
The NIProxy: a Flexible Proxy Server Supporting Client Bandwidth
Management and Multimedia Service Provision

Maarten Wijnants†‡ Wim Lamotte†

†Hasselt University, Expertise Centre for Digital Media, Wetenschapspark 2, BE-3590 Diepenbeek, Belgium
‡Interdisciplinary institute for BroadBand Technology (IBBT), Expertise Centre for Digital Media, BE-3590 Diepenbeek, Belgium

e-mail:{maarten.wijnants, wim.lamotte}@uhasselt.be

Abstract

We present the NIProxy, a flexible network intermediary
which aims to improve the Quality of Experience (QoE)
of users of networked applications by pushing more intel-
ligence into the network. More specifically, the NIProxy
is network- as well as application-aware, meaning it has
knowledge of both the transportation network and the ap-
plication(s) it is serving. This dual awareness is exploited
to improve user QoE in two complementary ways. First
of all, the NIProxy is capable of dynamically distributing
a client’s available downstream bandwidth over the differ-
ent network streams generated by a networked application.
Secondly, the NIProxy supports multimedia service provi-
sion, meaning it can apply services on multimedia streams
on behalf of its clients. An important feature of the NIProxy
is that its two QoE-improving mechanisms are not isolated
entities but instead can interact with each other. A compre-
hensive discussion of the NIProxy’s software architecture
is provided and the implementation of an example service,
which adds video transcoding functionality to the NIProxy,
is described. Finally, presented experimental results clearly
demonstrate the effectiveness of our approach.

1. Introduction

Multimedia content and real-time multimedia streaming
are being exploited by networked applications to an ever
increasing extent. For instance, commercial multiplayer
games often allow players to communicate verbally with
each other through the exchange of voice streams. Other
applications, and in particular many academic applications,
take user communication to an even higher level by also
enabling users to share the video stream captured by their
webcam, this way also adding a visual aspect to user com-
munication. Internet content delivery is another example:
due to the explosive growth of the number of broadband In-
ternet connections, accessing video information through the
Internet has become very popular.

Transmitting or streaming multimedia content over a
transportation network however requires a considerable

amount of bandwidth. Even despite the emergence of
the previously mentioned broadband Internet connections,
clients do not always dispose of sufficient downstream
bandwidth to receive all multimedia streams that are be-
ing exchanged as part of a networked application. When
this is the case, mechanisms are needed that can maximize
these clients’ Quality of Experience (QoE), given their cur-
rent bandwidth limitations. While these mechanisms can
be implemented for every networked application separately
by incorporating them in the client or server software, it is
economically more favorable to provide them at an interme-
diate network node so that they can be exploited by multiple
networked applications, even concurrently.

In this paper, we present theNIProxy, a flexible proxy
server which provides two such QoE-increasing mecha-
nisms. On the one hand, the NIProxy supports automatic
client bandwidth management, meaning it is capable of
intelligently partitioning a client’s downstream bandwidth
among the different network streams in which the client is
interested. On the other hand, the NIProxy can also be con-
sidered as a multimedia service provision platform, i.e. it is
capable of applying services on network streams containing
multimedia content. Example services that could be pro-
vided include stream transcoding or the merging of multi-
ple streams into a single stream. Both the client bandwidth
management mechanism and the multimedia services can
exploit network- as well as application-related information
when operating. Hence the term NIProxy, which is an ab-
breviation forNetwork IntelligenceProxy: its major goal
is to introduce more intelligence in the network so that the
network can deliver multimedia content to clients in a more
intelligent and efficient manner.

The remainder of this paper is organized as follows. We
introduce the NIProxy in section 2 and describe its software
architecture in section 3. Next, sections 4 and 5 focus on the
two QoE-improving mechanisms supported by the NIProxy.
In particular, in section 4 the NIProxy’s client bandwidth
management functionality is discussed, while section 5 de-
scribes the implementation of an example service which
adds video transcoding functionality to the NIProxy. Ex-



perimental results are presented in section 6, followed by a
brief review of related work in section 7. Finally, we draw
our conclusions and suggest future work in section 8.

2. System overview

The NIProxy is a network intermediary to which clients
need to connect if they want to leverage its features. Once
connected, all network streams originating from and des-
tined for the client will pass through its NIProxy. It is pos-
sible for clients running different networked applications to
be connected to the same NIProxy simultaneously. On the
other hand, it is also possible to deploy multiple instances of
the NIProxy in the network. In this latter case, the different
instances form an overlay network and clients can choose
to which NIProxy they want to connect. However, the focus
of this paper is on the NIProxy as a single entity, so we will
not elaborate on the NIProxy overlay case here.

