 of the
total bandwidth. Then, a sector needs to consider 2 or 1
adjoining sectors, respectively. In this case, the complexity of
the proposed algorithm for each cell becomes(|Ñn|+ 1)|Ñn|

= 9 or 2, respectively. However, as this sectorization scheme
leads to less optimal results, we decided not to adopt this
scheme.

Finally, we note that the proposed algorithm necessitates
additional measurements in the network. Provided that the
approximate values ofσ2

k and p are known to MSs, each
MS should be able to measure or infer the values ofgki(t)
wherek ∈ Kn and i ∈ Ñn. These values should be regularly
delivered to BSs so that they can solve the optimization
problems laid out in Step 1 and 3.

IV. SIMULATION RESULTS

To evaluate the performance of opportunistic scheduling
algorithms in multi-cell networks, various scenarios having
different fairness objectives are considered by varyingα. The
weights of MSs are assumed to be equal,i.e., wi = 1. A four-
tier multi-cell network composed of37(= N ) hexagonal cells
shown in Fig. 1 is adopted, where each cell is circumscribed
by a circle of radiusR = 1 km. The number of MSs,K, is
varied to change MS density in the network. Since we assume
the uniformity of MS location distribution in Section IV-A,the
probability distribution of the number of MSs associated with
BS i is given by Prob{|Ki| = k} = KCk

(
1
N

)k (
1 − 1

N

)K−k
.

Nonuniform MS distribution is considered in Section IV-B. For

∗∗For simplicity, our algorithm excludes situations in whichtwo consecu-
tive BSs are turned off. For instance, if an MS is located at the vertex where
hexagonal cells of BS 8, 9 and 21 meets as shown in Fig. 1, thereis some
possibility of improving the network-wide utility by turning off two of them.
As α increases, this possibility becomes higher.
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Fig. 2. Utility, throughput and QoS performance of network-wide and intra-cell opportunistic scheduling algorithms.

each given parameter set, we execute 50∼100 runs where each
run has 4,000∼16,000 time-slots and MSs are located over the
network at the beginning of each run. Intra-cell opportunistic
scheduling (which we denote by ICOS) and neighbor-assisted
network-wide opportunistic scheduling (which we denote by
NANOS), are evaluated under the same configuration.

Regarding the physical model,B = 1.5MHz and C(x) =
log2(1 + x) are used. All BSs have the same maximum
transmission powerp = 40dBm when they transmit data and
the same thermal noiseσ2

k = −100dBm which represents 3G
networks. The signal gain from BSn to MS k is defined
as gkn(t)

.
= min {1, skn(t) · Γ(dkn)} whereskn(t) is a unit-

mean log-normal fading variable such that10 log10 skn(t) is a
memoryless Gaussian random variable with a standard devia-
tion σs = 4dB andΓ(dkn) = −130 − 35 log10(dkn) dB (dkn

is the distance from BSn to MS k in kilometers). Note that
this corresponds to a path loss exponent of3.5. The NANOS

parameterÑn is defined asÑn
.
= {i ∈ N | d′in ≤ 2R · cos π

6 }
(d′in is the distance between BSi and n) so that each BS
located in the interior of the network has 6 neighbor BSs
excluding itself and|Ñn| = 7.

A. Utility, Throughput, QoS and Fairness Performance

It is our understanding that the network-wide utilityU(t)
itself is not meaningful since there is no direct relevance
betweenU(t) and performance indices. For instance, perfor-
mance indices of NANOS withα > 1 are greatly improved
even with slight increment ofU(t). However, to make it
clear that NANOS is superior to ICOS, we present Fig. 2(a)
where r̄k(t) in bits per seconds (bps) is used for calculating
U(t). NANOS doesresult in higherU(t) than ICOS for all
combinations ofK/N andα.
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Fig. 3. Probability densities of MS throughput of network-wide and intra-cell opportunistic algorithms.

Observation 2. If the network objective is throughput maxi-
mization (α = 0) and the number of MSs is not too small,
network-wide optimization does not help.

