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Abstract—We present a unified analytical framework that
maximizes generalized utilities of a wireless network by nevork-
wide opportunistic scheduling and power control. That is, lase
stations in the network jointly decide mobile stations to be
served at the same time aghe transmission powers of base
stations are coordinated to mitigate the mutually interfeling
effect. Although the maximization at the first glance appeas to be
a mixed, twofold and nonlinear optimization requiring excessive
computational complexity, we show that the maximization ca be
transformed into a pure binary optimization with much lower
complexity. To be exact, it is proven that binary power contol
of base stations isnecessary and sufficierior maximizing the
network-wide utilities under a physical layer regime wherethe
channel capacity is linear in the signal-to-interferencenoise ratio.
To further reduce the complexity of the problem, a distributed
heuristic algorithm is proposed that performs much better than
existing opportunistic algorithms. Through extensive sinalations,
it becomes clear that network-wide opportunistic schedulig and
power control is most suitable for fairness-oriented netwdks
and underloaded networks. We believe that our work will sene
as a cornerstone for network-wide scheduling approaches ém
theoretical and practical standpoints.

Index Terms—Opportunistic scheduling, wireless network,
power control, max-min fairness, proportional fairness.

I. INTRODUCTION
ESOURCE allocation in wireless data network in
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system perspective has drawn many attentions for the
last ten years. As people from the networking research ha}yl
paid more attentions to wireless networks, more progresses
made in the wireless network scheduling and power contr
They have considered various system objectives such ds t
throughput maximization (or max-C/I) [1], max-min fairrses
[2], and proportional fairness [3] and proposed scheduler,
to achieve the given system objective. The max-min fa&rh
scheduler, though it is one of the most popular ones in wir%&l|

networks, turns out to be less efficient due to swdidarity
property of wireless networks: the throughput of each user is
equalized to the smallest user throughput [4]. They claimed
proportional fair scheduler can be a better candidate in the
wireless networks since it is easy to implement and provides
a good balance between fairness and efficiency. Viswasiath
al. [5] and Borst [6] showed that proportional fairness becomes
equivalent to equal-time fairness under some assumptions.

Opportunistic scheduling concept was introduced in wigle
data networks to increase the average throughput of wireles
channels by exploiting the time-varying characteristids o
wireless channel [1], [5]-[7]. Since channel conditionsisérs
are good and bad randomly, higher throughput can be achieved
by scheduling a flow whose instantaneous channel condition
is relatively better than others. To exploit this diverdityther,
Viswanathet al.[5] proposed a proactive beamforming scheme
in which fast channel fluctuations are artificially induced b
multiple transmit antennas in a pseudorandom manner.

Even with aforementioned advances in wireless data net-
works, little work has been done in multi-cell network-wide
scheduling. Both theoretical difficulty and impracticalfire-
vent people from pursuing the multi-cell network schedulin
problem. Instead, multi-cell problems with different ottjees
have been considered: load balancing among cells [8], @], a
low data rate problem of cell boundary users [10].

Sang et al. considered multi-cell problem in a slightly
erent angle of load balancing in their seminal work [8].
They proposed aimtra-cell opportunistic downlink scheduling
%{Igorithm where each BS (base station) exploits user diyers
(0] . . . .

gain in the corresponding cell independently to achievey)-
roportional fairness, that was proposed by Ftoal. [11].
ena = 0, an MS (mobile station) having the strongest
annel is picked out by the scheduler (max-C/I). Whea 1

d a — oo, proportional fairness and max-min fairness
are achieved, respectively. The central server partiefpat
load balancing by adjusting value of each cell, named as
cell breathingin which « is a flexible knob to balance the
time-slots allocated to MSs close to the BS and MSs at cell
boundaries. Foioad balancingeach MS adapts to its channel
variation and the load fluctuations by initiating the loadase
handoff and cell-site selection where their own conditien i
adopted rather than network-wide proportional fairness.

Bu et al.[9] also considered a similar problem and proposed
load balancingschemes that achieve network-wide propor-
tional fairness if the channel capacity tends to be linear in
the SINR (signal-to-interference-noise), while the loaal-b
ancing scheme proposed in [8] did not directly tackle the
network-wide proportional fairness due to its complexiiyey



showed that the general problem is NP-hard and provid@FDMA networks where radio resource allocation is divided
efficient offline and online heuristic algorithms to solve amto two algorithms,i.e, an RNC (radio network controller)
approximated problem. Kauffmaret al. [12] proposed two algorithm and a BS algorithm. That is, RNC coordinates inter
distributed algorithms, based on the annedBtbs sampler cell interference between BSs at super-frame level andBSch
[13], for channel selectiorfor interference mitigation, and makes its channel assignment decision on frame level based
user associatiorfload balancing) for fair and optimal resourceon users’ traffic conditions. However, because a BS algorith
allocation in WLANs (Wireless Local Area Network). Theyfollows RNC's decision when all users in the BS have traffic
also proved that the distributed algorithms lead to efficieto send in each frame, their scheme can be viewed as an RNC-
spectrum usage and improved performance in the contegntric radio resource allocation where each BS exploitg on
of minimal potential delay fairness. As the proposed algthetraffic diversity[20]. Besides, they also did not consider the
rithms do not require explicit coordination among stationsbjective of network-wide proportional fairness but théato
the applicability latent within the Gibbs sampler techr@ge  throughput maximization.
noticeable. In this paper, we consider network-wide opportunistic
So called SSDT (Site Selection Diversity Transmissiongcheduling problem under a multi-cell environment based on
which is an idea of BS coordination payingp regard to the optimization problem proposed in [8]. We would like to
scheduling, was once considered in 3GPP WCDMA systesmswer the following questions in particular:

[14]. In SSDT, an MS selects the BS with the largest SIN . T
ow much improvement can we make by considering inter-

using rapid physical layer signaling. The main weak point o I . o
SSDT is that an MS to be served is decided by a schedu?gr“ coordination? For what kind of network is inter-cell

