
PPS: Privacy-Preserving Statistics using RFID Tags

Erik-Oliver Blass Kaoutar Elkhiyaoui Refik Molva

EURECOM, Sophia Antipolis, France
{blass|elkhiyao|molva}@eurecom.fr

Abstract. As RFID applications are entering our daily life, many new security
and privacy challenges arise. However, current research in RFID security focuses
mainly on simple authentication and privacy-preserving identification. In this pa-
per, we widen the scope of RFID security and privacy by introducing a new ap-
plication scenario. The suggested application consists of computing statistics on
private properties of individuals stored in RFID tags. The main idea is to compute
global statistics while preserving the privacy of individual readings. PPS assures
the privacy of properties stored in each tag through the combination of homomor-
phic encryption and aggregation at the readers. Re-encryption is used to prevent
tracking of users. The readers scan tags and forward the aggregate of their en-
crypted readings to the back-end server. The back-end server then decrypts the
aggregates it receives and updates the global statistics accordingly. Therewith,
PPS is provably privacy-preserving. Moreover, tags can be very simple since they
are not required to perform any kind of computation, but only to store data.

1 Introduction

In Radio Frequency IDentification (RFID), tags are transponders that reply to reader
queries and send their identifiers. Being cost effective, tags are deployed on a large
scale and typically used for identification of goods or even individuals. However, such
a deployment comes with new security and privacy threats such as impersonation on
the one hand, and tracking of tags and therewith individuals on the other hand. The
cost effectiveness also implies strong limitation of computational capabilities of the
tags. Current passive RFID tags can hardly afford for security mechanisms relying on
complex cryptographic operations to counter the security and privacy threats.

Revisiting security problems such as authentication and privacy preserving iden-
tification in the highly constrained setting of RFID tags has given rise to a number
of research activities, focusing on lightweight authentication, identification schemes,
and formal security and privacy properties thereof, e.g., see Ateniese et al. [1], Bringer
and Chabanne [5], Bringer et al. [6], Dimitrou [11], Pietro and Molva [22], Tsudik
[26], Vaudenay [27], Weis et al. [28].

In the paper at hand, we introduce a new application scenario, raising new require-
ments beyond the classical authentication and identification issues. The target scenario
is the collection of statistics over private properties of a large population of individuals.
Due to RFID users’ demands and due to regulatory matters, the main challenge in this
scenario is to preserve the privacy of these individuals with respect to their properties.

Addressing this scenario with RFID tags, each tag would contain the attributes of
its holder in an encrypted form. The ultimate goal would be to allow a centralized party,

such as a server, to compute global statistics. For example, the distribution over the
properties held by a group of individuals might be of interest, but without disclosing
the attributes of individuals to any party involved in the collection of these statistics.

Hence, we suggest a scheme called PPS (“Privacy-Preserving Statistics”) that as-
sures privacy of individual attributes in this scenario. In PPS, intermediate parties called
readers collect encrypted properties from tags, compute aggregates over encrypted
readings without decrypting them, and periodically forward the result of such aggre-
gation operations to the back-end server. The server is then able to compute a global
aggregate in cleartext based on the aggregates of the encrypted readings transmitted by
readers.

The main challenge in this scenario is to allow the readers to perform the aggrega-
tion over encrypted attribute values from which the server can derive global statistics
in cleartext. We address this problem through homomorphic encryption. Another threat
to the privacy of the tag holders is the tracing of tags by readers. In order to circum-
vent this threat, we use re-encryption mechanisms. However, the scarcity of resources
in tags prohibits the assignment of complex operations to tags. Therefore, the readers
will perform re-encryption of the ciphertexts stored on the tags. Thus, tags do not have
to perform any cryptographic operations.

The major contributions of PPS are:

– contrary to related work on privacy preserving tag identification, such as Ateniese
et al. [1], PPS provides an RFID-based mechanism to collect statistics over a set of
properties in a privacy-preserving manner.

– formal proofs of privacy and unlinkability against external eavesdroppers, mali-
cious readers, and curious back-end servers.

– minimal hardware requirements resulting in cheap tags: PPS does not require tags
to do any cryptographic computation, tags are passive, i.e., battery-less and only
require data storage functions. Contrary to related work, PPS’ storage-only require-
ments enable implementations on today’s available EPC class1 Gen2 tags.

– data integrity: tampering with data stored on tags can be detected.

The sequel of this paper is organized as follows. In Section 2, we present a typical
scenario for our application, we state the problem, and we derive the requirements for
the solution. In Section 4, we present the building blocks of PPS. In Section 3, we define
the notion of privacy and unlinkability in the context of our application, and we present
the adversary model. Section 5 gives the formal analysis of the protocol. Finally, related
work is presented in Section 7.

2 Problem statement

In this section, we introduce a typical scenario for PPS, and we present a system model
and the requirements PPS should fulfill.

2

2.1 Application scenario

The solution we propose targets applications involving a central organization that wants
to collect statistics on a given population. This population will be equipped with RFID
tags that will be read by readers managed by intermediary entities that are independent
from the central organization.

We can imagine a scenario where a shopping mall wants to compare the activity of
the shops it hosts or which type of clients it attracts the most throughout the year. The
shops will deploy readers at the cashiers. The visitors of the shopping mall are provided
with RFID tags. To give an incentive to the visitors of shopping malls to carry their
tags, we embed RFID tags into loyalty cards that allow tag owners to have discounts or
privileged access to parking, restaurants, etc.

Such an incentive requires binding the RFID tag to the identity of the tag owner
to ensure that the RFID tag is being used by its owner when scanned. Cheap RFID
tags that are the target technology of PPS cannot afford cryptographic authentication.
Therefore, we use an out of band authentication such as a printed picture on the loyalty
card to verify the identity of the tag holder at payment for instance.

Associating the RFID tag only with the picture of its owner assures that the holder
of the tag will be the actual owner while preserving his anonymity with respect to the
mall he is visiting.