Observe that in Fig. 2(b) that the two topmost lines of ICOS
and NANOS are overlapping whenα = 0. To maximize
throughput, an MS with the best channel condition would
be chosen in each BS in ICOS. Since the MS with the best
channel is likely to be close to the BS, the impact of other-
cell interference may be negligible, which is why the cell
throughputs of NANOS and ICOS are almost the same.

Observation 3. As a network pursues fairness-oriented net-
work objectives (α > 0), NANOS results in a bit lower total
throughput than ICOS. However, cell boundary MSs get more
throughput.

In Fig. 2(b), whenα=1, 4 and 16, NANOS results in slightly
lower throughput than those of ICOS. Whenα > 0, there is no
plausible reason for NANOS to achieve higher throughput than
ICOS does. The network just does its own duty to maximize
its utility in each cell (ICOS) or in a network-wide way
(NANOS). As the network pursues fairness-oriented utilities
with larger α, the throughput gap between two scheduling
algorithms becomes more obvious because a network operated
by NANOS algorithm gradually approaches a max-min fair
network where all MSs have the same throughput.

To observe benefits of NANOS that are received by cell
boundaries MSs, let us consider the sum of MS throughputs
not exceeding the 5th percentile††of MS throughput distri-
bution which is shown in Fig. 2(c). It is noteworthy that
throughput performance of dissatisfied users in NANOS is sig-
nificantly improved (Fig. 2(c)) whereas the average throughput
performance of NANOS is similar to that of ICOS (Fig. 2(b)).
For example, whenα = 4 and the number of MSs is six,
NANOS is 38% better than ICOS. The throughput increases
in percentage forα = 4 and α = 16 are written down in

††The pth percentile cuts off lowestp% data.

Fig. 2(c). Anther noteworthy point is that the throughput gap
between two scheduling algorithms gets smaller as the number
of MSs becomes larger. This phenomenon is due to the fact
that the oversatisfied users are more reluctant to return their
spare utilities which might be used to increase utilities of
dissatisfied users as the network gets more loaded.

Observation 4. Throughput performance of ICOS is satu-
rated for largeα while NANOS mitigates this saturation.

If we look into Fig. 2(b) again, the cell throughputs of ICOS
are almost the same forα = 4 andα = 16, but on the other
hand those of ICOS become smaller as a network pursues
fairness-oriented objectives. In other words, forα ≥ 4, ICOS
cannot increases its network-wide utility even if it reduces
its cell throughput while NANOSdoesincrease its network-
wide utility at the sacrifice of its cell throughput. Note also
that the throughput performance of dissatisfied users shown
in Fig. 2(c)does notimprove for ICOS anddoesimprove for
NANOS. From these results, we can conclude that generalized
proportional fair scheduling without inter-cell interference
coordination becomes meaningless asα gets larger (α > 1).

To strengthen our claim that network-wide opportunistic
scheduling with a large value ofα helps cell boundaries
MSs, let us compute the QoS violation probability with a
minimum-throughput condition,̄rk(t) > rmin. In Fig. 2(d),
we show the percentages of MSs whose rate is lower than the
threshold forrmin = 128 and 192 Kbps. It is an expected
result that the violation ratio decreases with a largerα. But
it is noteworthy that the violation percentage of NANOS is
much lower than that of ICOS for largeα (α = 16). This
implies that network-wide opportunistic scheduling pertains to
fairness-oriented network where users demands their average
throughput to be larger than a certain threshold.

NANOS with largeα enables MSs in the network to receive
benefits of BS coordination equally while ICOS fails to do that
even with largeα. If we look into Fig. 3, where probability
densities of MS throughput forα = 1 andα = 16 are shown
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Fig. 4. Average BS off probabilities and frequency reuse factor in NANOS.

for various numbers of MSs per BS, such phenomenon is
revealed more clearly. NANOS significantly increases through-
puts of dissatisfied MSs while slightly sacrificing those of
oversatisfied MSs in underloaded networks. Therefore, we
conclude that NANOS gives preferential treatments to discon-
tented MSs with largeα by proving itself an able coordinator
to better channel conditions around cell boundaries.