(possibly controlling multiple BSs) in advance and SSD‘I:OOrd'natIon most suitable?
decides only whether or not to turn off some BSs. In this sense To answer the questions, we formulate an optimization
SSDT does not pertain to achieving network-wide fairness.problem which maximizes generalized utilities of a multi-
Recently, the insufficient data rate problem of cell bougidatell network by network-wide opportunistic schedulingd
users in the OFDMA system attracted the most attentions evgtwork-wide opportunistic power control rather than bgdo
due to popularity of new standards such as the IEEE 802.1§&ancing. Since load balancing without considering netwo
[15] and the evolved UTRA [16]. Many people considerediide opportunistic power control is already too complicate
different frequency reuse schemes. However, [17] observi|gd, it is not treated in this paper to better focus on our
high throughput loss with the frequency reuse schemes gn@blem.
recommended reuse factor of one. Our work can be considere@|though the maximization in the first formulation appears
as an extension of [17] from the fixed frequency reuse schemiebe a mixed, twofold and nonlinear optimization requiring
to a dynamic one. excessive computational complexity, we prove that the maxi
Bonaldet al. [10] considered a novel notion of schedulingmization can be transformed into a pure binary optimization
that is to say, coordination of transmissions among BSskenl Correctly speaking, we prove that binary power control of
(8], [9] where all BSs transmit at full power all the time, the base stations isecessary and sufficiefor maximizing the
formulated an optimization problem which opportunistigal network-wide utilities under situations in which the chan-
coordinates instantaneous transmission powers of BSslgr ornel capacity tends to be linear in the SINR. Consequently,
to provide favorable channels to MSs at the cell boundariefetwork-wide opportunistic schedulirpsorbsnetwork-wide
However, they did not consider the objective of networkavidopportunistic power control. For distributed operation of
proportional fairness and opportunistic scheduling. Iinglar  network-wide optimization in real networks, a heuristic al
context, Kianiet al.[18] addressed the problem distributed gorithm using local information of neighbor BSs is propased
inter-cell coordinationwvhere BS transmission can be switchedhrough extensive simulations, we show that network-wide
off to maximize the total throughput. A unique feature thajpportunistic scheduling and power control improve vasiou
makes this work noteworthy is that each cell makes a decisigerformance indices considerably.
regarding its transmission power based only on the SINR ofThe rest of the paper of organized as follows: The first
the users within the cell. In addition, the proposed disted formulation including network-wide opportunistic schédg,
algorithm lends itself to exploiting multiuser diversity. power control and load balancing is presented and simplified
From a quite different angle, Karakayetial.[19] proposed in Section II. Since the simplified problem is still intralote,
a network-wide coordination of the BS transmissions so as g propose a distributed heuristic algorithm with much lowe
mitigate inter-cell interference. They showed that an imved  complexity in Section Ill. The performance of our proposed
form of signal-level coordination is obtained when a zergigorithm is verified in Section IV. Then we conclude this

forcing equalizer is combined with dirty paper coding. $incwork with answering the questions brought up in this section
the performance metric for comparisons was the max-min rate

achievable subject to per BS power constraints, the prapose
signal-level coordination was turned out to improve theeys
capacity significantly. In Section IV-C, we explain why inte  The first formulation of network-wide utility optimization
cell interference mitigation is favorable for max-min faéss. incorporates not only network-wide opportunistic schauyl

Recently, Li and Liu in their work [20], [21, Chapter 7] con-and power control but also load balancing,, an MS can be
sidered a semi-distributed radio resource allocationreehim  associated with any BS in the network.

II. NETWORK-WIDE UTILITY OPTIMIZATION



A. Problem Formulation BS, then network-wide optimization given by (1(8) is re-
Suppose that there ar¥ BSs andK MSs in a multi- duced toN independent intra-cell optimizations.

cell network and the sets of BSs and MSs are denoted Byis opservation signifies that the existing intra-cell opp

N ={l,...,N} and K = {1,..., K}, respectively. Each ynistic scheduling is the best way to optimize the network-
BS chooses only one MS for each time-siofor downlink \yige utility if load balancing is not used and transmission

_transmission of dat_a,e., thgr(_e is a one-to-one r_napping,(vf powers of BSs are constarg,g, p,(t) = p. It should be
into K. Network-wide optimization of generalized networkyemarked that the intra-cell opportunistic schedulingspsses
wide utility U () at time-slott can be formulated as follows: 5 yesirable convergence property. That is, it is shown if-22

max max U(t), (1) [24] that its gradient algorithm leads to long-term asyntipto
Ukn ()} {pn(8)} optimality under various assumptions.
sit. Ut) = Z Ur (7 (1)), 2) The given optimization problem is very complicated due
keK to the nonlinearities of (1) and (6), combination of binary
1< variables{I;,} and real variablegp,(¢)}, and twofoldness
Tr(t) = 7 Z Z T (T) Lien (7), (3) in (1). But we have found that the problem becomes more
r=1neN tractable if it is separated into two subproblems:tii¢ outer
Z Iin(t) =1, (4) Pproblem— maximizingU(t) by varying{Iy,(t)} for a given
kek {pa(t)} , and (ii) the inner problem- maximizingU'(t) by
Z Lon(t) < 1, ®) varying {p.(t)} for a given {Ix,(¢)}. Note that the outer

problem does not have (6) as constraints becausgt)}

neN is given. Similarly, the inner problem does not have (4) and
rin(t) =B -C Pn(t)gkn (t) G (5) as its constraints. Since the inner problem has a special
T + D ienipn Pi)gRi(t) ) characteristic which is to be revealed in Section 1I-B and

0< pu(t) <P, @) has made our analysis possible, we will focus only on the
B S o . inner problem for the moment until a simplified optimization

where Uy, (7 (t)) is the utility function of7(t), the average s reformulated in Section II-C.
throughput of MSk up to time—slot_t. It is reasonable to let 1o simplify the optimization problem by assumitid, } is
U(-) be a function of only: () as in [8], [9], [22]. Besides, predetermined, let us definé™? as the index of the MS to
7(t) is a function of the instantaneous channel rates from Bgé served by BS: at time-slott. More formally, the set of
to MSs, {rin(7) | 1 < 7 < t}, and the scheduling indicator y4irg (n, k1) is be defined as:
matrices,Z(t) = {Iin(7) | 1 <7 <t} where

1, MSk is assigned to BS at time-slott, Q) = {(n, k) [ Ien(t) = 1, k € K andn € N}

[,m(t) = { . . .

