
Cross-layer H.264 Scalable Video Downstream
Delivery Over WLANs

Giuseppe Bianchi, Andrea Detti,
Pierpaolo Loreti, Claudio Pisa

University of Tor Vergata, Rome, Italy

Srisakul Thakolsri, Wolfgang Kellerer, Joerg Widmer
DoCoMo Euro-Labs, Munich, Germany

Abstract—Thanks to its in-network drop-based adaptation
capabilities, H.264 Scalable Video Coding is perceived as an
effective approach for delivering video over networks charac-
terized by sudden large bandwidth fluctuations, such as Wire-
less LANs. Performance may be boosted by the adoption of
application-aware/cross-layer schedulers devised to intelligently
drop video data units (NALUs), so that i) decoding dependencies
are preserved, and ii) the quality perceived by the end users is
maximized. In this paper, we provide a theoretical formulation of
a QoE utility-optimal cross-layer scheduling problem for H.264
SVC downlink delivery over WLANs. We show that, because of
the unique characteristics of the WLAN MAC operation, this
problem significantly differs from related approaches proposed
for scheduled wireless technologies, especially when the WLAN
carries background traffic in the uplink direction. From these
theoretical insights, we derive, design, implement and experi-
mentally assess a simple practical scheduling algorithm, whose
performance is very close to the optimal solution.

I. INTRODUCTION

Wireless Local Area Networks [1] are characterized by ca-
pacity constraints which vary over time. Arrival and departure
of traffic sessions competing for access to the shared medium
may cause huge fluctuations in the capacity available to the
access point or to stations. Channel condition changes may
trigger physical (PHY) rate adaptation mechanisms [2], [3]
which yield frequent and abrupt step-wise changes of the
available rate. Furthermore, because of the well known “per-
formance anomaly” of the WLAN Medium Access Control
operation [4], the actual throughput achieved by a station
experiencing a good channel quality is severely affected by
the PHY rate changes due to variations in the channel quality
experienced by other stations.

Scalable Video Coding (SVC) is a very promising coding
technique that allows to adapt to such challenging network
conditions [5]. Its basic concepts have been investigated by
the research community for almost two decades, and the
recent finalization of an SVC specification in the framework
of the ITU H.264 advanced video coding standards family
[6] in 2007 is likely to further stimulate its deployment. An
SVC stream is composed of multiple “layers” which carry
incremental video enhancement information. As such, it can
be adapted to a capacity throttling or fluctuation simply by
dropping (in part or in full) one or more enhancement layers,
thus obviating the need for costly transcoding operations or
the provision of multiple streams at different quality levels.
H.264 SVC provides a very smooth adaptation process at a

level of granularity down to individual dropping decisions for
single video layer protocol data units (also called Network
Abstraction Layer Units or NALUs in H.264 notation).

Adaptation of the video stream to the available network
capacity should be done in an application-aware fashion.
Dropping NALUs of a lower layer may make corresponding
higher layer NALUs useless because of missing decoding
dependencies. Many SVC adaptation solutions have been pro-
posed [7], [8], [9], [10], [11]. These are either implemented at
the remote video server, or deployed within the network (e.g. at
middleboxes such as proxies or at wireless base stations/access
points). The adaptation mechanism requires feedback about the
available capacity, which can be provided with lower overhead
and in a more timely manner, the closer to the capacity
bottleneck the adaptation occurs. For example, it is possible
to leverage locally available detailed channel state information
for adaptation at base stations or access points.

A. Problem Statement

An issue largely addressed in literature concerns the allo-
cation of wireless channel resources so that the video quality
is optimized with respect to some chosen performance metric.
For adaptive video streams, the common approach is to rely
on (Quality of Experience, QoE) utility curves, expressing
the user-perceived quality which model the application utility
(e.g. expressed in terms of Mean Opinion Score (MOS),
or Peak Signal to Noise Ratio (PSNR)) versus the network
resources committed to that stream. When considering a fixed
capacity network, the resulting optimization problem becomes
straightforward. It suffices to distribute a known and constant
pool of resources, namely the overall capacity, to the different
streams so that the resulting overall utility is, for instance,
maximized. Many papers have generalized this problem to
the multi-rate case, most notably in the context of scheduled
technologies such as 802.16, 3G/LTE, etc. In this case, there is
no notion of “total” wireless network capacity, as the PHY rate
of the wireless terminals depends on the channel conditions
and the specific modulation and coding techniques employed.
However, the optimization problem can be reduced to that
of allocating a known and constant pool of resources, by
considering the available channel time, or equivalently the
PHY symbol rate, instead of capacity.

At a first glance, the WLAN hot-spot scenario comprising
downlink video streaming appears very similar. In fact, the



problem of allocating resources to the different video streams
becomes a centralized scheduling problem, as the AP may
take appropriate decisions on how to allocate its transmis-
sion capacity to the connected users. A closer look reveals,
however, that the case differs substantially from the previous
ones, especially when the AP is not the only active station
in the network. When two or more stations are accessing
the network, channel resources are managed in terms of
transmission opportunities, rather than in terms of capacity
or channel time. Thus the utility optimization problem cannot
be expressed as the sharing of a given amount of capacity.
Instead, it is necessary to take into account that, in a multi-
rate scenario, the channel time dedicated to the video streams
transmitted by the AP depends upon the scheduling decisions
taken by the AP itself. Although the consequences of the MAC
layer’s sharing of transmission opportunities rather than time
is well known and understood, to the best of our knowledge
no prior work appears to relate these insights to the utility
optimization problem discussed above.