As stated in the introduction, the main goal of the
NIProxy is to improve the QoE of users of networked ap-
plications by introducing more awareness in the network.
Currently, the NIProxy is both network- and application-
aware, meaning it has knowledge of the transportation net-
work as well as the application(s) it is serving. In the next
two paragraphs, we will discuss how this dual awareness
is acquired. A concrete and practical example of how the
NIProxy exploits its awareness is given in section 6.

To gain its network awareness, the NIProxy periodi-
cally probes the network links which connect clients to
their proxy server. The outcome is a number of measure-
ments, i.e. the current end-to-end throughput, latency and
packet loss rate of each client’s network connection. How-
ever, these measurements only provide the NIProxy with
a snapshot of the state of a client’s network connection at
a given moment in time, which can change both rapidly
and drastically (this is especially true for wireless network
links). Therefore, each time the NIProxy successfully fin-
ished probing the network connection of a client, it com-
bines the outcome with the measurements obtained during
previous probing iterations to estimate the future state of a
client’s network connection. In addition, the NIProxy’s net-
work awareness also encompasses knowledge of the band-
width requirements of network streams. It acquires this
knowledge by monitoring the network streams that pass
through it and by recording their bandwidth consumption.

To obtain its application awareness on the other hand, the
NIProxy relies on a support library called the Network In-
telligence Layer (NILayer). This NILayer needs to be inte-
grated in the client software, where it needs to be interfaced
with the application’s awareness manager. Once incorpo-
rated, the NILayer regularly queries the awareness manager
to retrieve application-related information, which it subse-
quently forwards to the NIProxy to which the client is con-

nected. The information extracted from the awareness man-
ager is application-specific, since it can differ depending on
the networked application in which the NILayer has been
integrated. The NILayer has been designed to be highly
reusable, meaning it can provide the NIProxy with aware-
ness of many different types of networked applications.

Although there are no constraints on the network loca-
tion where the NIProxy can be deployed, optimal results
will be achieved if it is located close to end-users, and more
specifically at junction points where network performance
degrades significantly. An example of such a junction point
is the boundary between the core of the network and the
access network (the so-called “last-mile” of the network).
In particular, while the core of the network is usually suffi-
ciently capacitated to transport all network streams in which
a particular client is interested, the same is not necessarily
true for the access network. Analogously, another optimal
location to deploy the NIProxy is at the transition from a
wired to a wireless network. By placing the NIProxy at
such junction points, it can mitigate the mismatch in net-
work performance that exists at these locations by manag-
ing and possibly adapting network traffic before it reaches
the lesser performant part of the network.

3. Software architecture

The NIProxy presented in this paper can be considered to
be the successor of the proxy server reported on in [13] and
[12]. Practical experiments with the original proxy server
revealed a number of limitations and shortcomings, which
could nearly all be attributed to its software architecture.
Consequently, while the majority of the ideas and principles
underlying the original proxy server where retained when
designing the NIProxy, we opted to completely rework its
software architecture to make it more flexible and powerful.
In this section, we will first discuss the new software archi-
tecture, after which we will highlight its improvements by
comparing it with the software architecture of the original
proxy server.

A schematic overview of the NIProxy’s software archi-
tecture is given in figure 1. As is illustrated in this figure,
the software architecture on the one hand comprises a num-
ber of static components that are not related to a particu-
lar client. Examples include the Network Probing module
and the Client Administration module. On the other hand,
the NIProxy also maintains a number ofpacket processing
chain instances, one for each client that is currently con-
nected to it - we will call theseproxy clientsfrom now on.
Before possibly being forwarded, network packets arriving
at the NIProxy need to pass through the packet processing
chain of the proxy client for which they are destined. Dur-
ing this passage, packets are accompanied by a description
of the network stream to which they belong.



Figure 1. Overview of the NIProxy’s software architecture. Each instance of the packet processing
chain and of its comprising components, including services, is related to a particular proxy client.

The packet processing chain consists of the following
software components1:

Packet Receiver: ensures that all network packets belong-
ing to streams in which the proxy client is interested
are handed to that client’s packet processing chain

Bandwidth Manager: is responsible for distributing the
proxy client’s available downstream bandwidth over
all network streams in which the client is interested

Stream Manager: registers the bandwidth usage of net-
work streams and keeps track of stream aliveness

Service Manager: manages the loading and unloading of
services on behalf of its associated proxy client and
applies the currently loaded services on the network
packets it receives

Packet Forwarder: is responsible for forwarding com-
pletely processed packets to the proxy client

Of these components, the Bandwidth Manager and the Ser-
vice Manager are the most important ones, and they are de-
scribed in more detail next. Before continuing however, it is
important to note that every packet processing chain stands
completely on its own. In particular, from within one packet
processing chain, it is impossible to address components be-
longing to another packet processing chain.