0, otherwise Since a BS chooses only one MS for each time-slot, the

_ _ _ (®)  cardinality ofQ(t) is N. Whenever we use the notati@f**)
cach BS sarves exacty one MS and each MS san be served1S Seion. we are assuming (hafi is determined in
(n,t) i -1

at most one BS, respectively, at each time-slot. The averarg%ﬁ?eci3?ng:r;1];act|; iethE]tg.fgymdi?(iﬂzg%”gw%gv ?uﬁiinng
throughput of MSk up tot, 7 (¢), is the ensemble average Ofaverage equation:
the instantaneous channel rates, (¢), which are determined
by the channel capacity model (6) whesds the bandwidthin = 7.« (¢) = T (E — 1) 4 [Prmnn () — Tron (E— 1)] &.
hertz, G-) is the normalized channel capacity in bits/s/hertz (9)
that is a function of the instantaneous SINR. In the SINR the initial condition U(0) = 0 is used, the network-wide
expressiongg, (t) > 0 is the signal gain from BS: to MS utility becomes:
k that characterizes the propagation loss of the transmissio
powerp,(t), the fast Rayleigh fading, and the large time-scale lim U(t) = lim [U(r) —U(r —1)]. (10)
log-normal fading. Assuming that Gaussian signalling isdus t—o0 t—o0
by all nodes, the interference terms are also Gaussian and N
the channel capacity within a given time-slot follows AWGN1ere AU(t) = U(t) — U(t — 1) corresponds to the utility
Shannon capacity. The transmission powers of BS&,), are difference that should be maximized at each time-siathout
upper-bounded by at all time slots as shown in (7), but it canthe knowledge ofry., (1) for 7 > ¢. If we make use of the
be easily verified that all results in this paper hold evernd t Taylor expansion oAU (t), it becomes
upper-bounds vary time. Before taking up the main subjéct, i _ _
is noteworthy that network-wide optimization is reduced\o AU)=)_ U(7(t) = Ur(Ti(t = 1))

T=1

independent intra-cell scheduling problems if there igheei ek O (P (t—1)) (= ) ,
load balancing nor power control. (For readability, all gi® =) “ge—[re(t) — m(t — 1)) + O(€f)
in this paper are in Appendix.) kek i)
o OU (7 (t—1 _ _ 2
Observation 1. If we assume that all BSs are transmitting with _;C ory, [ri(t) = it = Dler + O(e) (11)

its full power and each MS is associated with a predetermined given at:



where the third equality holds by (9). Note thatt — 1) has The above objective is strongly quasiconvex [25], and maxi-
no effect on the maximization oAU (¢) since it is given at mized at eithet: = 0 orz = T.
time-slot¢. We adopt the generalized proportional fair utilit

function introduced in [11] wher&} (7 (t)) is given by: “Theorem 1 (Binary Power Control). For given §(t), If

C(z) = 543 and the error tern®(e?) in (11) is neglectey

ni—a : -

Us (e (1)) = wk%, a>0, a#1andw, >0, the network-wide utility
wg log T, (t), a=1andwg > 0. { Fe(t) =

(12) U(t) = { SrexWk™—, @ =0, a#landw, >0,
which is called (w, a)-proportional fair utility. Fora = 1, Y okex WrlogTr(t), o =1andwg > 0.

Ur(7r(t)) = wilogry(t) is called proportional fair utility L _
function. If we apply this substitution to (11) and neglect2™0tbe maximized i, (t) ¢ {0,p} foranyn € N.

O(e?), maximizing AU (t) becomes equivalent to the follow-Considering a downlink CDMA data network and a multi-hop

(14)

ing simple form; wireless network, Radunoviét al. [26] and Bedekaret al.
Fpotnsty (£) 13 [27] respectively obtained a similar result far= 0 and the
max max Wi (n,t) ————————7a : T . L .
Q1) {pn(D)} nz: k(mt) [P (t— 1)) (13)  channel capacity model is linear, which coincides with a par

eN of Theorem 1. Recently, Gjendemsjs al. [28] generalized
which bears a close resemblance to the Weighted Alpha-Rutiés result and proved that binary power control is optinaal f
scheduling algorithm in [8]. Note that the utility differem « = 0 and identicakv; not only if SINR factors are very low
AU(t) is a linear combination of instantaneous channel ratgat also if they are highly concentrated. However, littlen ca
Ty (t) fOr given WeightSM%- be said for the case # 0 because it can be easily shown
It turns out that the form of the objective function given byhat the arithmetic mean-geometric mean approximatiod use
(13) can be viewed as a gradient algorithm adopted in [22- [28] depends on time-varying factors (weights in (13)) in
[24]. The only difference here is that (13) requires the twdhis case. The main point may be summarized as follows.
dimensional network-wide selection of an index $&ft), and « For all types of network-widgw, «)-proportional fair-
transmission powers of BSg,,(t), while [22]-[24] requires ness,only binary power control is optimaf the under-
N independent cell-wide selections of one MS in each cell. |ying physical layer is in the linear regime.
Note also that, to the best of our knowledge, the gradient); js worth noticing that multi-carrier systems employing
algorithm represented by (13) is the only way to explofjinary power control can suffer from high PAPR (peak-to-
multiuser diversitysimultaneously withkeeping full control average power ratio). A number of PAPR reduction techniques
of network-wide fairness through the flexible control kneb 56 heen proposed and it is well-known that there is a tfadeo
in multi-cell networks. between data rate and PAPR reduction [29]. Therefore, the
net effect of binary power control considering its adverse
effect should be investigated so that we can decide whether
For a given{(t), the inner problem is equivalent to ato employ binary power control or not in a specific system.
problem of assigning transmission powers to BSs. To give|@ this paper, we propose a nonnegative lower-bound for the
shape to the instantaneous channel ratest) which depend transmission powers of BSg;, > 0, so that transmission
on normalized channel capacity functiof- C we consider the powers can be either or 5. Thenp can serve as a flexible
following channel capacity model. control knob to balance the favorable and adverse effects of
o C(z) = 555 Sincelogy(1 + 2) = 5 for z ~ 0, this  binary power control. Note that it is easy to show that Theore
model closely approximates Shannon’s channel capacityalso holds fop # 0.
if SINR is not too large. Particularly, this model is well B
suited for wide-band systems [15], [16] (wheBes large) < A Simplified Formulation
and low-power systems (where is small) for which