B. Contributions of the Paper

The paper addresses the problem of scheduling downlink
video traffic in Wireless LAN hotspots in order to maximize
the utility provided to the customers in terms of QoE. The
paper provides two main contributions.
1) To the best of our knowledge, ours appears to be the first
work which recognizes that such a problem requires a novel
formulation in the context of WLAN systems.
2) From the theoretical insights gained from the formulation of
the model, we design, analyze, implement in a Linux Access
Point, and experimentally assess, a practical (sub-optimal)
scheduler whose performance are marginally lower than the
optimal solution.

C. Related Work

A substantial amount of prior work applies SVC coding
to video transmission over wireless networks. An high level
framework and the general challenges of adaptive (scalable)
video streaming in a wireless context are presented in [13].
Three techniques for video content delivery in such scenarios
are identified: scalable video representation, an end-system
capable of performing network aware adaptation (end-to-end
approach), and adaptive QoS support from the network.

The representation of scalable video concerns the encoding
of the video into different substreams with different quality
levels as discussed in the standard H.264/SVC codec [14].
The network aware adaptation of end systems is often used
to avoid congestion in the network, e.g., in conjunction with
a transport protocol like TFRC [15]. A framework that uses
TFRC for efficient congestion aware SVC video delivery
has been proposed in [17]. Rate smoothness and real-time
requirements for video streaming are addressed in [16]. Further
proposals provide QoS support from the network, for example
through layer-based in-network packet dropping [18], use of
priority queuing taking into account the layers’ importance
[19], and rate distortion models for link adaptation [20].

None of the aforementioned solutions for SVC transmission
over wireless networks consider multiple video streams, where
the rate distortion properties of the videos depend on the
specific video content of the individual streams. The fairness-
throughput tradeoff when streaming multiple videos to differ-
ent users has been analyzed in [21] based on a gradient-based
scheduling, and in [22] based on remaining video playback
time for each client. In [23], Ji et al. extend the gradient-
based scheduling to optimize the resource allocation so as to
meet delay constraints.

To date, most of the existing research is based on simulation
and theoretical analysis, and few experimental results for SVC
in WLAN are available [24]. Moreover, to the best of our
knowledge, existing work does not consider the dependency of
the MAC layer operation, even if in a centralized downstream
setting, on the allocation of capacity to video transmissions.
Furthermore, the impact of other applications as well as uplink
traffic on the downlink scheduling problem has not been
pointed out.

II. UTILITY-MAXIMIZING CROSS-LAYER DOWNLINK
SCHEDULING PROBLEM

In this section we formalize the problem of maximizing the
utility of cross-layer scheduling for downlink video streaming
over a WLAN network. The following is not restricted to video
traffic, but addresses the general problem of maximizing the
utility of generic downlink flows whose utility curve is known.

We consider an 802.11e WLAN formed by one AP de-
livering video streams to M associated stations. The video
delivery occurs through the AP EDCA video access category.
In addition, we consider further traffic (in a separate EDCA
Access Category) generated at the stations and destined to the
AP, that we call “non-video downstream” (nvd) traffic.

A. Assumptions and Notation

For simplicity, we use the following assumptions.
Assumption A1: the non-video-traffic is generated by a

constant number of stations in saturation conditions [25], i.e.,
they always have a frame available for transmission.

Assumption A2: 802.11 frame transmissions are error-free,
and collision of the video traffic generated by the AP with non
video traffic generated by other stations is assumed negligible.

Assumption A3: the quality of each video stream i is
described by a utility curve Ui(bi), where bi is the average
bit-rate assigned to stream i. The utility curves are assumed
to be known at the AP for each considered stream.

Of these assumptions, A1 appears necessary to prevent the
background traffic to further depend on the AP operation. A2
is realistic in the presence of a relatively small number of
competing stations and considering the higher priority of the
video access category. It is an assumption, which permits to
neglect the complications that an analysis devised to further
take into account channel collisions would raise. As such, it
permits us to focus our contribution on the core aspects of
the problem tackled in the paper. Finally, A3 restricts our
treatment to utility curves based on average values. We have



specifically used average Peak Signal to Noise Ratio (PSNR)
versus average application layer bit rate as utility metric, but
any other utility metric based on average rates would fit our
framework.

We use the following notation. Station i is the station which
receives video stream i and we use index i to either refer to
the receiving station or the delivered stream unless ambiguity
occurs. We consider a multi-rate scenario where each station
is connected to the AP using a specific PHY rate. Let Ci be
the maximum application-layer delivery rate that is available
to stream i, in the assumption that the AP might continuously
transmit MAC frames to station i without any backoff time
between consecutive frames. Clearly, Ci will be lower than the
actual PHY rate assigned to the station, because of overhead,
and is higher than the maximum throughput achievable by the
stream. Simple computation allows to derive the value Ci from
the PHY rates for a specific 802.11 PHY layer. For instance,
for a station exploiting an 11 Mbps PHY rate, Ci = 7.21
Mbps, whereas Ci = 1.76 Mbps in the 2 Mbps case.

B. Problem Formulation

Our ultimate goal consists in determining and enforcing the
combination of application-layer bit rates b1, .., bM that the
AP should grant to the M video streams so that the total
utility

∑M
i=1 Ui(bi) is maximized under the constraint that the

WLAN provides sufficient “channel resources” to deliver the
resulting MAC layer traffic.

To formalize the problem we introduce variables xi defined
as the percentage of the whole WLAN channel time assigned
to video stream i. The average application-layer bit rate bi
assigned to the i-th stream is bi = xiCi. We conveniently
classify the channel time into two categories:
• xvd: percentage of time assigned to the AP for the

transmission of MAC frames carrying video traffic;
• xnvd: the remaining percentage of channel time.

The latter includes the time spent by the AP for independently
delivering non video traffic through other EDCA AC queues,
the time spent by background stations for their non video
transmission, and the supplementary channel time wasted by
the MAC protocol operation (specifically, unutilized channel
time - empty channel slots - because of backoff counters count-
down).