The Bandwidth Manager has access to the NIProxy’s
bandwidth distribution algorithm, which will be described
in section 4. Every time the Bandwidth Manager is handed a
network packet, it consults this algorithm to compute a ver-
dict for it. At the moment, the Bandwidth Manager defines

1Since the NIProxy maintains a separate packet processing chain for
each proxy client, they each also have personal instances of its comprising
components.

three possible packet verdicts: block, accept and drop. A
block verdict indicates that the packet belongs to a network
stream which the bandwidth distribution algorithm does not
know yet. An accept verdict on the other hand indicates that
the network stream to which the packet belongs is known
to the bandwidth distribution algorithm, and that the algo-
rithm in addition has decided to allocate client bandwidth
to this stream. Finally, a drop verdict indicates exactly the
opposite, i.e. the packet belongs to a network stream which
should currently not be allocated proxy client bandwidth.

As can be seen in figure 1, the Bandwidth Manager actu-
ally appears twice in the packet processing chain. The first
time it is accessed, it simply ensures that a blocked packet
does not continue its traversal of the packet processing
chain. Instead, a description of the network stream to which
the packet belongs is generated, which is subsequently sent
to the proxy client by the Packet Forwarder. As will be dis-
cussed in section 4, it is the responsibility of the proxy client
to subsequently decide how the NIProxy should treat future
packets belonging to this network stream. The second oc-
currence of the Bandwidth Manager in the packet process-
ing chain on the other hand guarantees that only packets for
which it computed an accept verdict (i.e. packets belonging
to a network stream for which the bandwidth distribution
algorithm has reserved client bandwidth) are transmitted to
the proxy client. Packets with a drop verdict are not handed
over to the Packet Forwarder but instead are discarded at
this point in the packet processing chain to ensure they do
not consume any client bandwidth.

Besides managing client downstream bandwidth, the
NIProxy can also apply services on multimedia streams on
behalf of its connected clients. This functionality is pro-
vided by the Service Manager component. Services are im-



plemented as NIProxyplug-ins, which are loaded and un-
loaded dynamically by the Service Manager at the request
of the proxy client. Whenever the Service Manager receives
a packet, it passes it to the currently loaded services that
have registered interest for the network stream to which the
packet belongs2. The interested services are traversed in
the order in which they were loaded, meaning the firstly
loaded service will be the first to receive the packet, and so
on. Services are allowed to alter the contents of the pack-
ets they receive (for instance, in case of a video frame, by
transcoding it to a lower quality); if they do so, subsequent
services will receive the altered version of the packet instead
of the original version (i.e. the transcoded video frame in-
stead of the original). As a result, when carefully geared
to each other, multiple services can collaborate on a single
network stream. Also note that since each proxy client has
its individual instance of the Service Manager component,
the NIProxy is capable of providing each client with a per-
sonalized service list that is tailored to the client’s specific
needs and/or constraints.

There are a number of advantages associated with our
design decision to implement the NIProxy’s service provi-
sion functionality through a plug-in mechanism. First of
all, it simplifies and speeds up the process of adding new
services to the NIProxy: providing a new service never re-
quires that changes are made to the NIProxy’s general soft-
ware architecture; instead, it suffices to simply implement
a new NIProxy plug-in. This also implies that extensive
knowledge of the internals of the NIProxy is not required
to successfully develop NIProxy services. Consequently, a
second advantage of the plug-in mechanism is that it en-
ables third-party service development. Thirdly, it allows for
the provision of complex services by composing multiple,
smaller services. Finally, although the plug-ins physically
reside at the NIProxy, they can be conceptually thought of
as being part of the networked application they are support-
ing. Consequently, NIProxy plug-ins need not be generic
but instead can exploit application-specific knowledge and
functionality. In effect, the plug-in mechanism neatly sepa-
rates services from the rest of the NIProxy’s software archi-
tecture, which is completely application-independent. This
design increases the applicability of the NIProxy since it en-
ables the NIProxy to provide valuable and efficient services
for a wide variety of networked applications.

Compared to the software architecture of the original
proxy server, the new software architecture is much more
robust and flexible. Probably the most important improve-
ment is that the NIProxy’s bandwidth management compo-
nent and service provision mechanism no longer are iso-
lated entities but instead can interact with each other. As is
illustrated in figure 1, NIProxy services can access both the

2Services register and unregister stream interest with the Service Man-
ager when they are loaded and unloaded, respectively.

proxy client’s Stream Manager and Bandwidth Manager in-
stances. This implies, for instance, that a service is capable
of consulting and even influencing the bandwidth distribu-
tion strategy which the NIProxy has computed for its asso-
ciated proxy client. As will be demonstrated in section 5,
supporting interaction between services and the bandwidth
distribution algorithm allows for the creation of services
that have a level of performance and efficiency which could
never be achieved by the original proxy server. Another
advantage is that the software architecture of the NIProxy
no longer depends on the netfilter/iptables framework. This
framework, which provides packet filtering and packet man-
gling functionality on the GNU/Linux operating system [9],
was exploited extensively by the original version of the
proxy server. However, by relying on this framework, de-
ployment of the original proxy server was confined to net-
work nodes running GNU/Linux.