B. On the Optimality of Binary Power Control

Shannon’s channel capacity becomes more linear. _ The original optm_nzaﬂon problem given in Section ”'A.
is extremely complicated and we are going to reduce its

Even with linear channel capacity model, (6) still comptésa . o . )

: : ) ; .__.complexity by simplifying the power assignment: we assume
the analysis due to its nonlinear relations to transm|55|(t)fr11at (t) € {0,7} by appealing to the fact that binary power
powers of other BSs. However, we have found that the P Py DY app 9 yp

: . . . control is optimal for linear channel capacity model thoiigh
inner problem with the linear channel capacity model has an . T .
. . . -~ IS not true when the physical layer regime is nonlifeain
interesting property described by Theorem 1. To prove it, w

L : . Other words, if we revisit the original formulation laid ount
need a proposition showing an advanced convexity of a cert : oo .
. )~(8), its complexity is alleviated due to the property of the
function. . . . .
inner problem revealed in Section 1I-B. The essential pwmint
Proposition 1. Let us assume that > 0, a; > 0, b; > 0,

Vi =1,..., M. Consider the following problem: $1f & = 0, the error termO(e?) in (11) becomes. Thus there is no
’ ’ approximation in this case.
Y 91f the channel capacity is logarithmic in the SINR, it can even that
max ar + Z L binary power control is optimaf and only if [;-k(ikm]a = [r‘--(twjl)]a for
z 1 bi+x all k,j7 € K and there are at most two BSs in a wireless network. The “if”
part of this proposition can be proven by applying technsqused in [28],
[30] to AU(t). The other part can be easily proven by counterexamples.

S

stz <.



the following formulation is thanetwork-wide opportunistic
power control assimilates into network-wide opporturisti
scheduling

max AU(t), (15)
{Tin (8)}
() Ton (t
st. m(t)=B > C| = %””2 . (16)
nen | 24D k)i
iEN
Lo(t) =) In(t) <1, (17)
kex
> hn(t) < 1. (18)
neN Fig. 1. A multi-cell network composed of 37 hexagonal cetifaur tiers.

Here the instantaneous channel raig¢) does not have

the subscript regarding BSs anymore. We introd@oen- rnaqrem 2. Assuming that the inequality constraints (17) and

bined scheduling |nd|ctator matrixZ(t) = {Ikn(t)} Where 1) hojq, the total number of possible ways to associate BSs
Iin(t) = Ipn(t) - p"Tf). The binary control assumption, ,i:h MSs is

i.e., pn(t) € {0,7}, keepsly,(t) € {0,1} satisfied. The

constraint (17) allows the inequality that was not allowed i o(N,K) =
(4), because a BS with zero power does not serve any MS,

i.e, Y pex Jkn(t) = 0, wheren is the index of the BS. It is
remarkable that the mixed, twofold and nonlinear optimarat
(1) is now unfolded into dlat binary optimization15) where
the only variables to be optimized afé;,,(t)}. The network-

wide utility can be written as:

AU(t) = Z _wpr(t) (19)

o et =D

Note that this objective takes an opportunistic schedweanf The intractable complexity of the network-wide optimiza-
that oppprtunistica_\lly picks_ out MSS_ having relatively hig o formulated by (15)»(19) makes us feel keenly the neces-
r:(t) at ime-slott if gy (¢) is fluctuating. sity of a distributed heuristic algorithm. First of all, wesame

that each MS can be associated only with the BS that is closest
D. On the Complexity of the Simplified Formulation to the MS. By assuming this, we are transferring the task of

To better understand the complexity of the simplified profi0@d balancing to a centralized entity that should be capabl
lem presented in Section 11-C, we will derive the exact numb@f transacting a huge amount of computation. Therefore, our

of possible ways satisfying the two inequalities, (17) ab@)( heuristic _al_gorithm tri_es to approximatenly network-wide
This will show that the simplified problem is still complexcan OPPOrtunistic scheduling that has already absorbed nétwor
it is necessary to develop a distributed heuristic algorith ~Wide opportunistic power control in Section II-C. If we dié

Let us consider the set of all possible scheduler indicatb}e Set of MSSC into N disjoint sets as we did in the proof
matrices,I = {Z(¢)} and denote its cardinality by (N, K). of ObservaFlon 1, we get a new ConSt,ra',m",(t) = 0if
Since (17) and (18) allow both equality and inequality, it i& ¢ KCn, which gfea“Y simplifies th? optimization. Hovyever,
clear thatp(N, K) is bigger than the cardinality of the set"® ”“mber})f possible ways satisfying the constraints on
of the indicator matrices introduced in [8, Section 4.1]ener 1kn(t)} 18 @' (N [Ki]) = [T;epr(IKs] + 1), which is still too
power assignment problem was not considered at all. large. For example, if the;g are 37 BSs and each BS20as

There arenC; possible different ways to chooseBSs MSs, ¢'(37,20) ~ 8.4 x 10%.

amongN BSs. Let us assume that the transmission powers!0 reduce the complexity of the simplified problem, we pro-
of i BSs arep and those ofN — i BSs are0, without loss POS€ 2 heuristic algorithm named Neighbor-Assisted Nekwor

of generality. For each ofC; ways, there exisicP; ways V\{ide Op.portunistic Scheduling aIgorithm (NANOS), whiph is
to associateé BSs to K MSs. We provide a more tractableSIMPIer in two regards. Each BS considers only its neighbor
expression of(N, K) in the following theorem with the help BSs. Furthermore, only a subset of MSs in its neighbors are

of the Rodrigues representationf the associated Laguerre considered instead of all MSs in the proposed heuristic. For
polynomials[31]: example, BS 7 makes use of information from BSs 1, 2, 6,

19, 17 and 18 in Fig. 1. The heuristic consists of three steps.

dN —z—1, K

dx—N (6 X ) - 1. (20)
We can see from (26) thap(N, K) is larger thankPy,
which is the number of possible ways satisfying the constsai

in [8, Section 4.1]. Moreover, (20) shows that a centralized
optimization cannot be deployed in practical systems. For
instancep(37,740) ~ 6.1 x 10105,