If xvd were a known constant, the utility-maximizing allo-
cation would be the solution of the straightforward constrained
maximization problem:

max
{x1,..xM}

M∑
i=1

Ui(xiCi) (1)

s.t.

M∑
i=1

xi = xvd

We now proceed by deriving xvd. Let a round be defined as
the time interval between two consecutive AP transmissions
of video packets. Figure 1 depicts the WLAN channel time
as a sequence of consecutive rounds. The average duration of

Fig. 1. Evolution of time as sequence of rounds

round Tr can be expressed as the sum of i) the average time
Tvd consumed by the AP on the wireless interface to transfer
a MAC frame containing video traffic, and ii) an average
remaining time Tnvd which includes both the channel time
wasted because of the WLAN MAC operation, as well as the
time consumed for transmitting uplink or downlink non-video
MAC frames. The percentage of time assigned to the AP for
video traffic transmissions is then

xvd =
Tvd

Tvd + Tnvd
(2)

Now, two fundamental observations hold:
1) Under the saturation assumption A1, Tnvd is a constant

independent of the AP scheduling decision;
2) Conversely, the average time Tvd is directly affected by

the specific scheduling decision, namely the choice of
the tuple {x1, ..xM}.

As a consequence, xvd is not constant but depends on the
scheduling strategy. As an example, consider a single non-
video station and let us assume that this station uses the same
contention window of the AP’s video access category. Given
the same MAC parameters, in average a non-video transmis-
sion will occur for each frame transmitted by the AP (due
to the long term fairness property of the 802.11 Distributed
Coordination Function). Since i) the time to transmit the non-
video frame depends only on the PHY rate of the non-video
station, and since ii) the average number of channel slots that
elapses between two consecutive channel transmissions is a
constant which depends only on the MAC layer parameters
(CWmin/4, if we neglect collisions), also the average time
Tnvd is constant and independent of the AP operation. In
contrast, in a multi-rate scenario Tvd significantly depends on
the choices made by the AP. If the AP transmits all frames
to a station with a large PHY rate, this time will be shorter
than in the case where the AP sends frames to a low PHY
rate station.

Going back to the general case, let us redefine the schedul-
ing rule as follows. Let αi be the fraction of frames transmitted
by the AP to station i with respect to the total number of
frames transmitted by the AP, with the obvious constraint

M∑
i=1

αi = 1 (3)

Then, the average time spent by the AP to transmit a video
frame is computed as the weighted average

Tvd =
M∑
i=1

αiTx,i (4)



where Tx,i is the average time needed to transmit a frame
to station i, depending on the rate of station i. Substituting
equation (4) into (2),

xvd =
Tvd

Tvd + Tnvd
=

∑M
i=1 αiTx,i∑M

j=1 αjTx,j + Tnvd
(5)

where we recognize that each addendum of this sum is indeed
xi, i.e.,

αiTx,i∑M
j=1 αjTx,j + Tnvd

= xi (6)

The above considerations permit us to provide two equiv-
alent formulations of the utility maximization problem in
WLANs.

1) Formulation based on percentage of transmission oppor-
tunities αi provided to MAC frames addressed to station i:

max
{α1,··· ,αM}

M∑
i=1

Ui(xiCi) (7)

xi =
αiTx,i∑M

j=1 αjTx,j + Tnvd

s.t.

M∑
i=1

αi = 1

2) Formulation based on the percentage of channel time xi
allocated to the video stream i:

max
{x1,..xM}

M∑
i=1

Ui(xiCi) (8)

s.t.

M∑
j=1

xj + Tnvd

M∑
i=1

xi
Tx,i

= 1

where the constraint yields from straightforward algebra. For
an intuitive explanation of the latter constraint, consider a time
interval of one second. Within a one second time period, xi can
be alternatively interpreted as the amount of time dedicated to
stream i. Hence,

∑M
i=1 xi is the time consumed to transmit

video downstream traffic. The remaining time is spent by the
MAC backoff operation and by the transmission of non-video
stations. This accounts, in average, to one time interval Tnvd
per each frame transmitted by the AP. Since, in a second,
the number of MAC frames delivered to station i is given by
the ratio xi/Tx,i, and hence the total part of the one second
spent for MAC backoff operation and transmission of non-
video frames is

∑M
i=1 xi/Tx,i multiplied by Tnvd.

From the utility maximization problem (8), we can identify
the cross-layer information required to optimally schedule
video traffic. The MAC layer information includes i) Ci for
each i = 1, ..M , ii) the transmission time of each MAC frame
Tx,i, and iii) Tnvd. The required application layer information
is Ui(bi) = Ui(xiCi) for every delivered stream i.

III. PRACTICAL SCHEDULER

In this section we design a practical scheduler, tailored to
H.264 SVC, which leverages the insights emerged during the
problem formalization, and conveniently exploits them in a
form suitable for fast practical operation.

We remark that the optimal solution to the constrained
maximization problem can be obtained for example using
linear programming techniques. However, the problem solu-
tion require the run-time estimation of Tnvd (that can be
also complicated) and the consequent change of scheduler
policies. To overcome this problem we propose in this section
a practical scheduler, that is Tnvd independent, but that can
lead the performance close to the optimum.

The goal of the practical scheduler is to guarantee that
excess NALUs are dropped in agreement with the H.264
decoding dependencies thus we first briefly provide essential
information on how they are enforced in the H.264 SVC
standard [6].