4. Client bandwidth management

The first QoE-improving mechanism supported by the
NIProxy is dynamic client bandwidth management. The
bandwidth distribution algorithm employed by the NIProxy
was previously presented in [7]. Since then, we seriously
refactored the algorithm to improve its robustness and per-
formance. Consequently, compared to its original version,
the algorithm is now capable of producing better and more
stable results. However, the algorithm’s underlying princi-
ples were left untouched. A fully detailed discussion of the
internals of the algorithm is therefore not in order in this
paper. We nonetheless summarize it in this section, since
knowledge of the algorithm’s mode of operation is required
to comprehend the material described in sections 5 and 6.

The bandwidth distribution algorithm manages proxy
client downstream bandwidth by arranging all network
streams in which a proxy client is interested in astream hi-
erarchy. Actual network streams are always represented as
leaf nodes in this hierarchy, while internal nodes implement
a certain bandwidth distribution technique. Currently, three
types of internal nodes are available:

Mutex: ensures at all times that at most one of its children
is assigned bandwidth; a mutex is the simplest type of
internal node and it is useful for, for instance, grouping
together multiple qualities of the same stream

Priority: assigns bandwidth to its children according to
their current priority value, i.e. bandwidth is first allo-
cated to the child with the highest priority, any remain-
ing bandwidth is subsequently allocated to the child
with the second highest priority, and so on; this process
is repeated until there is no more bandwidth available
to assign, or until all child nodes have been considered
(in this latter case, a certain amount of the bandwidth



Figure 2. An example stream hierarchy.

available to the priority node remains unused); a prior-
ity node is useful for, for instance, distinguishing be-
tween different types of network streams

Weight: apportions bandwidth among its children in two
consecutive passes; pass 1 ensures that the combined
bandwidth usage of all child nodes does not exceed
the total amount of bandwidth available to the weight
node; it does so by considering all child nodes simul-
taneously and assigning each a part of the available
bandwidth proportionally to its current weight value;
any bandwidth that remains after executing pass 1 is
subsequently distributed in pass 2, which assigns it to
the different children one-by-one, in order of decreas-
ing weight value; in effect, pass 2 allows child nodes to
switch to a higher quality if sufficient bandwidth is still
available; weight nodes are the most dynamic internal
nodes and are useful for, for instance, distinguishing
between network streams that are of the same type

An example stream hierarchy is illustrated in figure 2. As
can be seen, the root of the hierarchy consists of a priority
node and has two children, which are both of type weight.
These weight nodes have priority 2 and 1 respectively, and
respectively group together all audio and video streams in
which the proxy client is interested. Consequently, band-
width will first be allocated to audio; if afterwards any band-
width remains (i.e. more bandwidth is available than all au-
dio streams jointly consume), it is allocated to video. In this
example, the networked application apparently did not de-
fine multiple audio qualities and, as a result, individual au-
dio streams were added to the grouping audio weight node
as direct children (i.e. the nodes A1 till An). On the other
hand, the application transmitted both a high quality (HQ)
and low quality (LQ) version of each video stream. It would
be highly bandwidth-inefficient for a proxy client to receive
both versions simultaneously, since they differ only in their
encoding and otherwise contain exactly the same content.
Therefore, before being added to the video weight node, the
HQ and LQ variants of each individual video stream were
grouped together using a mutex node.

It is the responsibility of the client to create and maintain
its stream hierarchy at the NIProxy it is connected to. In par-
ticular, as stated in section 3, when the NIProxy receives a
packet belonging to a network stream it does not know yet,
a description of the stream is sent to the proxy client for
which the packet was destined. The proxy client is subse-
quently responsible for specifying how the NIProxy should
treat packets belonging to this new stream. More specifi-
cally, the client can specify that these packets should always
be accepted, always dropped, or that the new stream should
be integrated in the proxy client’s stream hierarchy. The
first option is mainly useful for application-critical network
streams that do not carry multimedia content and hence
have negligible bandwidth requirements (e.g. a TCP stream
transporting event information). The second option allows
the proxy client to specify that it has no interest whatsoever
in a particular network stream. Finally, to achieve optimal
results, the last option should be adhered to for all multime-
dia network streams in which the proxy client is interested.