The RFID tag encodes the private properties of the tag holder, for example gender,
age, profession etc. When the tag holder enters a shop for instance, the encrypted prop-
erties on the tag will be scanned by a reader. Each reader will aggregate the encrypted
data it collects during a period such as a day. At the end of each period, each reader will
forward the aggregate data to a server managed by the mall. The server will then update
the overall statistics based on the aggregate values sent by the readers.

The key requirement in this scenario is preserving privacy: a solution should allow
the server to compute global statistics over private properties of visitors while assuring
the privacy of individual properties with respect to the readers and the server.

2.2 System model

PPS is the solution we propose to collect privacy preserving statistics. A typical appli-
cation scenario for PPS involves several parties as follows:

– Issuer I: the issuer initializes each tag by writing into the tag’s memory an en-
crypted representation of the properties of the tag holder.

– Tags {Ti}: each tag stores an encrypted representation of the properties of the tag
holder. The encrypted representation of p properties in each tag consists of {Pi,
1 ≤ i ≤ p} where Pi is set to “true” if the tag holder possesses the corresponding
property.

– Readers {Ri}: readers are in charge of collecting properties stored on tags. They
read the data stored on each tag and forward the result of these readings to the
back-end server.

– A back-end server S: S processes the aggregate data received from readers and
derives some global statistics such as distribution of attendance rate with respect to
event types and population characteristics.

3

The issuer and the back-end server can be managed by independent parties. For in-
stance, in a typical scenario, social security could act as an issuer, whereas the back-end
server would be managed by the shopping mall.

2.3 Requirements: Privacy & Unlinkability

The basic requirement for S is to count the number of tag holders satisfying each prop-
erty Pi for all the properties. The main concern is to gather statistics such as counts
about each property Pi, while preserving the privacy of tag holders. Neither readers
nor the back-end server should be able to disclose the values of a tag holder’s proper-
ties. To ensure privacy in our scheme, we propose a solution that combines encryption
and aggregation. In that solution, the list ωi of the tag holder properties are encrypted
as E(ωi) and stored on the tag. Through subsequent readings of tags in its range, the
reader computes the aggregate of the ciphertexts received from the tags,

∑
E(ωi), and

periodically forwards the encrypted aggregate value to the back-end server as shown in
Fig. 1.

Back-end
server

∑→∑
ii

E ωω)(

∑)(
i

E ω

T1 T2 Tγ

Reader

…

)(
2

ωE)(
1

ωE)(γωE

Fig. 1. Aggregation in an RFID-based system

The back-end server S is the only entity that can decrypt ciphertexts. To enforce
privacy against S, readers must aggregate the ciphertexts received from the tags in their
range before forwarding the encrypted data to S. If the readers forward data without
aggregation to the back-end server S, the latter can always tell which properties the tag
holders satisfy. Nonetheless, forwarding each individual reading to the server would
strongly overload typically embedded, low capacity readers.

Even though the privacy of properties is assured through encryption, unlinkability of
tags, as defined by Chatmon et al. [8], has to be assured, too. An adversary should never
be able to link two responses of the same tag over different sessions. In order to assure
unlinkability, the encrypted property values sent by the same tag should be different for
each reading. Re-encryption is used to that effect. In Section 3.2, we formally define
the notion of unlinkability.

4

3 Adversary & Privacy Models

In this section, we introduce the adversary model and define the notions of privacy and
unlinkability for the proposed application.

3.1 Adversary model

PPS protects against two different categories of adversaries,

1. ADV1, external adversaries and malicious readers,
2. ADV2, a malicious back-end server.

ADV1 does not collude with ADV2.

ADV1: Borrowing notions from Cramer and Damgård [9], we assume a rushing, ac-
tive adversary who has full control over all communication between tags and readers.
He can not only eavesdrop messages, but also intercept, modify, and even initiate com-
munication. For example, the adversary might impersonate a tag and communicate with
the reader or read-out tags. He might even replace a tag’s content by re-writing it. How-
ever, re-writing tags has some special implications on PPS’s security, so we discuss this
issue separately in Section 6. Finally, the adversary might compromise readers, read-
out and tamper with their memory and program – consequently, malicious readers might
not behave in protocol compliant manner. This adversary corresponds in real world, to
a reader that is located near or in the shopping mall for instance. This adversary aims at
tracking tag holders and disclosing some of the properties that the tag holders satisfy.

ADV2: The back-end server might be under the control of the adversary. The back-
end server is passive in the sense that it only receives aggregates from readers. It cannot
initiate communication with tags or readers.

Limitations: We conjecture that there might be scenarios where back-end servers
have full control over all communication and might collude with compromised readers,
e.g., envisioning an extreme scenario whereby the mall would also control the readers
of all shops it hosts. We clearly state that PPS will not provide privacy in such scenarios.

As motivated in the introduction, the adversary’s primary goal in any case, i.e.,
ADV1 or ADV2, is to gain some knowledge about sensitive information, in this case
individual tag holders’ properties, as formalized in the following privacy models.

3.2 Privacy Models

PPS privacy notions are direct adaptations of privacy definitions originally proposed by
Ateniese et al. [1], Golle et al. [15], and experiment-based definitions by Juels and Weis
[17].