A. H.264 SVC background

An H.264 SVC stream is a sequence of NALUs. A NALU is
formed by an header and a payload carrying the actual encoded
video frame. The NALU header contains information about
the NALU type and its relevance in the decoding process.
From the information reported in the NALU header (see full
details in [6], or [10]), we are specifically interested in the
three parameters called dependency id (DID), temporal id
(TID), and quality id (QID). Each parameter determines a spe-
cific scalability facility. DID allows Coarse Grain Scalability,
namely the ability to adapt the video spatial resolution (e.g.,
from CIF to 4CIF). TID allows Temporal Scalability, i.e., it
provides the ability to adapt the video frame-rate. For instance,
if a stream is coded with a frame rate 30 frames/second,
by dropping all NALUs marked with the higher TID value
we achieve a 15 frames/second decoded video, and so on.
Finally, QID allows Medium Grain Scalability, also called
progressive refinement). Each NALU received with a QID
parameter greater than 0 adds supplementary quality to the
spatial/time substream (i.e., DID and TID parameters) the
NALU belongs to. Specifically, each additional quality layer
reduces the encoding quantization error, improving PSNR.

For our purposes, it is essential to drop excess NALUs so
that decoding dependencies are respected. Restricting our at-
tention to the temporal and medium grain scalability only (for
simplicity, in our experimental results we have not considered
spatial scalability), the following decoding dependencies hold
(the arrow means “depends on”):

(tid > 0, qid = 0) → (tid− 1, qid = 0)
(tid ≥ 0, qid > 0) → (tid, qid− 1)

The first rule states that temporal dependencies are enforced
only on the quality layer 0, i.e., that a NALU belonging to
the temporal-layer tid > 0 and with qid = 0 depends on
NALUs of temporal-layer tid − 1, again with qid = 0. The
second rule states that quality improvements are progressively
applied to a considered temporal layer, i.e., a NALU belonging



Fig. 2. mapping of SVC substreams to priority queues

to the quality-layer qid > 0 depends on NALUs of quality-
layer qid − 1, with the same DID and TID. These rules are
graphically highlighted in the left drawing in figure 2.

B. practical scheduler overview

The practical scheduler that we propose runs above the
MAC layer, and it is devised to properly arrange the order of
NALUs delivered to the MAC layer. This permits to retain a
fully standard and application-layer unaware MAC operation.
As discussed below, the priority order depends on cross-layer
information, and specifically it depends on both utility infor-
mation provided by the application layer, as well as per-station
channel rate information provided by the MAC layer (gathered
by the NIC driver). A fundamental feature of our proposed
approach is that, unlike the optimal approach presented in
the previous section, it does not require the explicit run-
time knowledge of the Tnvd time, indeed an information not
easily gathered from the NIC driver. As a result, the proposed
approach is seamlessly adaptive to any available AP delivery
capacity and related fluctuations. Of course, this simplicity is
paid with a sub-optimal operation; however, numerical results
will later on prove that, with average PSNR versus rate utility
curves, the performance degradation is almost negligible.

A convenient way to order NALUs as well as drop excess
ones is to rely on a bank of small-size (we used 10 NALUs
each) priority queues . The assignment of NALUs to queues,
as well as priority values to queues, must take into account
both i) the requirement that NALU decoding dependencies
must be respected in the delivery order, as well as ii) the goal
of maximizing the utility brought by the delivered NALUs. As
illustrated in figure 3, we propose to accomplish this goal by:

1) deploying a number of dedicated queues per each video
stream, so that each queue carries the stream NALUs
belonging to a specific video layer for that stream, and
arrange them in an intra-stream priority order (section
III-C);

2) sorting the deployed queues on the basis of cross-layer
information (utility and rate per each video stream), so
that they are arranged in an inter-stream priority order
(section III-D);

3) deploying a flat service priority discipline for orderly
draining NALUs from the sorted bank of queues.

Fig. 3. Conceptual sketch of queue merging

C. intra-stream priority

The traffic generated by a same video stream is conveyed to
a bank of queues, where each queue accommodates NALUs
belonging to a given scalability layer, i.e. a (TID,QID) pair.
Considering that the default range for TID values is from 0 to
4, and considering two additional enhancement quality-layers
(i.e., QID values in the range from 0 to 2), we deploy 5×3 =
15 limited-size queues, numbered from 0 to 14.

Intra-stream queues are sorted by setting a priority order
among the video layers. As discussed in [24], a natural
approach is to use the video-layer-to-priority mapping illus-
trated in figure 2, which gives higher priority (0 being the
highest priority) to the temporal scalability layers (in their
TID order), and then decreasing priority to the corresponding
quality enhancement. In formulae, a NALU with QID = q
and TID = t is delivered to the queue with priority index
s = 5q + t.

We remark that this intra-stream priority assignment does
respect the decoding dependencies enforced by H.264 SVC
and permits to reach a transfer efficiency (one minus the
percentage of NALUs received at the destination, but discarded
because of missing dependencies) very close to 100% [24].

D. inter-stream priority

Let us denote with qi,s the queue of the video stream i that
handles NALUs for the video substream s = 5q+ t ∈ (0, 14).
Let bi,s be the average application-layer bit rate rate needed
to deliver all the i-th video substreams until level s. Let
{Ui(bi,s)} be a vector of utility values computed in corre-
spondence of the rates bi,s, i.e. the utility brought by the
transmission of all the video layers until level s.

The inter-stream queue sorting is based on a greedy algo-
rithm. Rather than optimizing the scheduling for a given Tnvd
value, the algorithm scans a set of pre-established quantized
Tndv values (or decision points). In our algorithm, Tnvd values
are scanned in decreasing order, since a lower Tnvd value
yields an higher AP capacity for delivering video traffic. For
each Tnvd value, we determine the next queue to be served,
namely the one which provides the best possible utility im-
provement. The sub-optimal nature of the proposed algorithm
stems from the fact that the queue ordering committed for a
prior value Tndv can only be extended with a next queue, but
not changed.