We can summarize the aforementioned results as follows:
Network-wide opportunistic scheduling remarkably improves
the throughput performance of users around cell boundariesby
offering fairer chances to them while the aggregate throughput
is maintained. Network-wide opportunistic scheduling is most
suitable for fairness-oriented or underloaded networks.

Let us turn our attention on the probability that BS does not
transmit data,i.e., Poff

.
= Prob{pn(t) = 0}. It is clear from

Fig. 4 that NANOS controls BS powers more aggressively asα
becomes larger andK/N gets smaller except the caseK/N =
1 where too many BSs (≈ 0.363×37) having no MSs in their
cells are excluded from the calculation of Prob{pn(t) = 0}.
Moreover, it should be remarked that DFRF

.
= (1 − Poff)

−1

can be interpreted asdynamic frequency reuse factorwhere
DFRF−1 · B represents the portion of bandwidth utilized for
achieving the network objective. As shown in Fig. 4, DFRF
increases withα and decreases withK/N .

B. NANOS as an Implicit Load Balancer

Compared with existing frequency reuse schemes where all
BSs should follow a global rule that specifies the usage of
the whole bandwidth in the network and cannot be adapted
dynamically, NANOS can cope with hot-spot scenarios in
which several cells (called hot-spot cells) are more crowded
than the other cells in the network.

To avoid repetitive figures and results, only the probability
that each BS is turned off in NANOS is shown in Fig. 5 for
two cases: (i) without hot-spot cells, and (ii) with hot-spot
cells. The number of MSs per BS is10 and α = 16 in all
cases. In Fig. 5(a), the MS density function in each BS is
given by the same function used in Section IV-A. In Fig. 5(b),
it is assumed that each of six hot-spot cells,i.e., BS 8, 10, 12,
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Fig. 5. Per-BS off probabilities in NANOS with and without hot-spot cells.

14, 16 and 18 in Fig. 1 has twice as many MSs as each of
the other cells has in average while the total number of MSs
in the two networks is370 (= 37 × 10) for all cases.

It is shown in Fig. 5(b) that NANOS with hot-spot cells
provides more scheduling chances to MSs in hot-spot cells
by preventing hot-spot cells from being turned off. That is,
NANOS can be viewed as animplicit load balancerwhich
improves the network-wide utilities of fairness-orientednet-
works through inter-cell power control. For reference, Poff of
hot-spot cells and the others are0.090 and0.462, respectively,
as shown in Fig. 6. In addition, it is shown in Fig. 5(a) that
NANOS differentiates Poff of BSs even if there are no hot-spot
cells. As outer cells are interfered with by less number of cells
than inner cells are, there is an upward tendency of Poff with
distance from the center. As shown in Fig. 6, Poff of BS 1 (tier
1), BS 2∼7 (tier 2), BS 8∼19 (tier 3), and BS 20∼37 (tier 4)
are 0.259, 0.272, 0.288 and 0.346, respectively.



10

Without hot−spot cells With hot−spot cells
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Scenario

A
ve

ra
ge

 P
er

−
B

S
 P of

f i
n 

N
A

N
O

S

Tier 4

Tier 1
Tier 2

Tier 3

Hot−spot cells

Non hot−spot cells

Fig. 6. Comparison of Per-BS off probabilities in NANOS.