IIl. ADISTRIBUTED HEURISTICALGORITHM



Step 1. Local selection of MS candidate€€ach BSn makes  Secondly, the situations in which two consecutive BSs do
a list A,, of candidates that might possibly maximize the sumot transmit anything rarely coincide with the optimal powe
of utilities of BSn. We first select a candidate that maximizeassignments. For instance, consider an MS in the middle of
the sum of utilities when all of its neighbors are transmgti the two BSs as shown in Fig. 1, where the strongest integferer
at full powerp. We repeat the selection process for the casesthe MS correspond to BS 5 and 14 due to their closeness to
in which only one (or none) of its neighboring BSs il'A(z—  the MS. If BS 5 serves the MS and BS 14 does not transmit,
{n}) is OFF. In the example of Fig. 1, there can be up to the instantaneous channel rate of the MS becomes quite large
possible candidates if each candidate from the above caseldcause the main interferer is removed. Therefore, it issmor
distinct from the rest. In other words, plausible that the network-wide utility is increased if oofe
Anlt) = (i (1) | K (t) = arkge%axAUg ), je N @21) w:rghgilr:jsﬂlttrzsjégﬂz(?;!l power. Thus it is imperative that
’ Even though the proposed heuristic is simpler than the

where the per-MS utilityAU; (¢) is defined as: optimal algorithm, we should admit there are many challenge
in implementing it. For example, if{ is sufficiently large,
AUZ@ . Wk _.c|= gkn(f) _ (22) |An(t)| approaches\,, | and the complexity of an exhaustive
[Fe(t = 1)] %0, (1) search becomd$\,, |+1) V! &~ 2x 106 with |A,| = 7. How-

ever, it isvirtually impossible to finish the global optimization
laid out in (15X(19) even if there is no load balancing,
W (1) = {Zi@v,#n gri(t), if j =n (All BSs are ON); due to its extremercomplexitya.g, ©'(37,2) ~ 4.5 x 1018,

kn Y ieN isn.iz; 9ki(1), Otherwise (Onlyj is OFF).  ¢/(37,4) ~ 7.3x10% andy' (37, 20) ~ 8.4x 10*. As of now,

(23) we claim that our heuristic is the only possible way to evedua

The first case in whiclj = n is when all neighbor BSs arethe performance of network-wide opportunistic scheduling
transmitting while the other case is when one of neighborWe see that there are many possible ways to decrease the
interference termsgy;(t), is excluded from the normalizedcomplexity of the proposed heuristic algorithm. For exampl
interference sum of M$. Thereforex? (¢) corresponds to the let us assume that a cell can be divided into 3 or 6 sectors
MS index which maximizes (19) if neighbor BSis turned such that each of the sectors is allocateéd or 1/6 of the
off. Similarly, x7(¢) is obtained if no neighbor BS is turnedtotal bandwidth. Then, a sector needs to consider 2 or 1
off. In brief, Step 1 serves to decrease the number of MSsddjoining sectors, respectively. In this case, the conifylef
be considered in Step 3. the proposed algorithm for each cell beconig;, | + 1)V

Step 2. Broadcasting of list Each BSn broadcasts the =9 or 2, respectively. However, as this sectorization scheme
candidate list\,, (¢) to its neighbor BSs (&;, — {n}) through leads to less optimal results, we decided not to adopt this
the backhaul network. scheme.

Step 3. Finding a locally optimal solution In this step Finally, we note that the proposed algorithm necessitates
each BSn finds a local optimal solution by Solving’aadditional measurements in the network. Provided that the

problem composed of the neighbor BS s&t, and MSs approximate values 067 and p are_known to MSs, each
K - U,z A (#)l. The local optimization at each Bf MS should be able to measure or infer the valueg;gft)
n ne i i

is solved as if the BS set” and the MS sek were replaced wh_erek € K, andi € AV,.. These values should be rggl_JIar_Iy
by N, andK,,, respectively. Note that the cardinality of inde){j?(l)ll\olleerri('js It':l)idisu? ir?OSt?atl tgﬁg :;:an solve the optimization
setA,,(t) is less than or equal tain [|ICn|, |Nn|}. In addition P P '

to this, since it is likely thats/ (¢) are repeated fpr differerﬁ IV. SIMULATION RESULTS
4’, it can be even smaller. Once a local optimal solution

Ui (0lk € U"EM An(t),m € Nn} is determined, BS: algorithms in multi-cell networks, various scenarios navi

serves an MS whose index satisfies/y,, (1) = 1. Note that e rent faimess objectives are considered by varyinghe
BS n may not transmit at all iflj,, (¢) :.O for ‘?‘” ke _A"(t)‘. weights of MSs are assumed to be equal, w; = 1. A four-
Even though BS: solves the problem including neighboring;.. uiti-cell network composed af7(= N) hexagonal cells

BSS’. it only USes a subset of the solution and disregards Iown in Fig. 1 is adopted, where each cell is circumscribed
solutions of neighbor BSs.

by a circle of radiusR = 1 km. The number of MSsK, is

The MS selection algorithm is based on the followingaried to change MS density in the network. Since we assume
observations. Firstly, if the set,(t) is decided under the the uniformity of MS location distribution in Section IV-Ahe
assumption that all BSs transmit at full power, MSs locatgstobability distribution of the number of MSs associatedhwi
around cell boundaries are rarely selected singe) of them Bs; s given by Pro#|K;| = k} = xCi (%)’“ (1- %)K—’“_
are underestimated due to interference signal from neighligonuniform MS distribution is considered in Section IV-BarF
BSs. That is, MSs that might be served more frequently after

coordinating transmission powers of BSs are discriminated "For simplicity, our algorithm excludes situations in whitho consecu-
five BSs are turned off. For instance, if an MS is located atwbrtex where

against. This certainly diminishes the network-wide ttili  peyagonal cells of BS 8, 9 and 21 meets as shown in Fig. 1, faeseme
~ possibility of improving the network-wide utility by tumg off two of them.
lwe assume that BSs not i, are turned on. As « increases, this possibility becomes higher.