The following three parameters (step, Nsteps, Uth) are used
to perform the greedy algorithm:
• step. This is the time step according to which the Tnvd

values are quantized. We used a small step (1 ms, roughly
equivalent to the transmission time of a MAC frame at
maximum 802.11b PHY rate), so that at each step, at
most one new queue is accommodated in the sorted list;

• Nsteps. A large value (we used 200), so that the starting
value Tnvd = Nsteps · step does not permit to accommo-
date any stream;

• Uth. A minimum utility increment in order to take a
commit decision (we used 0.5 dB for PSNR utility
curves).

In brief, at each decision point, the greedy algorithm works
as follow:

1) At the decision point h, we compute the total
application-layer bit rate bi(h) that the i-th video would
receive if all the queues up to now inserted in the inter-
stream priority list were completely served. From bi(h)
we derive the corresponding time percentage xi(h) =
bi(h)/Ci.

2) We then check whether the next decision point h − 1,
corresponding to a smaller Tndv value, would permit
to accommodate a new queue. This is accomplished
by computing the stability constraint condition in the
formalization (8) as:

sc(h− 1) =

M∑
i=1

xi(h) +

(
M∑

i=1

xi(h)

Txi

)
Tnvd(h− 1) (9)

If the value sc(h − 1) is lower than 1, extra space is
available for accommodating an additional queue.

3) Provided that this is the case, we compute, for each
stream, what would be the utility improvement if we
pick the latest not yet inserted queue for that stream as
next queue to be served in the inter-stream priority order
illustrated in figure 3. This is provided by computing,
for all streams i, the quantities

x̃i(h− 1) =

1−
(∑M

j=1,j 6=i
xj(h) +

∑M

j=1,j 6=i

xj(h)Tnvd(h−1)
T xj

)
1 + Tnvd(h− 1)/Txi

I(h− 1|i) = Ui(x̃i(h− 1)Ci)− Ui(xi(h)Ci) (10)

where x̃i(h− 1) is the percentage of time assigned to
stream i if all the new capacity available is provided to
such stream, and I(h− 1|i) is the utility improvement,
with respect to the overall utility achieved in the previous
iteration, that we would obtain if all the extra-time were
given to the i-th stream.

4) Finally, we select, as the next queue to be inserted in the
list, the one which yields the maximum utility improve-
ment I(h− 1|i), provided that such an improvement is
greater than a predetermined threshold Uth.

The procedure of the algorithm is elaborated in algorithm 1.

E. Analytical Utility performance of the proposed algorithm

Given a value Tndv , is possible to analytically compute
the utility performance provided by the proposed algorithm.
It suffices to compute the rate bi granted by the scheduling

Algorithm 1 inter-stream queue sorting
Input: Utility function U , number of video M , increase of step size step,
minimum expected utility change Uth, number of decision points Nstep.
Output: Optimal sequence of priority queues q̃opt;
Initialization: index of last queue of the video i-th inserted: lasti = 0,
index of decision point: h = Nstep, Iteration index, I = 0.
while there are queues not yet inserted do

Tndv(h− 1) = (h− 1) ∗ step
for i = 1 to M do

bi(h) = cumulative bitrate of the i-th video up to substream lasti
xi(h) = bi(h)/Ci

end for
sc(h− 1) = see eq. 9
if sc > 1 then

continue while loop
end if
max index = 0
max value = 0
for i = 1 to M do

if lasti == number of i-th video substreams then
continue for

end if
x̃i(h− 1) = ... see eq. 10
I(h− 1|i) = ... see eq. 10
if I(h− 1|i) > max value then

max value = I(h− 1|i)
max index = i

end if
end for
if max value > Uth then

i = max index
k = lasti + 1
lasti = lasti + 1
flatq ← qi,k #insert the new queue related to video i-th and
substream k-th

end if
h = h− 1

end while
output: q̃opt

algorithm’s operation to each i-th video stream and sum the
corresponding utilities.

For this purpose, let us enumerate the queues according to
their assigned priority order, from 1 (higher priority queue) to
W . For a given Tnvd value, the priority scheduler will serve
the set of queues 1..lsq, where lsq ≤ W is the index of the
last queue served by the scheduler. The bitrate bi granted by
the scheduler to the i-th video is the cumulative bitrate of
the streams of the i-th video that feed the 1..lsq queues. This
latter evaluation of bi is straightforward, since the association
queue-stream is known. Thus, the only remaining problem is
the determination of lsq for a given Tnvd value. The iterative
approach detailed in algorithm 2 is designed for this purpose.
We start considering the first priority queue and iteratively
add a queue, following the priority order. At each iteration,
we evaluate the cumulative bitrate bi associated to each video,
given that all the considered queues are fully drained. From
bi we evaluate the time percentage xi and verify the stability
constraint. Whenever the stability constraint first exceeds one,
it means that the last added queue is precisely the lsq one.
The bit rate assigned to the lst queue is finally determined by
computing, through the stability constraint, the percentage of
time xlsv assigned to this queue and consequently derive blsv .