C. Discussion on Simulation Results

Unlike wired networks, wireless networks inclining to max-
min fair bandwidth allocation suffer from solidarity property
[4] that forces all users to have the same throughput. For
instance, let us consider a wireless network where all BS trans-
mit data all the time,i.e., pn(t) = p, and MSi ∈ Kn achieves
average throughput̂ri when it monopolizes BSn. If we neglect
the opportunistic gain caused by user diversity and denote the
portion of time-slots allocated to MSi by τi, r̂is should satisfy
r̂iτi = r̂jτj for anyi, j ∈ Kn, and

∑
i∈Kn

τi = 1. In this case,
it is easy to show that the actual average throughputs of all
MSs are equalized as̄r = 1/

∑
i∈Kn

r̂−1
i , which illustrates

how max-min wireless networks suffer from their fairness
objective. Thus it is important to improvêris of the tail-enders
when fairness is preferable to efficiency.

Besides, it sounds plausible that oversatisfied users are will-
ing to return their utilities in lightly-loaded networks, whereas
it does not make sense to divert utilities of more satisfied
users to less satisfied users in heavily-loaded networks. That is,
fairness is preferable to efficiency in lightly-loaded networks.

V. CONCLUSION

Prospective high speed wireless networks [15], [16] are
faced with wireless environments where downlink signals from
different base stations are randomly interfering with eachother
while those from the same BS are orthogonal to each other.
Aggregate throughput increases as wireless networks adopt
more advanced wireless techniques and broader frequency
bands, but on the other hand users at cell boundaries are still
suffering from the inter-cell interference problem. Therefore, it
is imperative that a sophisticated inter-cell scheduling scheme
should provide satisfactory throughput to users who have
been treated unfairly for their disadvantageous positions. It
is also remarkable that there is a consensus of opinion in the
evolved UTRA [32] that cell throughput can be sacrificed for
users at cell boundaries not to mention that several inter-cell
interference mitigation schemes are in the design stage.

Our contribution is four-fold: Firstly, to the best of our
knowledge, this is the first work dealing with an analytical

framework that optimizes generalized utilities of multi-cell
networks through network-wide opportunistic scheduling and
power control. Secondly, we have shown that the optimization
can be simplified because network-wide opportunistic power
control can be absorbed into the network-wide opportunis-
tic scheduling when the underlying physical layer is in the
linear regime. Thirdly, we have proposed a heuristic algo-
rithm which makes distributed and simplified operations of
base stations possible. Fourthly, we have obtained remarkable
findings which answer the questions brought up in Section I
by simulating various scenarios. In particular, network-wide
opportunistic scheduling brings on significant performance
improvement to discontented mobile stations at cell boundaries
and is most suitable for

1) networks having a preference for fairness to efficiency
because users demand their throughputs to be larger than
a certain threshold and

2) underloaded networks where excessively satisfied users
do not mind reducing their utilities.

It should be remarked that the generalized proportional fair
scheduling, which covers most well-known fairness concepts,
becomesmeaninglessfor networks pursuing fairness criteria
fairer than proportional fairness,i.e., α > 1, if there is no
interference coordination between neighboring base stations.
Our last finding is that network-wide opportunistic scheduling
is capable of elevating fairness in multi-cell networks with
hot-spots while existing frequency reuse schemes are useless
for localized overloading.

Though we have barely managed to finish evaluating per-
formance of network-wide opportunistic scheduling by our
heuristic algorithm, it is necessary to develop an advanced
algorithm which has lower computational complexity and
results in better performance.

APPENDIX: PROOFS

A. Proof of Observation 1

If there is no load balancing, the set of MSs,K, is divided
into N disjoint sets,K1, . . . ,KN , such that

⋃
i∈N Ki = K and Ki

⋂
Kj = ∅ for i 6= j,

which also implies thatIkn(t) = 0 if k /∈ Kn. Since this
condition forces MSs to belong to predetermined BSs, (4) be-
comes equivalent to

∑
k∈Kn

Ikn(t) = 1, (5) becomes needless,
and (3) is reduced tōrk(t) = 1

t

∑t
τ=1 rkn(τ)Ikn(τ) where

k ∈ Kn. If transmission powers of BSs are not adjustable, it
is easy to see that

∑
k∈Kn

Uk(r̄k(t)) depends only onIkn(t)
where k ∈ Kn. Therefore, each BS can maximize its own
objective

∑
k∈Kn

Uk(r̄k(t)) independently.