Here, the other-cell interference is defined as:

To evaluate the performance of opportunistic scheduling



[N
N
T

— © —ICos, a=0
—©— NANOS, a=0
— % —|COS, a=1
—%— NANOS, a=1
— ¥ —ICOS, a=4
—7— NANOS, a=4
— B —ICOS, a=16
—F8— NANOS, a=16

A4 v v v v

[
o
j
<
[N
o
T

—©— U(t) of NANOS minus U(t) of ICOSa=0
—— U(t) of NANOS minus U(t) of ICOSp=1 7
=% U(t) of NANOS minus U(t) of ICOSp=4

=—H8— U(t) of NANOS minus U(t) of ICOSn=16

108OI:’/E/E/B__Ga_—ﬂ’P__—'_‘1
i i i i i i i i i

e
O\

i
2
3

Cell throughput (Mbps)

Network-wide utility difference

i i i
10 12 14 16 18 20

0 i i i i

2 4 6 8 10 12 14 16 18 20 2 4 6 8
Number of MSs per BS Number of MSs per BS
(a) Network-wide utility difference. (b) Cell throughput.
5r . - 25

250, — © —ICOS, a=1, r . =128Kbps
—6— NANOS, o=1, r . =128Kbps

— % —ICOS, a=1, r_. =192Kbps

IS

20| s NANOS, a=1, 1, =192Kbps
— 7 — ICOS, 0=16, rmm=125Kbps
—— NANOS, a=16, rmm=128Kbps

15| — B —ICOS, 0=16, r_ =192Kbps

—&— NANOS, a=16, 1 =192Kbps

25 — =X !
69 =~ ~ 7
" -7 ) 10
- © - 1C0S, a=0 r =
" —O— NANOS, a=0 a=1
1.5p77 : : — % —ICOS, a=1

—3— NANOS, a=1
— V¥ - ICOS, a=4

QoS violation percentage (%)

Sum of MS throughputs the 8" percentile (Mbps)

—S7— NANOS, a=4
0.5 — B —ICO0S, a=16
—H8— NANOS, a=16 -
2 % % 9 uw°n 1 3 5 10
Number of MSs per BS Number of MSs per BS
(c) Sum of MS throughputs below thé'Sercentile. (d) QoS violation percentage.

Fig. 2. Utility, throughput and QoS performance of netwarkie and intra-cell opportunistic scheduling algorithms.

each given parameter set, we execute 500 runs where each parameterV,, is defined asV;, = {i € N | d},, < 2R cos 5t
run has 4,00816,000 time-slots and MSs are located over thl!,, is the distance between BSandn) so that each BS
network at the beginning of each run. Intra-cell opporttinis located in the interior of the network has 6 neighbor BSs
scheduling (which we denote by ICOS) and neighbor-assistextcluding itself and\,,| = 7.
network-wide opportunistic scheduling (which we denote by
NANOS), are evaluated under the same configuration.

Regarding the physical mode = 1.5MHz and Qz) = A Utility, Throughput, QoS and Faimess Performance
logy(1 + x) are used. All BSs have the same maximum
transmission powep = 40dBm when they transmit data and It is our understanding that the network-wide utilitj(t)
the same thermal noise! = —100dBm which represents 3G itself is not meaningful since there is no direct relevance
networks. The signal gain from B& to MS k is defined betweenU(¢) and performance indices. For instance, perfor-
as g, (t) = min {1, s (t) - T'(drn)} Wheresg, (t) is a unit- mance indices of NANOS witla > 1 are greatly improved
mean log-normal fading variable such thatlog,, sk, (t) isa even with slight increment of/(¢). However, to make it
memoryless Gaussian random variable with a standard devikear that NANOS is superior to ICOS, we present Fig. 2(a)
tion o5 = 4dB andTI'(dky,) = —130 — 35log;o(dks) dB (dk, Where7(t) in bits per seconds (bps) is used for calculating
is the distance from B% to MS k in kilometers). Note that U(t). NANOS doesresult in higherU(¢) than ICOS for all
this corresponds to a path loss exponens.6f The NANOS combinations ofK/N and «.
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Fig. 3. Probability densities of MS throughput of networides and intra-cell opportunistic algorithms.

Observation 2. If the network objective is throughput maxi-Fig. 2(c). Anther noteworthy point is that the throughpupga
mization ¢« = 0) and the number of MSs is not too smallpetween two scheduling algorithms gets smaller as the numbe
network-wide optimization does not help. of MSs becomes larger. This phenomenon is due to the fact
glat the oversatisfied users are more reluctant to retuiin the
Spare utilities which might be used to increase utilities of
(aissatisfied users as the network gets more loaded.

Observe that in Fig. 2(b) that the two topmost lines of ICO
and NANOS are overlapping when = 0. To maximize
throughput, an MS with the best channel condition woul
be chosen in each BS in ICOS. Since the MS with the besbservation 4. Throughput performance of ICOS is satu-
channel is likely to be close to the BS, the impact of othefated for large« while NANOS mitigates this saturation.

cell interference may be negligible, which is why the cell

throughputs of NANOS and ICOS are almost the same. If we look into Fig. 2(b) again, the cell throughputs of ICOS
are almost the same fer = 4 anda = 16, but on the other

Observation 3. As a network pursues fairness-oriented netand those of ICOS become smaller as a network pursues
work objectives ¢ > 0), NANOS results in a bit lower total fairness-oriented objectives. In other words, fop> 4, ICOS
throughput than ICOS. However, cell boundary MSs get mogginnotincreases its network-wide utility even if it reduces
throughput. its cell throughput while NANOSloesincrease its network-

In Fig. 2(b), whena=1, 4 and 16, NANOS results in inghtIyWide utility at the sacrifice of its cell t.hrou.gh_put. Note @ls
lower throughput than those of ICOS. When> 0, there is no Fhat the throughput performance of dissatisfied users shown

plausible reason for NANOS to achieve higher throughput thdl! Fi9: 2(¢)does noimprove for ICOS andloesimprove for
ICOS does. The network just does its own duty to maximi NOS. From these results, we can conclude that generalized

its utility in each cell (ICOS) or in a network-wide Wayproportional fair scheduling without inter-cell interérce

(NANOS). As the network pursues faimess-oriented waifiti coOrdination becomes meaninglesscagets larger¢ > 1).
with larger a, the throughput gap between two scheduling To strength_en our claim that network-wide opportur_wlstlc
algorithms becomes more obvious because a network operatggeduling with a large value of helps cell boundaries
by NANOS algorithm gradually approaches a max-min faM$§, let us compute the.QoS violation probab_|I|ty with a
network where all MSs have the same throughput. minimum-throughput conditionzy. (t) > rmin. In Fig. 2(d),

To observe benefits of NANOS that are received by célf€ show the percentages of MSs whose rate is lower than the
boundaries MSs, let us consider the sum of MS throughpdfgeshold forr,,;, = 128 and 192 Kbps. It is an expected
not exceeding the ' percentiléiof MS throughput distri- result that the violation ratio decreases with a largeBut
bution which is shown in Fig. 2(c). It is noteworthy thait is noteworthy that the violation percentage of NANOS is

throughput performance of dissatisfied users in NANOS is situch lower than that of ICOS for large (a = 16). This
nificantly improved (Fig. 2(c)) whereas the average thrqugh MPplies that network-wide opportunistic scheduling persao
performance of NANOS is similar to that of ICOS (Fig. z(b))falrness-orlented network where users demands their geera
For example, wheny — 4 and the number of MSs is Six,throughput to be larger than a certain threshold.