Based on the above discussion, it should be apparent that
the client software needs to be modified before a networked
application can benefit from the NIProxy’s bandwidth dis-
tribution algorithm. As was previously mentioned in section
2, we developed a reusable support library called the NI-
Layer to facilitate and accelerate this process. This support
library implements a number of application-independent,
low-level NI operations and makes them available through
a clear API. Consequently, application developers can ex-
ploit the NILayer’s functionality to implement higher-level
and application-specific NI operations, as well as to pro-
vide the NIProxy with application awareness. For instance,
it is the responsibility of the client software to ensure that
application-specific information is available to the NIProxy
by choosing an appropriate general structure for the client’s
stream hierarchy (e.g. to reflect that audio has a higher sig-
nificance than video). However, all functionality required
to actually construct the client’s stream hierarchy is read-
ily available in the NILayer. Similarly, the client soft-
ware needs to inform its NIProxy of the relative impor-
tance of individual network streams. This information can
be retrieved by querying the application’s awareness man-
ager, after which it needs to be translated to appropriate
weight and/or priority values. While this is an application-
specific issue, the task of subsequently communicating the
computed values to the client’s NIProxy is application-
independent and is thus taken care of by the NILayer.

The bandwidth distribution algorithm exploits not only
the NIProxy’s application awareness, but also its network
awareness. Remember that the NIProxy periodically probes
the network link of a connected client to estimate its
currently available downstream bandwidth. Exactly this
amount of bandwidth is subsequently assigned to the root
node of the client’s stream hierarchy, this way preventing



the bandwidth distribution algorithm from allocating more
bandwidth than is actually available. As a result, given that
the network probing yields sufficiently accurate bandwidth
estimates, the capacity of a client’s network connection will
at all times be respected. On the other hand, the NIProxy’s
network awareness also comprises knowledge of the band-
width requirements of network streams and this information
of course also influences the operation of the bandwidth dis-
tribution algorithm. For instance, specifying that a certain
stream has a high significance by assigning its correspond-
ing hierarchy node a high weight value does not guarantee
that the stream will actually be “turned on” by the band-
width distribution algorithm. If siblings exist that have an
equally high weight value but require less bandwidth, these
siblings will have a higher chance of being forwarded to the
proxy client.

5. An example service: Video transcoding

The second QoE-improving mechanism supported by the
NIProxy is multimedia service provision. As stated in sec-
tion 3, this mechanism is implemented using a plug-in ap-
proach. More specifically, services correspond to NIProxy
plug-ins that can be loaded (and unloaded) dynamically. In
this section, we discuss the implementation of an example
plug-in which provides a video transcoding service. In ad-
dition, we will illustrate how the plug-in exploits its inter-
face to the Bandwidth and Stream Manager to not only con-
sult but also supplement the NIProxy’s network and appli-
cation awareness. Practical results generated by the video
transcoding service are presented in section 6.

The video transcoding service enables the NIProxy to
reduce the bandwidth requirements of video streams by
transcoding them to a lower quality. Since the service is
merely a proof of concept, we were concerned more with
ease of implementation than with transcoding performance.
Consequently, we decided to employ the cascaded pixel-
domain approach to transcoding [11]. In this approach, a
video stream is transcoded by decoding and subsequently
completely re-encoding it with different quality settings. To
perform the actual decoding and encoding, we exploited
libavcodec, the multi-platform audio and video codec li-
brary of the open source FFMPEG project [2].

Instead of physically arriving at the NIProxy, transcoded
video streams are automatically generated by the video
transcoding service. Consequently, the NIProxy has by de-
fault no knowledge of the existence of these streams. There-
fore, for each distinct video stream it receives, the video
transcoding service adds a new node to the stream hierar-
chy of its associated proxy client3. This new node is linked
to the transcoded video stream and is added as a sibling

3Remember from section 3 that each service instance is associated with
a particular proxy client.

of the node that corresponds to the original video stream.
Furthermore, since the Stream Manager precedes the Ser-
vice Manager in the packet processing chain (see figure 1),
the NIProxy has no knowledge of the bandwidth usage of
transcoded video streams. Consequently, this information
is also supplied by the video transcoding service. To adjust
the proxy client’s stream hierarchy and to complement the
NIProxy’s network awareness, the video transcoding ser-
vice exploits its interface to the proxy client’s Bandwidth
and Stream Manager, respectively.

When the video transcoding service is loaded, it informs
the Service Manager of its interest in video streams. Con-
sequently, the service will receive all video frames (i.e. net-
work packets belonging to a video stream) that are destined
for its associated proxy client. To determine whether the
video frames it receives need to be transcoded, the service
consults the proxy client’s Bandwidth Manager instance. In
particular, transcoding only takes place if the Bandwidth
Manager computes an accept verdict for the transcoded ver-
sion of the video stream to which the received packet be-
longs. If this is the case, the original video frame is replaced
by its transcoded counterpart, and the description accom-
panying the packet is updated so that it now indicates that
the frame belongs to the transcoded version of the video
stream. Consequently, subsequent services in the proxy
client’s service list that are also interested in video will re-
ceive the transcoded video frame instead of the original. In
addition, the second occurrence of the Bandwidth Manager
in the proxy client’s packet processing chain (see figure 1)
will also receive the transcoded video frame, together with
its modified accompanying description, and accept it. No-
tice that in case the description had not been updated by the
video transcoding service, the Bandwidth Manager would
probably have decided to drop the packet, since it is un-
likely that the bandwidth distribution algorithm would allo-
cate bandwidth to both the original and the transcoded ver-
sion of the same stream.