Algorithm 2 Calculate Utot−sub
for j = 1 to W do

for i = 1 to M do
bi = cumulative bitrate of the i-th video feeding the queues 1..j
xi = bi/Ci

end for
sc =

∑M

i=1
xi +

(∑M

i=1
xi

Txi

)
Tnvd

if sc > 1 then
lsq = j
lsv = index of video associated with lsq break the FOR

end if
end for

xlsv =
1−
(∑M

j=1,j 6=i
xj+
∑M

j=1,j 6=ldv

xjTnvd
T xj

)
1+Tnvd/Txlsv

blsv = xlsvClsv and Utot−sub =
∑M

j=1
Uibj

F. Linux implementation

We conclude the section by briefly discussing the imple-
mentation of the practical scheduler in Linux. We employed an
AP equipped with an Atheros card. We modified the MadWiFi
driver in order to run-time retrieve both the number of empty
spaces available in the EDCA AC video queue, and the actual
PHY rates employed by the AP to transmit MAC frames to
each station i. The scheduler has been implemented in the
Linux OS through the Linux traffic control tool at the IP
layer. To prevent from losses emerging because of NIC buffer
overflow, we have developed a simple flow control mechanism
for delivering frames from the scheduler to the driver. It is
implemented by periodically (250 ms) sampling the NIC buffer
availability, and setting the IP queues draining rate for the next
period to the maximum rate which guarantees that no MAC
buffer overflow will occur even if the AP will not transmit at
all in the next period. With the same periodicity, we query the
driver for retrieving information about changes in the PHY rate
of the connected stations. If this occurs, we rerun the algorithm
and change the inter-stream queue priorities accordingly.

IV. PERFORMANCE EVALUATION

We have evaluated the performance of the practical sched-
uler over an 802.11e WLAN test-bed. The experimental as-
sessment of H.264 SVC in-network adaptation approaches is
not straightforward, and it was made possible only by employ-
ing the tools and the methodology recently introduced in our
companion work [12], and made available as public domain
open source library at http://svef.netgroup.uniroma2.it. Due to
space restrictions, we refer the reader to these references for
supplementary details.

A. Experimental Scenario and Utility Function Evaluation

We used the soccer video with 4CIF resolution and 30
frames/s as a reference. We coded it as H.264 SVC stream
using the Joint Scalable Video Model reference software
(JSVM, [27]). The resulting coded video comprises a base
layer, including 5 temporal scalability layers, plus two Medium
Grained Scalability (quality enhancement) layers per each tem-
poral layer, for a total of 15 video substreams. For the coded
video, we off-line computed an utility curve described in terms

0 0.5 1 1.5 2 2.5 3
15

20

25

30

35

40

video bitrate (Mbit/sec)

P
S

N
R

Base layer (TiD=0..5,QiD=0)

2 MGS layer (TiD=0..5,QiD=2)

1 MGS layer (TiD=0..5,QiD=1)

Fig. 4. PSNR versus bitrate of the coded video used in the analysis

of average PSNR versus average bit rate. The computation of
the PSNR versus rate curve was performed by stripping out the
layers, measuring the average bit rate, decoding the resulting
video, and computing the average PSNR. The resulting PSNR
curve is reported in figure 4.

The considered network scenario comprises of a number
of downlink video streams addressed to different stations,
and generated from the same video sequence translated in
time. In addition to the video downstreams, we generate non
video traffic from a variable (from 0 to 5) number of stations
transmitting at 2 Mbit/sec, which uploads UDP greedy traffic
(saturation conditions) generated through iperf. The remaining
stations are Linux laptops with Ralink WiFi chipsets. The
uplink traffic is best effort, thus the Ralink driver is set with
Cwmin=31 and AIFS=2. On the contrary, the video traffic
accesses the channel with Cwmin=15 and AIFS=1.

B. Experimental and theoretical performance versus the Num-
ber of Uplink Stations

In these experiments we consider two video streams de-
livered by the AP to two different stations, one connected
with an 11 Mbps PHY rate, and the other with a driver-
enforced 2 Mbps PHY rate. To prove the practical scheduler
effectiveness, we introduced in the wireless network other
Nup greedy stations that transmit packets at 2Mbps in the
uplink direction. Changing the number Nup we induced in the
wireless network different Tnvd. The downlink video traffic is
delivered using the WME/EDCA video queue and the uplink
traffic transmitted by the other stations uses best-effort queue.

Performance are measured in terms of cumulative utility
(PSNR) delivered to the two video receivers and are plotted
versus the number of uplink greedy stations, Nup that is varied
from 0 to 5. Note that the actual value of Tnvd for each
experiment is independent on the scheduler and is only a
function of the PHY bit rate and of the number of greedy
stations, Nup. Thus the optimal solution has to be computed
for each Nup value. On the contrary the practical scheduler
works independently on Tnvd value.

A fundamental problem we needed to face is the need to
derive the average value Tnvd that resulted for each spe-
cific value of Nup to compare the measured results with
the analyitcal. We were not able to derive such an average



0 1 2 3 4 5
35

40

45

50

55

60

65

70

N
up

 

P
S

N
R

T
O

T

 

 

optimum
flat−prio−analityc
flat−prio meas.
app−layer meas.

Fig. 5. Cumulative PSNR verus the number of Uplink Stations

value from driver-level information. Moreover, the analytical
derivation of such a parameter, in principle relatively easy
(e.g., using EDCA extensions of the model [25]) from the
knowledge of the MAC layer parameters employed by the
competing stations, was discouraged by the fact that, as shown
in [26], the operation of the two considered cards slightly,
but noticeably for our specific purposes, differs from the
theoretically expected performance.

Therefore, we resorted to an hybrid experimental/analytic
off-line estimation of the Tnvd parameter. At first, we ex-
perimentally derived the actual AP throughput ρAP achieved
when competing with k background best-effort Ralink stations
using the 2 Mbps PHY rate (as in our scenario); All stations
were loaded with saturated UDP traffic with 1500 bytes IP
packets. Then, we derived Tnvd by recognizing that Tnvd =
1500·8
ρAP

− Tx,AP , being Tx,AP the computed transmission time
for a 1500 bytes MAC frame by the AP. Using this approach,
the obtained values of Tnvd for the different values of Nup
are reported in Table I.