At the end of a protocol execution, PPS is said to be privacy-preserving, if ADV1

and ADV2 can neither decide which properties a given tag satisfies nor link tags to pre-
vious protocol executions. In conclusion, an adversary should not have a higher chance

5

Tc ← Opick;
for i := 1 to t do

READ(Tc);
EXECUTE(Tc);

end
for i := 1 to r − 1 do

(Ti, Si)← Oselect;
for j := 1 to s do

READ(Ti);
WRITE(Ti);
EXECUTE(Ti);

end
end

Algorithm 1: Learning phase of ADV1

Pi ← PICKPROPERTY;
OUPUT b;

Algorithm 2: Challenge phase of ADV1

in breaking privacy or unlinkability than simple guessing. The following oracle-like
constructions exist:

Opick is an oracle that randomly selects a tag Ti from all the n tags in the system.
Oselect is an oracle that randomly returns a tag Ti from all the n tags in the system

along the list Si of properties Pj that tag Ti satisfies.
Oflip is an oracle that, provided with two tags T0, T1, randomly chooses b ∈ {0, 1}

and returns Tb.
Oaggregate computes a total of s aggregates Agg1, Agg2, . . . , Aggs, each time by

randomly choosing a set of γ tags: Agg1 is computed using tags (T 1
1 , T 2

1 , . . . , T γ
1),

Agg2 is computed using (T 1
2 , T 2

2 , . . . , T γ
2), . . ., Aggs is computed using (T 1

s , T 2
s , . . . , T γ

s).
The sets of tags are chosen randomly, but there is at least one tag that is an element of
two different sets, i.e., used in the computation of two different aggregates. Finally,
Oaggregate returns Agg1, Agg2, . . . , Aggs.

Privacy against ADV1 An adversary breaks the privacy of PPS, if given a tag T and
a property Pi, he can decide if a tag T satisfies the property Pi or not.

To that effect, an adversary ADV1 has access to tags in two phases. In a learning
phase (Algorithm 1), ADV1 is provided with a challenge tag Tc from the oracle Opick.
He can read from Tc for a maximum of t times. Oselect gives r− 1 tags to ADV1 along
with the list Si of properties Pj that each tag Ti satisfies. ADV1 can read and write into
Ti for a maximum of s times. After each read or write access to a tag in the learning
phase, the tag is allowed to interact with a legitimate reader by a normal PPS protocol
run, cf., “EXECUTE”.

In the second phase, a challenge phase (Algorithm 2), ADV1 picks a property Pi

by calling a function PICKPROPERTY. Given the results of the different readings and
Tc, ADV1 outputs a bit b, such that b = 1 if he guesses that Tc satisfies Pi, and b = 0
otherwise.

ADV1 succeeds, if his guess is right.

Definition 1. PPS is said to be privacy-preserving with respect to ADV1, if for all
adversaries of category ADV1, Pr[ADV1 succeeds] ≤ 1

2 + ε, such that ε is negligible.

6

for i := 1 to r do
Ti ← Opick;
for j := 1 to s do

READ(Ti);
WRITE(Ti);
EXECUTE(Ti);

end
end

Algorithm 3: Learning phase of ADV1

T0 ← Opick;
T1 ← Opick;
for i := 0 to 1 do

for j := 1 to t do
READ(Ti);
WRITE(Ti);
EXECUTE(Ti);

end
end
EXECUTE(T0);
EXECUTE(T1);
(T0, T1)→ Oflip;
Tb ← Oflip;
OUTPUTb;

Algorithm 4: Challenge phase of ADV1

Privacy against ADV2 As assumed above, ADV2, i.e., a malicious back-end server,
only receives aggregates from readers. In any case, there is no relation between tags, and
therewith tag holders, and ADV2. In conclusion, ADV2 simply cannot learn anything
about properties of tags.

While we do not target a formal proof, privacy against ADV2 is furthermore dis-
cussed and additional reasoning is given in the according security analysis section 5.1.

Unlinkability against ADV1 The tags targeted in this paper only feature storage ca-
pabilities. Hence, tags cannot update the content of their memory themselves after a
read and, therefore, the content of a tag’s memory does not change between two pro-
tocol executions. In the face of an overwhelmingly powerful adversary who can eaves-
drop all communications between tags and readers, tags would be trivially linkable.
However, we conjecture that it is fair to assume that an adversary in the real world can-
not continuously monitor tags and that there is at least one protocol execution that is
“un-observed” by the adversary. Once a tag T is re-written outside the range of the ad-
versary, the adversary should not be able to link the previous interactions he has seen to
tag T . In accordance with notions of related work such as: insubvertible encryption by
Ateniese et al. [1], backward security by Dimitrou [11], and privacy against anonymiz-
ers by Sadeghi et al. [23], we assume that there is at least one protocol execution that
takes place outside the range of the adversary. Under this assumption, neither external
adversaries nor readers should be able to link two responses from the same tag once it
is re-written outside their range.

More formally, in a learning phase (Algorithm 3), ADV1 is provided with r random
tags from Opick. ADV1 can read from and write into the r tags for a maximum of s
times. After each read or write access, the tags interact with legitimate readers by a PPS
execution, cf., “EXECUTE”.

In the challenge phase (Algorithm 4), ADV1 is provided with two challenge tags
T0, T1 that he is allowed to write into and read from for a maximum of t times. After
each access to T0 and T1 by ADV1, T0 and T1 interacts with a legitimate reader, cf.,
EXECUTE.

7

Then, T0 and T1 are re-encrypted outside the range of ADV1 by calling the func-
tion EXECUTE. Finally, Oflip is queried with T0 and T1 and Oflip provides ADV1 with
Tb. Given the results of the previous readings and Tb, the adversary ADV1 guesses the
value of b ∈ {0, 1}. He succeeds, if his guess is right.

Definition 2. PPS is said to provide unlinkability with respect to ADV1, if for all ad-
versaries of category ADV1, Pr[ADV1 succeeds] ≤ 1

2 + ε, such that ε is negligible.

Unlinkability against ADV2 An adversary ADV2 should not be able to link aggre-
gates to aggregates it has received before. More precisely, a malicious back-end server
should not tell, whether a received aggregate involves a tag that was involved in another
aggregate received earlier. ADV2 has access to the system in two phases. During learn-
ing (Algorithm 5), Oaggregate provides ADV2 with s aggregates Agg1, . . . , Aggs that
he could decrypt.