NANOS is 38% better than ICOS. The throughput increasesNANOS with largea enables MSs in the network to receive
in percentage for = 4 anda = 16 are written down in benefits of BS coordination equally while ICOS fails to dottha

even with largea. If we look into Fig. 3, where probability
TTThe pth percentile cuts off lowesp% data. densities of MS throughput fax = 1 anda = 16 are shown
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Fig. 4. Average BS off probabilities and frequency reuséofam NANOS.
(a) Without hot-spot cells (Uniform MS density).

for various numbers of MSs per BS, such phenomenon is
revealed more clearly. NANOS significantly increases thiou
puts of dissatisfied MSs while slightly sacrificing those of
oversatisfied MSs in underloaded networks. Therefore, we
conclude that NANOS gives preferential treatments to disco
tented MSs with larger by proving itself an able coordinator
to better channel conditions around cell boundaries.

We can summarize the aforementioned results as follows
Network-wide opportunistic scheduling remarkably impzsv
the throughput performance of users around cell boundbayies
offering fairer chances to them while the aggregate thrpugh
is maintained. Network-wide opportunistic scheduling isstn
suitable for fairness-oriented or underloaded networks.

Let us turn our attention on the probability that BS does not
transmit dataj.e., Pot = Prob{p,(t) = 0}. It is clear from 4
Fig. 4 that NANOS controls BS powers more aggressively as - X (Km)
becomes larger anll /N gets smaller except the caBg/N =
1 where too many BSsx{ 0.363 x 37) having no MSs in their (b) With hot-spot cells (Nonuniform MS density).
cells are excluded from the calculation of P{ph(¢) = 0}.

Moreover, it should be remarked that DFRF (1 — Pqoit) ™ Fig. 5. Per-BS off probabiliies in NANOS with and withouttrgpot cells.
can be interpreted agdynamic frequency reuse factarhere

DFRF! . B represents the portion of bandwidth utilized for
achieving the network objective. As shown in Fig. 4, DFRR
increases withe and decreases with'/N.

0=16, K/N =10

Per-BS Ry in NANOS

4, 16 and 18 in Fig. 1 has twice as many MSs as each of
the other cells has in average while the total number of MSs
in the two networks i370 (= 37 x 10) for all cases.

B. NANOS as an Implicit Load Balancer It is shown in Fig. 5(b) that NANOS with hot-spot cells
Compared with existing frequency reuse schemes where @bvides more scheduling chances to MSs in hot-spot cells
BSs should follow a global rule that specifies the usage by preventing hot-spot cells from being turned off. That is,
the whole bandwidth in the network and cannot be adaptBANOS can be viewed as amplicit load balancerwhich
dynamically, NANOS can cope with hot-spot scenarios iimproves the network-wide utilities of fairness-orienteet-
which several cells (called hot-spot cells) are more cralvd&orks through inter-cell power control. For referencegy Bf
than the other cells in the network. hot-spot cells and the others @&®90 and0.462, respectively,
To avoid repetitive figures and results, only the probapilitas shown in Fig. 6. In addition, it is shown in Fig. 5(a) that
that each BS is turned off in NANOS is shown in Fig. 5 foNANOS differentiates i of BSs even if there are no hot-spot
two cases: (i) without hot-spot cells, and (ii) with hot-spocells. As outer cells are interfered with by less number diéce
cells. The number of MSs per BS if) and« = 16 in all than inner cells are, there is an upward tendencygfvidth
cases. In Fig. 5(a), the MS density function in each BS #istance from the center. As shown in Fig. 4 Bf BS 1 (tier
given by the same function used in Section IV-A. In Fig. 5(b}l), BS 2~7 (tier 2), BS 8-19 (tier 3), and BS 2037 (tier 4)
it is assumed that each of six hot-spot calls, BS 8, 10, 12, are 0.259, 0.272, 0.288 and 0.346, respectively.



10

‘ framework that optimizes generalized utilities of mullic

Non hot-spot cells networks through network-wide opportunistic schedulimgl a

1 power control. Secondly, we have shown that the optiminatio
0.4 1 can be simplified because network-wide opportunistic power
035} Tier4 1 control can be absorbed into the network-wide opportunis-

03l Tier 3 | tic scheduling when the underlying physical layer is in the
Tier 1 ]

0.5

0.45[

Tier 2 linear regime. Thirdly, we have proposed a heuristic algo-

rithm which makes distributed and simplified operations of
base stations possible. Fourthly, we have obtained rerokrka
findings which answer the questions brought up in Section |
Hot-spot cells | by simulating various scenarios. In particular, netwoikiev
ﬂ | opportunistic scheduling brings on significant performanc

0.2r

0.15f

0.1r

Average Per-BS | in NANOS

0.05f

improvement to discontented mobile stations at cell botinda
Without hoé—spot cells With hot—‘spot cells and is most suitable for

Scenario 1) networks having a preference for fairness to efficiency
because users demand their throughputs to be larger than
a certain threshold and