Figure 5 reports the cumulative PSNR as resulting from
i) the solution of the optimal scheduling rule determined by
solving equation 8 (marked as “optimum”); ii) the analytical
results obtained by analytically computing, through the pro-
cedure 2, the utility achieved by the proposed sub-optimal
flat priority scheme detailed in alg. 1 (marked as “flat prio
analytic”); iii) the experimental results obtained by running
the Linux AP implementation of the proposed flat priority
approach (marked as “flat prio meas.”); iv) the measurements
obtained implementing a scheduler which does not rely on the
knowledge of the PHY rate at which stations are connected,
but uses only application layer information (marked as “meas.
app. layer sched”). This scheduler deploys 15 queues, one per
each video layer. However, with no supplementary insights on
the available PHY rate at which streams are connected, and
in the considered scenario where video layers bring the same
utility for different streams (we recall that we used the same
video sequence for all streams), its best strategy is simply
to share the queues among the different video streams and

TABLE I
VALUES OF Tnvd FOR Nup GREEDY STATIONS AT 2 MBPS PHY RATE

Nup 1 2 3 4 5
Tnvd 0.004439 0.005874 0.007725 0.0102 0.0116

1 2 3 4 5
600

700

800

900

1000

1100

1200

N
up

T
hr

ou
gh

pu
t (

kb
ps

)

 

 

flat−prio meas.
app−layer meas.
without scheduler

Fig. 6. Aggregated throughput of uplink stations

drain traffic from the queues according to their intra-stream
priority order. We have also measured the performance without
any scheduler. The results have not been shown because the
maximum of the curves was 29.13dB of PSNR, corresponding
to the case without uplink traffic (Nup = 0), and thus the
readability of the figure would have been compromised.

From figure 5, we see that the performance advantage of the
optimal scheduler is negligible with respect to the analytical
solution of the practical scheduler, and it is marginal also when
compared with the actual experimental results.

It could be argued that the suboptimality of the practical
scheduler may depend on the considered utility curve, and
that it is possible to find cases where the performance differ-
ence becomes notable. An in depth analysis of the impact
of different utility shapes over the performance is left to
further work. However, we believe that major performance
differences are deemed to emerge only with very particular,
and unrealistic, utility shapes. As expected, comparison with
the application-aware-only scheduler shows that the usage
of cross-layer information yields a significant performance
improvement, especially in the case of significant capacity
restriction (large values of Tnvd).

Finally, in figure 6 we report the aggregated non-video
throughput for the greedy Nup uplink stations. A positive
side effect of our proposed approach is that not only it does
not penalize uplink stations, but it may even improve the
uplink traffic throughput, as comparison with the application-
layer-only scheduler and the absence of scheduler shows. This
apparently counter-intuitive fact can be explained by consid-
ering that, in order to maximize the Utility, the crosslayer
scheduler tends to select packets directed to the 11 Mbps
stations, hence increasing the overall network throughput of
the wireless network (in other words, the scheduler tends to
limit the WLAN performance anomaly).

C. Experimental and theoretical performance versus number
of video downstreams

A second set of measurements was performed to determine
the scheduler operation for a varying number of video streams.
Figure 7 shows results obtained in a scenario characterized by
one background best-effort station transmitting at 2 Mbps, and
a varying number of video streams, of which one is delivered
at 2 Mbps, and the remaining at 11 Mbps.



1 2 3 4 5
20

40

60

80

100

120

140

Number of video downstreams

P
S

N
R

T
O

T

 

 

flat−prio analytic

flat−prio meas.

app−layer meas

Fig. 7. Cumulative PSNR versus number of video downstreams

The figure compares the experimental and analytic re-
sults obtained by the “flat prio” scheduler, with that of the
application-layer-only approach. The results for the optimal
scheduler are perfectly coincident, for such scenario, with that
of the proposed practical ”flat prio” approach. As expected,
the figure confirms the superiority of the cross-layer approach
with respect to an application-aware-only approach.

The growth of the total utility with an increased number
of video streams may not be considered intuitive (indeed, a
comparable shared capacity is provided by the AP), but it
is readily explained by considering that, as shown in figure
4, the relative utility gain is large at low bit rates, and gets
progressively smoother as more bit rate is provided to a given
stream (as in the case of a small number of video stream).

V. CONCLUSION

The paper addresses the issue of delivering scalable video
over Wireless LANs. A major contribution of the paper con-
sists in the formalization of such problem, taking into account
the unique characteristics of the WLAN MAC operation.
Actually, two equivalent formulations are provided, one more
suitable for a scheduler implemented at the MAC layer, the
other one more suitable for an IP layer implementation.

Leveraging the theoretical insights gained from the formula-
tion of the model, we have designed, analyzed, and implement
in a Linux Access Point a practical (sub-optimal) scheduler.
Moreover, we have experimentally assessed its performance
over a real world WLAN trial and using PSNR-based util-
ity curves extracted from video sequences. The performance
of the proposed practical scheduler are shown to be only
marginally lower than the optimal solution.

REFERENCES

[1] IEEE Standard 802.11-2007, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, June 2007.

[2] A. Kamerman, L. Monteban, “WaveLAN-II: A high performance wireless
LAN for the unlicensed band”, Bell Labs Technical Journal, 1997, Vol.
2, Issue 3, pp. 118-133.

[3] K. Ramachandran, H. Kremo, M. Gruteser, P. Spasojevic, I. Seskar, “Scal-
ability Analysis of Rate Adaptation Techniques in Congested IEEE 802.11
Networks: An ORBIT Testbed Comparative Study”, IEEE WoWMoM
2007.

[4] M. Heusse, F. Rousseau, G. Berger-Sabbatel, A. Duda, “Performance
anomaly of 802.11b”, IEEE Infocom, 2003.