In the challenge phase (Algorithm 6), ADV2 outputs a pair b, b′ ∈ {1, . . . , s} and
therewith Aggb and Aggb′ .

for i := 1 to s do
Aggi ← Oaggregate;

end
Algorithm 5: Learning phase of ADV2

OUTPUT (b, b′)
Algorithm 6: Challenge phase of ADV2

ADV2 succeeds, if Aggb and Aggb′ have been computed by Oaggregate with at least
one tag in both aggregates.

Definition 3. PPS is said to provide unlinkability with respect to ADV2, if for all ad-
versaries of category ADV2, Pr[ADV2 succeeds] ≤ 1

s(s−1) + ε, such that ε is negligi-
ble.

4 PPS

Plain encryption of the properties of the tag holders ensures privacy of the data sent
to readers. However, encryption prevents aggregation. Conversely, if readers decrypt
the data sent by the tag at every reading, the privacy of the tag holder against readers
would not be assured. Hence, we suggest to use a standard multiplicative homomorphic
encryption scheme, Elgamal [13], in order to allow the aggregation of encrypted data
without decryption. Homomorphic encryption allows the back-end server to derive the
value

∑
ωi in cleartext from the aggregate of encrypted values

∑
E(ωi). Furthermore,

aggregation is used as privacy enforcement mechanism against the back-end server in
order to prevent the back-end server from deriving individual properties of a tag holder.

Even though the privacy of properties is met through homomorphic encryption and
aggregation of encrypted readings, these two mechanisms do not ensure the unlinkabil-
ity of tags. Unlinkability of tags is required in order to prevent the readers or eavesdrop-
ping adversaries from tracking tags over different sessions. A basic solution for unlinka-
bility can be provided through re-encryption, cf., Golle et al. [15]. Re-encryption cannot

8

be performed by tags, as they are completely passive, therefore, it will be performed by
readers. The readers on the other hand, should not be able to decrypt the ciphertexts
they receive, otherwise, they can always learn the properties a tag holder satisfies. To
tackle this problem, we use an asymmetric encryption that is homomorphic.

As a well studied homomorphic asymmetric encryption scheme, Elgamal [13] meets
the requirements of our application, and we use it as the underlying technique. In addi-
tion to its homomorphism, Elgamal supports re-encryption. The target scenario for our
application calls for an additive homomorphism. However, Elgamal is multiplicatively
homomorphic and thus falls short of suiting the target application. To cope with this
limitation, the last component of the solution is a special property encoding technique
based on Gödel encoding [14].1

4.1 Elgamal Cryptosystem

– Setup: the system outputs two large prime P and Q such that Q divides (P − 1)
and |P | = τ . Here, τ represents the security parameter of Elgamal. Let G be a
subgroup of Z∗

P of order Q, and g be a generator of G. All arithmetic operations
will be performed mod P .

– Key generation: the secret key sk is x ∈ ZQ. The public key pk is y = gx.
– Encryption: to encrypt a message ω ∈ G, one randomly selects r ∈ ZQ and com-

putes (u, v) = (gr, yrω). The ciphertext is c = (u, v).
– Decryption: to decrypt a ciphertext c = (u, v), one computes ω = v

ux .

Elgamal encryption is multiplicatively homomorphic:

∀ω1, ω2 ∈ G, E(ω1) · E(ω2) = E(ω1 · ω2)

To adapt Elgamal to our scheme, we encode the properties using Gödel encoding
before encryption as follows.

4.2 Gödel Property Encoding

In order to collect statistics on p properties Pi, we assign to each property a prime
number pi. Without loss of generality the first prime number p1 will correspond to
the property P1, the second prime number p2 will correspond to P2 and so on. Both,
properties Pi and primes pi are publicly known. If the holder of a tag satisfies two
properties Pi, Pj this will be represented by {pipj}. More formally:

– Setup: let Pi, 1 ≤ i ≤ p, be the p properties the back-end server is interested in,
and pi are p primes. Each property Pi will be mapped to prime number pi.

– Encoding: let m be the vector (ν1, ..., νp) such that νi = 1, if the tag T fulfills
the property Pi, otherwise νi = 0. The encoding of the properties of the tag T is
defined as Ω(m) =

∏p
i=1 pνi

i .

1 Note that additively homomorphic encryptions such as Paillier [21] or Naccache-Stern [20]
may appear to be suitable. However, these schemes do not support an efficient and compact
encoding of multiple tag properties, rendering them impractical.

9

4.3 Protocol

In PPS, the tags are initialized once by the issuer. Whenever a tag T is read by a reader
R, the reader aggregates the ciphertext c = (u, v) it receives from T , then it re-encrypts
the ciphertext c and writes the new ciphertext into T . Periodically, readers in the system
forward their aggregates to the back-end server. The latter decrypts and decodes the
aggregates and computes the statistics it is interested in.

We assume that the system comprises, for ease of understanding, a single reader,
and it has γ tags in its range.

– System setup: let G be a group in which the discrete logarithm is intractable, g a
generator of G, Q the order of G and Pi the p properties of the system. The output
of the setup operation is a pair of keys (pk, sk): (y = gx, x), x ∈ ZQ, and p primes
pi such that the property Pi corresponds to prime number pi. Elgamal secret key
sk = x is known by both the issuer and the back-end server. Generator g, the public
key pk = y and the p primes are made public.

– Tag initialization: the input comprises the vector m = (ν1, ..., νp), the public key
y, the p primes pi, and a random number r ∈ ZQ. The issuer of the tag encodes the
vector m following the Gödel encoding and computes ω = Ω(m). The output of
the initialization operation is a ciphertext (u, v) = (gr, yrω).

– Aggregation: the input is a set of γ ciphertexts (ui, vi), 1 ≤ i ≤ γ, received by the
reader from the tags in its range. The reader outputs the aggregate, a new ciphertext
(U, V) = (

∏γ
i=1 ui,

∏γ
i=1 vi), cf., Fig. 2(a).

T1)1
1,1()1,1(ω
r

y
r

gvu =
.

.

.