6. Evaluation

6.1. Test application

To evaluate and test the NIProxy, we used a simple in-
house developed Networked Virtual Environment (NVE)
application. This application, which is leveraged regularly
by our research department to test new ideas and principles,
provides users with a top-down 2D view of the shared vir-
tual world and allows them to communicate with each other
through both voice and video streaming.

Before we could start the test process, we had to modify
the test application so that it was capable of connecting to
the NIProxy and, in a later stage, of providing the NIProxy
with application awareness. However, this task was simpli-
fied tremendously thanks to the availability of the NILayer.



The largest obstacle turned out to be the test application’s
awareness manager. In particular, due to its straightforward
implementation, the awareness manager proved to be inca-
pable of generating sufficiently detailed information regard-
ing the relative importance of network streams. This in turn
often resulted in a non-optimal operation of the NIProxy.
We mitigated this problem by implementing an additional
scheme on top of the awareness manager which determines
stream importance in a more fine-grained manner. In par-
ticular, the scheme assigns importance to voice streams in-
versely proportionally to the distance in the virtual world
between the local user and the stream source. For video
streams on the other hand, the scheme employs not only vir-
tual distance but also virtual orientation information. More
specifically, as a video source moves farther away from the
Field of View (FOV) of the local user, an increasing penalty
value is subtracted from the importance of its video stream.

6.2. Experimental results

Using the described test application, we performed sev-
eral experiments to examine whether the NIProxy is capable
of improving the QoE of users of networked applications.
However, due to space limitations, we discuss only one rep-
resentative experiment here. This particular experiment in-
volved four clients, of which only one was connected to a
NIProxy instance. The three other clients - which we will
call clients C1, C2 and C3 from now on - ran the unmodified
version of the test application and hence did not leverage
any of the NIProxy’s functionality. Consequently, the goal
of the experiment was to register the multimedia experience
provided to the sole proxy client. Furthermore, to prevent
the results from being too complex and hence difficult to
grasp, we decided to consider only one type of multimedia
traffic in the experiment. In particular, we opted for video
since it places the largest load on the transportation network.
Opting for video in addition allows us to demonstrate the
video transcoding service described in section 5.

The experiment itself can be thought of as consisting of
three distinct intervals. Within each interval, all conditions
remained constant, while every transition from one interval
to the next was triggered by a change in one or more con-
ditions. The client positioning in the virtual world during
the first interval is illustrated in figure 3(a). As can be seen
in this figure, the proxy client was oriented towards clients
C1, C2 and C3, which consequently all lay in its FOV. Af-
ter approximately 35 seconds, the proxy client moved along
the dashed path depicted in figure 3(a) to arrive at a new
virtual location, at which point the second interval of the
experiment commenced. Again approximately 40 seconds
later, we triggered a transition to the third interval by arti-
ficially decreasing the downstream bandwidth available to
the proxy client. In particular, during the third interval the
proxy client had a downstream bandwidth of only 160 Kilo-

(a) Client positioning in the virtual world.

(b) Stream hierarchy maintained during the experiment.

(c) Stacked graph showing all multimedia network traffic re-
ceived by the proxy client during the experiment.

Figure 3. Experimental results.

bits per second (Kbps) at its disposal, against 240 Kbps dur-
ing the first two intervals.

The stream hierarchy which the NIProxy maintained for
the proxy client during the experiment is depicted in fig-
ure 3(b). This hierarchy was constructed entirely by the
proxy client itself, except for the edges in grey and the leaf
nodes with a grey outline, which were added by the video
transcoding service. In particular, each leaf node created
by the proxy client corresponded to the original version
(OV) of a specific video stream, while their siblings cor-
responded to the transcoded version (TV) of this stream.
These transcoded versions were not transmitted by the test
application but instead were generated automatically by the
NIProxy’s video transcoding service.

Notice that all weight values are depicted in pairs in fig-
ure 3(b). The uppermost value of each pair applied during



the first interval of the experiment, while the value below it
applied during the second and third interval4. To determine
the weight values, the proxy client exploited both virtual
distance and virtual orientation information, as explained in
section 6.1. Since in the first interval all clients lay in the
proxy client’s FOV, stream importance depended solely on
the virtual distance between the proxy client and the stream
sources. Consequently, the video stream sent out by C3 was
assigned the highest weight, while C2’s video stream was
assigned the lowest. However, at the end of the first inter-
val, the proxy client moved to a new virtual location, which
resulted in shifts in stream importance. In particular, dur-
ing the second and third interval, C1’s video stream was as-
signed the highest weight since C1 was now located closest
to the proxy client and in addition lay in the proxy client’s
FOV. Furthermore, although the virtual distance between
the proxy client and clients C2 and C3 was almost identi-
cal, C2’s video stream was assigned a higher weight value
since C3 was located outside of the proxy client’s FOV.