[5] M. van der Schaar, S. Krishnamachari, Choi Sunghyun, Xu Xiaofeng,
“Adaptive cross-layer protection strategies for robust scalable video
transmission over 802.11 WLANs”, IEEE Journal on Selected Areas in
Communications, Volume 21, Issue 10, Dec. 2003, pp. 1752-1763

[6] ITU-T recommendation H.264: Advanced video coding for generic au-
diovisual services, International Telecommunications Union, Nov. 2007.

[7] H. Liqiao, D. Raychaudhuri, Liu Hang, K. Ramaswamy, “Cross layer
optimization for scalable video multicast over 802.11 WLANs”, 3rd IEEE
Consumer Communications and Networking Conference, Jan. 2006

[8] Y. P. Fallah, P. Nasiopoulos, H. Alnuweiri, “Efficient Transmission of
H.264 Video over Multirate IEEE 802.11e WLANs”, EURASIP Journal
on Wireless Communications and Networking, 2008

[9] I. Kofler, M. Prangl, R. Kuschnig, H. Hellwagner, “An H.264/SVC-based
adaptation proxy on a WiFi router”, ACM NOSSDAV, Braunschweig,
Germany, May 2008, pp. 63-68.

[10] R. Kuschnig, I. Kofler, Michael Ransburg, H. Hellwagner, “Design
options and comparison of in-network H. 264/SVC adaptation”, J. Visual
Commun. and Image Repres., Dec. 2008, vol. 19, pp. 529-542.

[11] M. Eberhard, L. Celetto, C. Timmerer, E. Quacchio, H. Hellwagner,
F.S. Rovati, “An interoperable streaming framework for Scalable Video
Coding based on MPEG-21”, 5th International Conference on Visual
Information Engineering, Aug. 2008. VIE 2008, pp.723-728

[12] A. Detti, G. Bianchi, C. Pisa, S. Proto, P. Loreti, W. Kellerer, S.
Thakolsri, J. Widmer, “SVEF: an Open-Source Experimental Evaluation
Framework for H.264 Scalable Video Streaming”, MediaWin, Sousse,
June 2009 - Software available at http://svef.netgroup.uniroma2.it

[13] D. Wu, Y. T. Hou, Y.-Q. Zhang, “Scalable video coding and transport
over broadband wireless networks”, Proc. IEEE, vol. 89, pp. 6-20, 2001.

[14] H. Schwarz, M. Wien, “The Scalable Video Coding Extension of the
H.264/AVC Standard,” IEEE Signal Processing Magazine, vol. 25, no. 2,
pp. 135-141, Mar. 2008

[15] M. Handley, S. Floyd, J. Padhye, J. Widmer, “TCP Friendly Rate
Control (TFRC): protocol specification”, RFC3448, Jan. 2003. Available:
http://www.ietf.org/rfc/rfc3448.txt

[16] J. Vieron, C. Guillemot, “Real-time constrained tcp-compatible rate
control for video over the internet”, IEEE Trans. Multimedia, vol. 6,
no. 4, pp. 634-646, 2004.

[17] O. Hillestad, A. Perkis, V. Genc, S. Murphy, J. Murphy, “Adaptive
H.264/MPEG-4 SVC video over IEEE 802.16 broadband wireless net-
works”, Packet Video 2007, Lausanne, CH, Nov. 2007, pp. 26-35.

[18] T. Schierl, T. Stockhammer, T. Wiegand, “Mobile Video Transmission
using Scalable Video Coding (SVC)”, IEEE Trans. on Circuits and
Systems for Video Technology, June 2007.

[19] Hsing-Lung Chen, Po-Ching Lee, Shu-Hua Hu, “Improving Scalable
Video Transmission over IEEE 802.11e through a Cross-Layer Archi-
tecture”, Fourth Int. Conf. on Wireless and Mobile Commun, 2008, pp.
241-246.

[20] Y. P. Fallah, H. Mansour, S. Khan, P. Nasiopoulos, H. M. Alnuweiri,
“A Link Adaptation Scheme for Efficient Transmission of H.264 Scalable
Video Over Multirate WLANs”, IEEE Trans. on Circuits and Systems for
Video Technology, Vol. 18, No. 7, Jul 2008, pp. 875-887.

[21] R. Agrawal, V. Subramanian, “Optimality of certain channel aware
scheduling policies”, Proc. of 2002 Allerton Conference on Communica-
tion, Control and Computing, 2002.

[22] T. Ozcelebi, M.O. Sunay, M.R. Civanlar, A.M. Tekalp, “Application-
Layer QoS Fairness in Wireless Video Scheduling”, IEEE International
Conference on Image Processing, 8-11 Oct. 2006, pp. 1673 - 1676.

[23] X. Ji, J. Huang, M. Chiang, G. Lafruit, F. Catthoor, “Scheduling and
resource allocation for SVC streaming over OFDM downlink systems”,
IEEE Trans. on Circuits and Systems for Video Technologies, 2009.

[24] G. Bianchi, A. Detti, P. Loreti, C. Pisa, F. S. Proto, W. Kellerer, S.
Thakolsri, J. Widmer, “Application-aware H.264 Scalable Video Coding
delivery over WLANs: Experimental Assessment”, IEEE IWCLD, June
2009, Palma de Mallorca.

[25] G. Bianchi, “Performance Analysis of the 802.11 Distributed Coordina-
tion Function”, IEEE Journal of Selected Areas in Commun. Vol. 18, N.
3, March 2000, pp. 535-547

[26] G. Bianchi, A. Di Stefano, C. Giaconia, L. Scalia, G. Terrazzino,
I. Tinnirello, ”Experimental Assessment of the Backoff Behavior of
Commercial IEEE 802.11b Network Cards”, IEEE Infocom 2007, May
2007, pp. 1181 - 1189.

[27] Joint Scalable Video Model - reference software:
http://ip.hhi.de/imagecom G1/savce/downloads/SVC-Reference-
Software.htm