Reader

),(),(∏
∑∑= i

iryirgVU ω

Ti

Tγ),(),(γωγγ
γγ

r
y

r
gvu =

),(),(i
iryirgiviu ω=

.

.

.

.

(a) Ciphertext aggregation

Tag ReaderReader
),(),(ωrr ygvu =

),()','('' vyugvu rr=

(b) Ciphertext re-encryption

Fig. 2. Aggregation and re-encryption in PPS

– Re-encryption: the input of re-encryption is a ciphertext (u, v) = (gr, yrω) re-
ceived by the reader from a tag T , g the generator of G, the public key y, and a ran-
dom number r′ ∈ ZQ. The output is a new ciphertext (u′, v′) = (g(r+r′), y(r+r′)ω),
cf., Fig. 2(b).
On a side note, the value yrω = 0 mod P is considered as “forbidden”. When a
reader reads a tag that stores 0, it discards the tag. This means that the reader does
not aggregate or re-encrypt the tag, and the reader considers the tag as corrupted.
Writing 0 into a tag is a malicious writing attack, see Section 6.

10

– Decryption and decoding: the input is a ciphertext (U, V) = (
∏γ

i=1 ui,
∏γ

i=1 vi)
received from the reader, the secret key x, and the p primes pi. The back-end server
computes W = V

Ux and factorizes W . This factorization is easily feasible, as the
back-end server knows the primes pi. Given that this factorization is unique, the
back-end server gets Ω−1(W) = (ν1, ..., νp). The respective νi corresponds to the
number of tags satisfying the property Pi that have been read by the reader.

To get the total number of tags satisfying a property Pi in the case of multiple readers,
the back-end server sums the νi for all the readers in the system.

Aggregation under restrictions: In order to ensure the correctness of statistics ob-
tained by the back-end server, we cannot allow the readers to aggregate an infinite
number of ciphertexts. They are only allowed to aggregate up to a threshold γ of ci-
phertexts ci = E(ωi) at a time, such that

∏γ
i=1 ωi < P .

Evaluation: Typically, |P | = 1024 bits and |Q| = 160 bits.
Given p properties Pi and p prime numbers pi, the threshold γ could be defined as
|P |

log2(
Qp

i=1 pi)
. If a reader has σ tags in its range, it will aggregate ciphertexts by bunches

of size at most γ. Instead of forwarding one aggregate, the reader forwards bσ
γ c + 1

aggregates to the back-end server.
Furthermore, if the readers send to the back-end server the number of tags they read,

we can reduce the number of prime numbers used in the Gödel encoding to represent
the different properties, cf. Table 1. This applies in the case we have complementary
properties, for instance, (P1, P2) = (male, female). Given the total number of tags
read and the number of tag holders satisfying the property P1, we deduce the number of
tag holders satisfying the property P2. Using this fact leads to a more efficient property
encoding and thus a larger aggregate size γ which improves the privacy of PPS against
the back-end server as discussed in Section 5.2.

Table 1. Example properties and their encoding

Properties Gödel encoding
Male 2
under 25 3
Student 5
Employee 7
European union citizen 11
Disabled 13
Aggregate size γ 68

11

5 Privacy analysis

This section provides formal proofs for PPS’s privacy and unlinkability as defined in
the models of Section 3.2.

In this section, we use two additional oracles:
Osemantic when provided with two plaintexts ω0, ω1, randomly chooses b ∈ {0, 1},

encrypts ωb using Elgamal and public key pk, and returns the resulting ciphertext cb.
Osemantic−re when provided with two Elgamal ciphertexts c0, c1, randomly chooses

b ∈ {0, 1}, re-encrypts cb using public key pk, and returns the resulting ciphertext c′b.

5.1 Privacy

Privacy against ADV1

Theorem 1. PPS is privacy-preserving with respect to ADV1 under the DDH assump-
tion over G.

Proof. Assume we have an adversary A ∈ ADV1 who breaks the privacy experiment.
We build an adversary A′ that executes A as a subroutine and breaks the semantic
security of Elgamal which leads to a contradiction under DDH. In this proof, we make
use of the fact that a tag T satisfies a property Pi, iff the corresponding prime number
pi divides the plaintext underlying the ciphertext stored on T .

− A′ picks p properties Pi that he maps to p distinct primes pi. Then, A′ computes
n Gödel encodings ωj using the primes pi. Finally, he encrypts ωj using Elgamal and
gets n ciphertexts that he stores on the tags.

− A′ specifies two plaintexts ω0 =
∏

p
ν0,i

i ≤ P − 1 and ω1 =
∏

p
ν1,i

i ≤ P − 1,
such that ∀i, 1 ≤ i ≤ p, and b′ ∈ {0, 1}: νb′,i ∈ {0, 1} and ν0,i + ν1,i = 1. In terms
of properties Pi, this means that tag T0, storing plaintext ω0, and tag T1, storing ω1, do
not have a property in common.

The adversary A′ should specify ω0 and ω1 such that ν0,i + ν1,i = 1. Otherwise,
A could choose a challenge property Pi that both ω0 and ω1 encode. In this case, the
output of A about Pi will not provide the necessary information to A′ to break the
semantic security of Elgamal. The same holds if A chooses a property Pi that neither
ω0 nor ω1 encode.

− A′ transmits {ω0, ω1} to the oracle Osemantic.
− Osemantic returns the encryption cb of one of the plaintexts ω0, ω1 to A′.
− A′ writes cb into a challenge tag Tc. Then, A′ calls the adversary A that enters

the learning phase. Simulating Oselect, A′ provides A with r − 1 tags along with the
list of properties they are satisfying. A is allowed to read and write into these tags for a
maximum of s times. A′ provides A as well with the challenge tag Tc. A has only read
access to Tc and he is allowed to read it for a maximum of t times. Tags are required
to interact with a legitimate reader through the function EXECUTE after being read or
written into. As pk is public, A′ can simulate successfully EXECUTE.