Based on the just described stream hierarchy, the
NIProxy distributed the proxy client’s downstream band-
width as illustrated in figure 3(c). In particular, this network
trace indicates which video streams the proxy client re-
ceived during the experiment, the bandwidth consumed by
each and the total amount of downstream bandwidth avail-
able to the proxy client. For instance, during the first inter-
val of the experiment, the proxy client had a downstream
bandwidth of 240 Kbps at its disposal, and this bandwidth
was used to receive the original version of the video streams
sent out by C1 and C3 and the transcoded version of C2’s
video stream. Notice the correspondence with the proxy
client’s stream hierarchy: during the first interval, the nodes
associated with C1’s and C3’s video stream were assigned
a higher weight value than the node associated with C2’s
video stream.

The network trace shown in figure 3(c) comprehensively
demonstrates the capabilities and benefits of the NIProxy.
First, it illustrates that the NIProxy at all times respects the
downstream capacity of a client’s network connection (i.e.
no more data is forwarded to a proxy client than its network
link can handle). Consequently, packet loss and packet la-
tency are kept to a minimum, resulting in improved play-
back of received multimedia streams at client-side. Sec-
ondly, the bandwidth actually available to a proxy client is
partitioned in such a way that multimedia streams which the
client deems important are assigned more bandwidth than
less important streams. Consequently, the proxy client will
always receive the multimedia streams that are most impor-
tant to it in the highest quality possible, conceivably at the
expense of less important streams. Finally, besides its band-

4Since no client relocations occurred at the transition from the second
to the third interval, the proxy client computed identical weight values dur-
ing these two intervals.

width management functionality, the NIProxy’s service pro-
vision mechanism is also capable of improving the user
QoE. The video transcoding service, for instance, enables
the NIProxy to forward lower-quality and consequently less
bandwidth consuming versions of video streams to a proxy
client. If this service were not available, the NIProxy would
be forced more frequently to drop video streams all together
in the event of shortage of client downstream bandwidth.
Due to the video transcoding service, the NIProxy is in such
situations capable of still forwarding some of these video
streams to the proxy client, albeit in a lower quality.

For reasons of completeness, we conclude this section
with some remarks on the experiment and the presented re-
sults. First, notice from figure 3(c) that not all original video
streams consumed equal amounts of network bandwidth.
For instance, the original version of C3’s video stream con-
sumed considerably more bandwidth than the video streams
sent out by C1 and C2. This can be attributed to the fact
that the webcams of clients C1 and C2 captured a static
scene which did not change at all during the experiment,
while C3’s webcam captured the face of a user. Also note
that the bitrate of the original video stream did not influ-
ence the bitrate of the transcoded version of this stream (i.e.
all streams produced by the video transcoding service have
a comparable bitrate). Secondly, the reason why a consid-
erable amount of the proxy client’s downstream bandwidth
remained unused during the second interval of the experi-
ment is that it did not suffice to boost C3’s video stream to a
higher quality and that it could not be exploited in any other
way. Finally, the scheme adhered to to determine stream
importance would be much more meaningful in case the
test application provided users with a first-person instead of
a top-down view of the virtual environment. We nonethe-
less decided to employ this scheme because it allowed us to
clearly demonstrate the capabilities of the NIProxy.

7. Related work

The two QoE-improving mechanisms supported by the
NIProxy are both topics of active research. Automatic band-
width management and network link sharing have been in-
vestigated mainly in the context of Quality of Service (QoS)
provision; see for instance [3] and [5]. However, while
QoS techniques are typically concerned with guarantee-
ing that the requirements of data flows are satisfied, the
NIProxy’s bandwidth distribution algorithm has the more
high-level goal of maximizing the multimedia experience
provided to users of networked applications. Related work
on multimedia service provision on the other hand includes,
for instance, the work done by Klara Nahrstedt (e.g. [8]),
the MobiGATE system [14], the Active Service framework
described in [1] and the on-demand dynamic distillation
approach presented in [4]. However, in contrast to the



NIProxy, none of these systems take application-related in-
formation into account. A completely different approach to
multimedia service provision is Active Networking [10][6].
An important economic disadvantage of this approach how-
ever is that it requires that substantial modifications are
made to the architecture of current networks. In contrast,
the NIProxy is readily deployable since is compatible with
current network architectures and, in particular, the Inter-
net. To summarize, the NIProxy distinguishes itself from
related work in both the areas of bandwidth management
and multimedia service provision. In addition, an important
contribution of the NIProxy is that it combines techniques
from these two research topics into a single system.