2) underloaded networks where excessively satisfied users

C. Discussion on Simulation Results do not mind reducing their utilities.

Unlike wired networks, wireless networks inclining to max- |t should be remarked that the generalized proportional fai
min fair bandwidth allocation suffer from solidarity prape Scheduling, which covers most well-known faimess corept
[4] that forces all users to have the same throughput. FFcOmesmeaninglessor networks pursuing fairness criteria
instance, let us consider a wireless network where all B&trafa'rer than IOVOIOOH]OH?_J\I fairness.e., « > 1, lf there is no
mit data all the timei.e., p,(t) = B, and MSi € K, achieves mterferen_ce.coqrdlnatlon betwee_n nelghbomg .baseqslsan
average throughpdt when it monopolizes BS. If we neglect Our last finding is that network-wide opportunistic schéayl

the opportunistic gain caused by user diversity and demate {s capable of elevating faimess in multi-cell networks fwit
portion of time-slots allocated to M&by 7, #;s should satisfy NOt-spots while existing frequency reuse schemes aresssele
i1, = 7y7; foranyi, j € K,,, and}", ., 7 = 1. Inthis case, for localized overloading. o .

it is easy to show that the actual average throughputs of all' "ough we have barely managed to finish evaluating per-
MSs are equalized a8 = 1/ Y. 771, which illustrates formance of network-wide opportunistic scheduling by our

how max-min wireless networks suffer from their fairesgeuristic algorithm, it is necessary to develop an advanced
objective. Thus it is important to improves of the tail-enders lgorithm which has lower computational complexity and

Fig. 6. Comparison of Per-BS off probabilities in NANOS.

when fairness is preferable to efficiency. results in better performance.
Besides, it sounds plausible that oversatisfied users dire wi
ing to return their utilities in lightly-loaded networks hereas APPENDIX: PROOFS

it does not make sense to divert utilities of more satisfie,g' Proof of Observation 1
users to less satisfied users in heavily-loaded networlet.ih

fairmess is preferable to efficiency in lightly-loaded netks. T there is no load balancing, the set of M3s, is divided

into N disjoint setsCy, ..., Ky, such that

V. CONCLUSION Uien ki =K and Kiﬂ/Cj =0 fori # J,
Prospective high speed wireless networks [15], [16] are o ) _ )
faced with wireless environments where downlink signassifr Which also implies thatlz, (1) = 0 if k ¢ KC,. Since this
different base stations are randomly interfering with eattfer Ccondition forces MSs to belong to predetermined BSs, (4) be-
while those from the same BS are orthogonal to each othéPMmes equivalenttd:, .. Iin(t) = 1, (5) becomes needless,
Aggregate throughput increases as wireless networks adapél (3) is reduced t@(t) = 137" rgn(7)en () where
more advanced wireless techniques and broader frequeficy Ky If transmission powers of BSs are not adjustable, it
bands, but on the other hand users at cell boundaries dre &ileasy to see that:, ., Ux(7x(t)) depends only ory, (t)
suffering from the inter-cell interference problem. THere, it Wherek € K,. Therefore, each BS can maximize its own
is imperative that a sophisticated inter-cell scheduliciygesne objective) , . Uy (7x(t)) independently.
should provide satisfactory throughput to users who have
been treated unfairly for their disadvantageous positidns g proof of Proposition 1
is also remarkable that there is a consensus of opinion in the . I , a
evolved UTRA [32] that cell throughput can be sacrificed for €t us denote the given objective function bye). If Gz =
users at cell boundaries not to mention that several ingir-c? — >_i=1 -7 — 0 holds, at least one; should be positive
interference mitigation schemes are in the design stage. by the assumption > 0. Thus it is straightforward to see that
Our contribution is four-fold: Firstly, to the best of our df a2 f
knowledge, this is the first work dealing with an analytical w0 = S5>0 (24)
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This means that whenever the functi% crosses the value It is also shown in [31, pp. 833] that the Rodrigues represen-
0, it is strictly increasing. Therefore it can cross the value tation of L* (z) can be obtained as

at most once. If% does not cross the valug at all, then
f(z) is either strictly increasing or strictly decreasingg.,
4 > 0,vr € [0,7] or L <0, Vz € [0,7]. Otherwise it

dz

4 (&) > 0, it follows that & < 0, vxe[O ), and%>o,

Vz € (Z,T]. Thus, it can be eaS|Iy shown that, for ealistinct
x1, 5 in the interval[0, Z] with % ( 1) (z2 —2x1) >0, we
have f(z2) > f(z1). Thereforef( ) is strictly pseudoconvex
[25, pp. 113]. Since every differentiable strictly pseuaiogex
function isstrongly quasiconvel5, pp. 112],f(x) satisfies

f(x) <max {f(0), f(Z)}, Vo € (0,7). [1]

C. Proof of Theorem 1

If the factor i in C(z) = 55
function in (13) %ecomes.

>

neN

[2]
is ignored, the objective 3]

Pr()gienn(t)
N
Oy T 2oiz1 Pi(t)Gronn ()
i#n

5
If we examine the above expression carefully, we can se[e]
that Proposition 1 is applicable to (25) with the following
substitutions: [6

N—M+1, put)—= p—T,
Bwj,m.t) Grom.6) (1)

_ o N
it = 01 (i + S50 i) 000)

Bwyn.o pn () grn.n, (1)
[Prnom (E = 1)) Grm0m (1)

( o2+ = Pi(t)gmn,tu(t)) Gromtym (t) = by
Z n, m

Bwk(n,t)
[Pyt —1)]

(4

. (25)

(7]

—a

(8]

El

— Qp

[10]
[11]

Note thatp,,(t) appears at no constants other than variabjg)
x. In this way, we can show that, for each variablg(t),

the maximum of the objective function in (13) is achieved at
pm(t) =0 or p,,(t) = p. We can also see that the conclusiop 3

is independent of)(¢). This completes the proof. »
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D. Proof of Theorem 2
[15]

According to the arguments we provided in Section II-D,
©(N, K) can be written as follows.

N N [16]
o(N,K) = ZNCi kP = ZNCi -kPn_i (26)
i=0 i=0
[17]
N NI. K
B .Z(N—z) (K =N +14)!
=0 18]
= N!-LE-N(-1) (27)

where the equality in (27) holds by the definition of thgig
associated Laguerre polynomial [31, pp. 832]:

Z (n—1)

1=

(n + k)! [20]

(k+1)!- (_x)z

] S. Borst,

etk dn
dz™

LZ(I) = (e_mxk"m) .

nl

_ dN e
P(NK) = e M (-1 W g ()|
dN —xz—1,_ K
= — € X
dx ( ) r=—1
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