− A selects a property Pi and outputs 1, if Tc satisfies Pi and 0 otherwise.
IfA outputs 1, this implies that the prime number pi corresponding to Pi divides ωb.

By construction, ω0 and ω1 do not have any prime divisor in common, and therefore,
ωb is the plaintext dividable by pi.

12

If A outputs 0, this implies that pi does not divide ωb and by construction pi divides
ω1−b. Therefore, ωb is the plaintext that is not dividable by pi.

A′ can tell which plaintext ωb corresponds to cb. This breaks the semantic security
of Elgamal ensured under the DDH assumption [25], which leads to a contradiction.

Privacy against ADV2 As stated in Section 3.1, ADV2 receives only aggregated
ciphertexts. Still, given the aggregates, ADV2 can learn some information about the
properties of tags read by readers, but is never able to tell which tag, and therewith
which holder satisfies which property.

For instance, if ADV2 receives an encrypted aggregate from a reader R, and de-
crypts it to Agg =

∏p
i=1 pνi

i , and ∃j such that νj = 0 after factorization, ADV2 can
learn that all the tags that were read by R do not satisfy the property Pj .

However, as ADV1 andADV2 do not collude,ADV2 cannot tell which tag satisfies
or does not satisfy a certain property Pi.

5.2 Unlinkability

Unlinkability against ADV1

Theorem 2. PPS provides tag unlinkability against ADV1 under the DDH assumption
over G.

Proof. The semantic security property of Elgamal encryption can be extended to the
semantic security of Elgamal under re-encryption [15]. Let A′ be an adversary that
chooses two ciphertexts c0 and c1, A′ then sends {c0, c1} to Osemantic−re. Osemantic−re

flips a coin b, re-encrypts cb to c′b and returns c′b to A′. The semantic security of Elgamal
under re-encryption entails that guessing the value of b is as difficult as DDH, see Golle
et al. [15].

Now, assume we have an adversary A ∈ ADV1 whose advantage to break the un-
linkability experiment is non negligible. We construct a new adversary A′ that executes
A and breaks Elgamal’s semantic security under re-encryption.

− A′ picks p properties pi, 1 ≤ i ≤ p that he maps to p distinct primes pi, 1 ≤ i ≤
p. Then, he initializes n tags.

− A′ calls the adversary A that enters the learning phase. A′ simulates Opick and
provides A with r tags. A is allowed to read and write into these tags for a maximum
of s times. After each reading, A′ simulates EXECUTE and re-encrypts the ciphertexts,
as pk is public.

− A enters the challenge phase: A′ simulates Opick and submits tags T0 and T1 to
the adversary A. A writes into and reads from T0 and T1 for a maximum of t times. A′

can simulate successfully the function EXECUTE as pk is public.
−A′ reads the data stored on T0 and T1. Without loss of generality, let c0 (c1 resp.)

denotes the ciphertext stored on T0 (T1 resp.). Then, A′ transmits c0 and c1 to the oracle
Osemantic−re.

− Osemantic−re returns the result c′b of re-encrypting one of the two ciphertexts to
A′. A′ writes c′b into a tag T .

13

− A′ calls A and provides him with T , simulating Oflip. Then, A outputs his guess
for the value of b.

Since A’s advantage in the unlinkability experiment is non negligible, A can tell
which tag corresponds to the new ciphertext c′b. If A outputs 0, this means that c′b is
re-encryption of c0, otherwise c′b is a re-encryption of c1. Therefore, A′ can break the
semantic security under re-encryption of Elgamal that is ensured under the DDH as-
sumption [15], again leading to a contradiction.

Unlinkability against ADV2

Theorem 3. PPS provides unlinkability of tags against ADV2 for large γ.

Proof (Sketch). An aggregate Agg =
∏p

i=1p
νi
i is called completely blinded, iff ∀i,

1 ≤ i ≤ p : νi > 0. Now, given a sufficiently large γ, the aggregates received by the
back-end server will be completely blinded with high probability.

Therefore, the back-end server cannot distinguish between the tags involved in the
aggregates. Moreover, using a large s in the learning phase would not give the adversary
ADV2 a greater advantage in guessing (b, b′).

In the following, we compute an upper bound of the advantage ε of ADV2 in the
unlinkability experiment.
Let E be the event that aggregate Agg is completely blinded, so ∀i, 1 ≤ i ≤ p :
νi > 0. Let γ be the number of ciphertexts participating in the aggregate, and πi is the
probability that a tag holder satisfies property Pi. Without loss of generality, we assume
π1 ≤ π2 ≤ . . . ≤ πp. Then, the probability that νi = 0 is Pr(νi = 0) = (1 − πi)γ ≤
(1− π1)γ .

Let E be the complementary event of E. Therefore, Pr(E) = Pr(ν1 = 0 ∨ ν2 =
0 . . . ∨ νp = 0)
Pr(E) ≤

∑p
i=1 Pr(νi = 0) ≤ p(1− π1)γ .

ε = Pr(E) is the advantage of ADV2 in the unlinkability experiment which is
negligible in γ. Therefore, we say that PPS is ε-unlinkable against ADV2, such that
ε ≤ p(1− π1)γ .

Note that the advantage of ADV2 heavily depends on the probability π1. If π1

is very small, i.e., representing a rare property such as being disabled, PPS cannot
provide unlinkability against ADV2. In such a case, the back-end server can link tags to
aggregates. For instance, if the back-end server sees two aggregates where the property
“disabled” is satisfied, it can guess with a non negligible probability that these two
aggregates have one tag in common.

6 Security Analysis

Tags in our scheme have a writable memory, where the ciphertext is stored every time it
is re-encrypted by readers. As there is no access control on tags to check the authenticity
of readers, our scheme is vulnerable to “malicious writing”.

We can divide malicious writing attacks into two categories:

14

– Writing an invalid ciphertext (“garbage”) into the tag: this attack can be de-
tected at the back-end server, as decryption and Gödel decoding will not succeed.
Moreover, if the adversary writes the value 0 into the tag, this will be detected at
the next honest reader to read the tag.