8. Conclusions and future work

To provide users with a better experience, networked ap-
plications are increasingly exploiting multimedia content
and real-time multimedia streaming. However, if done im-
properly, transmitting multimedia content over a transporta-
tion network can result in a deterioration of the user’s QoE
instead of an improvement. In this paper, we have presented
the NIProxy, a flexible proxy which introduces more in-
telligence in the network in an attempt to enable the net-
work to deliver multimedia content in a more intelligent
manner. In particular, we have described how the NIProxy
acquires both network- and application-related informa-
tion and we have demonstrated how the NIProxy leverages
its dual awareness to intelligently manage the downstream
bandwidth available to clients as well as to apply services
on multimedia streams on behalf of clients. In addition, we
have demonstrated that these two mechanisms are not iso-
lated entities but instead can collaborate with each other.
The outcome is an improved multimedia experience for
users of networked applications, as is confirmed by the pre-
sented experimental results. In particular, the NIProxy pre-
vents overencumbrance of a client’s network connection by
intelligently deciding which multimedia streams should be
forwarded to the client and at which quality.

We intend to improve the NIProxy in several ways in
the future. First, the NIProxy lacks knowledge of the client
terminal and the end-user’s preferences; also incorporating
this kind of awareness in the network would enable a myr-
iad of new possibilities. Secondly, the process of loading
and unloading services is at the moment directed entirely by
the proxy client. We are going to investigate whether some
of this control could be migrated to the NIProxy. In par-
ticular, we envision the NIProxy automatically (un)loading
services based on the client’s current requirements. Thirdly,
the present version of the bandwidth distribution algorithm
is optimized for continuous, long-lived network streams.
We would like to rework its implementation so that it can
also successfully cope with more bursty network traffic (e.g.

the network traffic generated by file transfer). Finally, we
would like to make the video transcoding service more dy-
namic by enabling it to transcode video streams to a range
of output qualities and associated bitrates.

Acknowledgments

This research is part of the IBBT E2E QoE project. Part of
this research is also funded by the EFRD.

References

[1] E. Amir, S. McCanne, and R. Katz. An Active Service
Framework and its Application to Real-time Multimedia
Transcoding. InProceedings of ACM SIGCOMM’98, pages
178–189, Vancouver, Canada, September 1998.

[2] The FFMPEG Homepage. http://ffmpeg.
mplayerhq.hu/ .

[3] S. Floyd and V. Jacobson. Link-sharing and Resource Man-
agement Models for Packet Networks.IEEE/ACM Transac-
tions on Networking, 3(4):365–386, August 1995.

[4] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting
to Network and Client Variability via On-Demand Dynamic
Distillation. InProceedings of ASPLOS-VII, pages 160–170,
Cambridge, Massachusetts, October 1996.

[5] V. Hnatyshin and A. S. Sethi. Architecture for Dynamic
and Fair Distribution of Bandwidth.International Journal
of Network Management, 16(5):317–336, Sept/Oct 2006.

[6] M. Lyijynen, T. Koskinen, S. Lehtonen, and J. Pesola. Con-
tent Adaptation on LANE Active Network Platform. InPro-
ceedings of ConTEL’03, pages 11–14, Zagreb, Croatia, June
2003.

[7] P. Monsieurs, M. Wijnants, and W. Lamotte. Client-
controlled QoS Management in Networked Virtual Environ-
ments. InProceedings of ICN’05, pages 268–276, Reunion
Island, April 2005.

[8] K. Nahrstedt, B. Yu, J. Liang, and Y. Cui. Hourglass Mul-
timedia Content and Service Composition Framework for
Smart Room Environments.Elsevier Journal on Pervasive
and Mobile Computing, 1(1):43–75, March 2005.

[9] The Netfilter/IPTables Project Homepage.http://www.
netfilter.org/ .

[10] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. InProceedings of DANCE’02, pages
2–15, San Francisco, California, May 2002.

[11] A. Vetro, C. Christopoulos, and H. Sun. Video Transcoding
Architectures and Techniques: An Overview.IEEE Signal
Processing Magazine, 20(2):18–29, March 2003.

[12] M. Wijnants, B. Cornelissen, W. Lamotte, and B. D.
Vleeschauwer. An Overlay Network Providing Application-
Aware Multimedia Services. InProceedings of AAA-
IDEA’06, Pisa, Italy, October 2006.

[13] M. Wijnants and W. Lamotte. Audio and Video Commu-
nication in Multiplayer Games through Generic Networking
Middleware. InProceedings of CGAMES’05, pages 52–58,
Angoul̂eme, France, November 2005.

[14] Y. Zheng, A. T. S. Chan, and G. Ngai. Applying Coordi-
nation for Service Adaptation in Mobile Computing.IEEE
Internet Computing, 10(5):61–67, September-October 2006.