B. Proof of Proposition 1

Let us denote the given objective function byf(x). If df
dx

=

a−
∑M

i=1
ai

(bi+x)2 = 0 holds, at least oneai should be positive
by the assumptiona > 0. Thus it is straightforward to see that

df

dx
= 0 =⇒

d2f

dx2
> 0. (24)
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This means that whenever the functiondf
dx

crosses the value
0, it is strictly increasing. Therefore it can cross the value0
at most once. Ifdf

dx
does not cross the value0 at all, then

f(x) is either strictly increasing or strictly decreasing,i.e.,
df
dx

> 0, ∀x ∈ [0, x] or df
dx

< 0, ∀x ∈ [0, x]. Otherwise it
must cross the value0 exactly once, say at̃x ∈ [0, x]. Since
d2f
dx2 (x̃) > 0, it follows that df

dx
< 0, ∀x ∈ [0, x̃), and df

dx
> 0,

∀x ∈ (x̃, x]. Thus, it can be easily shown that, for eachdistinct
x1, x2 in the interval[0, x] with df

dx
(x1) · (x2 − x1) ≥ 0, we

havef(x2) > f(x1). Therefore,f(x) is strictly pseudoconvex
[25, pp. 113]. Since every differentiable strictly pseudoconvex
function isstrongly quasiconvex[25, pp. 112],f(x) satisfies

f(x) < max {f(0), f(x)} , ∀x ∈ (0, x).

C. Proof of Theorem 1

If the factor 1
log 2 in C(x) = x

log 2 is ignored, the objective
function in (13) becomes:
∑

n∈N

Bwk(n,t)

[r̄k(n,t)n(t − 1)]α
·

pn(t)gk(n,t)n(t)

σ2
k(n,t) +

∑N
i=1
i6=n

pi(t)gk(n,t)i(t)
. (25)

If we examine the above expression carefully, we can see
that Proposition 1 is applicable to (25) with the following
substitutions:

N → M + 1, pm(t) → x, p → x,

Bwk(m,t)gk(m,t)m(t)

[r̄k(m,t)m(t − 1)]α
(

σ2
k(m,t) +

∑N
i=1
i6=m

pi(t)gk(m,t)i(t)

) → a

Bwk(n,t)pn(t)gk(n,t)n(t)

[r̄k(n,t)n(t − 1)]αgk(m,t)m(t)
→ an

(
σ2

k(n,t) +
∑N

i=1
i6=n, m

pi(t)gk(n,t)i(t)

)/
gk(m,t)m(t) → bn.

Note thatpm(t) appears at no constants other than variable
x. In this way, we can show that, for each variablepm(t),
the maximum of the objective function in (13) is achieved at
pm(t) = 0 or pm(t) = p. We can also see that the conclusion
is independent ofΩ(t). This completes the proof.

D. Proof of Theorem 2

According to the arguments we provided in Section II-D,
ϕ(N, K) can be written as follows.

ϕ(N, K) =
N∑

i=0

NCi · KPi =
N∑

i=0

NCi · KPN−i (26)

=
N∑

i=0

N ! · K!

(N − i)! · i! · (K − N + i)!

= N ! · LK−N
N (−1) (27)

where the equality in (27) holds by the definition of the
associated Laguerre polynomial [31, pp. 832]:

Lk
n(x) =

n∑

i=0

(n + k)!

(n − i)! · (k + i)! · i!
(−x)i.

It is also shown in [31, pp. 833] that the Rodrigues represen-
tation of Lk

n(x) can be obtained as

Lk
n(x) =

exx−k

n!

dn

dxn

(
e−xxk+n

)
.

Therefore, we can simplify (27) further as follows.

ϕ(N, K) = e−1(−1)−(K−N) dN

dxN

(
e−xxK

) ∣∣∣
x=−1

=

∣∣∣∣
dN

dxN

(
e−x−1xK

) ∣∣∣∣
x=−1

.
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