– Writing a valid ciphertext into the tag: a malicious reader could try to alter statis-
tics. The simplest way to implement such an attack is by copying the content of a
tag into another one (“cloning”). Moreover, given that Elgamal is malleable and
that the adversary knows the primes, the adversary can generate a set of valid ci-
phertexts from a ciphertext he has seen [12]. Since the ciphertext written into the
tag is a valid one, this type of attack cannot directly be detected at decryption, and
we will tackle it in the following.

Malicious writing affects the correctness of the results obtained at the back-end
server. Given that access control is not feasible in our read-write only tags, this attack
cannot be prevented. However, we propose the following solution to detect ciphertexts
written by an adversary at the back-end server.

Instead of one ciphertext, each tag stores two ciphertexts (c, cID). The first cipher-
text c encrypts the properties of the tag holder as described in the previous section. The
second ciphertext cID encrypts a unique ID of the tag using standard Elgamal encryp-
tion. After a tag is scanned by a reader, the reader re-encrypts both ciphertexts c and cID

and writes the new ciphertexts into the tag. The reader aggregates c and keeps a record
of cID. During decryption at the back-end server, if the back-end server suspects that a
received aggregate is not correct, he contacts a “trusted third party”. This trusted third
party (TTP) checks the records cID stored at the readers. TTP decrypts these ciphertexts
and gets the IDs of the tags that were scanned along with the corresponding properties
of their holders. In this manner, the TTP detects tag cloning as the ID of the cloned tag
will be repeated several times.

Furthermore, in order to detect tag tampering, the tag issuer should keep a database
of the tag IDs and their corresponding properties and reveal it to the TTP. Therewith,
the TTP can compare the decrypted properties and the actual properties stored in the
issuer database. If there is a discrepancy between the properties corresponding to the
same tag ID, the TTP reports a fraud. Meanwhile, the TTP does not reveal the records
of the IDs stored on the readers either to the back-end server or to the readers.

We clearly acknowledge that readers can fake statistics. However, the readers could
be provided with an incentive to encourage them to ensure the integrity of the results
obtained at the back-end server and therefore not to tamper with tags’ content or fake
statistics. For instance, the statistics could be used by the shops to define their marketing
strategy. As mentioned before, PPS focuses on privacy and unlinkability of tag holders.

7 Related work

Juels et al. [18] utilize re-encryption to protect privacy of RFID-enabled banknotes.
Each time a banknote is spent, the readers in shops or banks re-encrypt the encrypted
serial number of the banknote stored on the tag. The main drawback of this scheme is
that the authorized readers have access to the plaintext underlying the ciphertext spoil-
ing unlinkability. Similarly, Golle et al. [15] introduce universal re-encryption allowing

15

special re-encryption without knowing the public key initially used to encrypt the plain-
texts. While this protocol provides key privacy, it fails at providing unlinkability after
malicious writing. An adversary can write his own message m into a tag and encrypt it
under its public key. Therewith, the adversary can always link the tag.

Ateniese et al. [1] tackle the above problems by proposing insubvertible encryption,
i.e., universal re-encryption and randomized certificates. If the certificate is valid, the
ciphertext stored on the tag will be re-encrypted. Otherwise, it will be replaced by a
dummy encryption. Ateniese et al. [1] aim at privacy preserving identification, but not
privacy preserving statistics collection which is the focus of PPS. Also, Ateniese et al.
[1], as well as the results presented by Blundo et al. [4], require special message encod-
ings to map messages to points on elliptic curves. However, currently known efficient
encoding schemes fail at preserving the homomorphic properties that are the essential
prerequisite for PPS.

Camenisch and Groß [7] propose an attribute encoding for anonymous credentials.
The scheme allows users to prove the possession of an attribute with a given value while
preserving the privacy of the users. While such an approach could be used to “emulate”
privacy-preserving computation of statistics, the main drawback is the requirement for
complex interactive proofs between tags and readers– infeasible in our setting with
storage-only tags.

Han et al. [16] present a protocol to estimate the total number of tags in the vicinity
of a reader. The main idea is to infer this number by examining the number of empty and
collision slots in the framed slotted Aloha protocol used for communication. Although
[16] enables estimating the total number of tags anonymously, it does not lend itself to
collect statistics on tag properties as targeted in the paper at hand.

Kerschbaum et al. [19] propose to privately compute performance properties of an
RFID supply chain using data stored on tags. However, this work focuses on comput-
ing these metrics without leaking sensitive information of the supply-chain’s parties.
Kerschbaum et al. [19] use additive homomorphic encryption that does not support col-
lecting statistics on multiple properties and consequently cannot be as efficient as PPS.

Relation to voting: Note that, at first glance, PPS appears to be similar to voting,
cf., Benaloh and Tuinstra [3], Sako and Kilian [24]. Instead of counting the number of
tag holders satisfying a property Pi, we count the number of voters voted for a given
candidate. However, the RFID settings considered in this paper are very constrained
regarding a secure voting application. In secure voting, the voters are required to per-
form additional complex operations such as public key encryption and zero knowledge
proofs to ensure not only privacy and correctness of the votes, but also other sophisti-
cated properties such as receipt freeness, and universal verifiability, cf., Baudron et al.
[2], Benaloh and Tuinstra [3], Cramer et al. [10], Sako and Kilian [24]. Clearly, these
operations cannot be performed by read/write only tags.

8 Conclusion

RFID systems can be used for many applications besides identification and authentica-
tion. In this paper, we introduced a new application for RFID that collects statistics over
a population of tag holders. We presented PPS, a protocol to mitigate resulting new pri-

16

vacy problems. PPS does not require tags to perform any (cryptographic) computation.
Instead, tags only need to feature some cheap storage. All computations within PPS are
solely performed by readers. PPS provably ensures the privacy of tags and therewith
holders’ properties as well as their unlinkability: tag holders can be sure that neither
RFID readers, nor a back-end system can reveal the properties stored on their tags. Ad-
ditionally, if scanned at different readers on different occasions, tag holders can be sure
that these occasions cannot be linked.

References

[1] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable rfid tags via in-
subvertible encryption. In CCS ’05: Proceedings of the 12th ACM conference on Computer
and communications security, pages 92–101, New York, NY, USA, 2005. ACM. ISBN
1-59593-226-7.

[2] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guillaume
Poupard. Practical multi-candidate election system. In PODC ’01: Proceedings of the
twentieth annual ACM symposium on Principles of distributed computing, pages 274–283,
New York, NY, USA, 2001. ACM. ISBN 1-58113-383-9.

[3] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended abstract).
In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory of com-
puting, pages 544–553, New York, NY, USA, 1994. ACM. ISBN 0-89791-663-8.

[4] Carlo Blundo, Angelo De Caro, and Giuseppe Persiano. Untraceable tags based on mild
assumptions. Cryptology ePrint Archive, Report 2009/380, 2009. http://eprint.
iacr.org/.

[5] Julien Bringer and Hervé Chabanne. Trusted-HB: A low-cost version of HB + secure
against man-in-the-middle attacks. IEEE Transactions on Information Theory, 54(9):4339–
4342, 2008. ISSN 0018-9448.

[6] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB++: a lightweight authenti-
cation protocol secure against some attacks. In SecPerU, pages 28–33, 2006. ISBN 0-7695-
2549-0.

[7] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In CCS
’08: Proceedings of the 15th ACM conference on Computer and communications security,
pages 345–356, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-810-7.

[8] Christy Chatmon, Tri van Le, and Mike Burmester. Secure anonymous RFID authentica-
tion protcols. Technical report, Florida State University, Department of Computer Sci-
ence, Tallahassee, Florida, USA, 2006. http://www.cs.fsu.edu/∼burmeste/
TR-060112.pdf.

[9] Ronald Cramer and Ivan Damgård. Introduction to secure multi-party computations. In
Contemporary Cryptology: Advanced Courses in Mathematics, pages 41–87. Birkhauser,
2005. ISBN 3-7643-7294-X.

[10] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally ef-
ficient multi-authority election scheme. In Advances in Cryptology – EUROCRYPT ’97,
Lecture notes in computer science, pages 103–118. Springer-Verlag, 1997. ISBN 978-3-
540-62975-7.

[11] Tasso Dimitrou. rfidDOT: RFID delegation and ownership transfer made simple. In Pro-
ceedings of International Conference on Security and privacy in Communication Networks,
Istanbul, Turkey, 2008. ISBN 978-1-60558-241-2.

[12] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In STOC ’91:
Proceedings of the twenty-third annual ACM symposium on Theory of computing, pages
542–552, New York, NY, USA, 1991. ACM. ISBN 0-89791-397-3.

[13] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New
York, NY, USA, 1985. Springer-Verlag New York, Inc. ISBN 0-387-15658-5.

17

[14] Kurt Gödel. über formal unentscheidbare sätze der principia mathematica und verwandter
systeme i. Monatsheft für Mathematik und Physik, 38:173–198, 1931. ISSN 0026-9255.

[15] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal re-encryption
for mixnets. In In Proceedings of the 2004 RSA Conference, Cryptographer’s track, pages
163–178. Springer-Verlag, 2002.

[16] Hao Han, Bo Sheng, Chiu C. Tan, Qun Li, Weizhen Mao, and Sanglu Lu. Counting RFID
tags efficiently and anonymously. In Proceeding of IEEE Infocom, San Diego, USA, 3 2010.

[17] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. In PERCOMW ’07:
Proceedings of the Fifth IEEE International Conference on Pervasive Computing and Com-
munications Workshops, pages 342–347, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2788-4.

[18] Ari Juels, Ravikanth Pappu, and Thingmagic Llc. Squealing euros: Privacy protection in
rfid-enabled banknotes. In Financial Cryptography’03, pages 103–121. Springer-Verlag,
2002. ISBN 978-3-540-40663-1.

[19] F. Kerschbaum, N. Oertel, and L. Weiss Ferreira Chaves. Privacy-preserving computation
of benchmarks on item-level data using rfid. In 3rd ACM conference on Wireless network
security, pages 105–110, New York, USA, 2010.

[20] D. Naccache and J. Stern. A new public key cryptosystem based on higher residues. In ACM
conference on Computer and communications security, pages 59–66, New York, 1998.

[21] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in Cryptology EUROCRYPT’99, pages 223–238. Springer-Verlag, 1999. ISBN
3-540-65889-0.

[22] Roberto Di Pietro and Refik Molva. Information confinement, privacy, and security in RFID
systems. In Lecture Notes in Computer Science, Volume 4734, pages 187–202, 2007. ISBN
978-3-540-74834-2.

[23] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. Anonymizer-Enabled Se-
curity and Privacy for RFID. In 8th International Conference on Cryptology And Network
Security – CANS’09, Kanazawa, Ishikawa, Japan, December 2009. Springer. ISBN 978-3-
642-10432-9.

[24] Kazue Sako and Joe Kilian. Secure voting using partially compatible homomorphisms.
In CRYPTO ’94: Proceedings of the 14th Annual International Cryptology Conference on
Advances in Cryptology, pages 411–424, London, UK, 1994. Springer-Verlag. ISBN 3-
540-58333-5.

[25] Yiannis Tsiounis and Moti Yung. On the security of elgamal based encryption. In PKC’98,
LNCS 1431, pages 117–134. Springer-Verlag, 1998. ISBN 978-3-540-64693-8.

[26] Gene Tsudik. YA-TRAP: yet another trivial RFID authentication protocol. In Proceed-
ings of International Conference on Pervasive Computing and Communications Workshops,
Pisa, Italy, 2006. ISBN 0-7695-2520-2.

[27] Serge Vaudenay. On privacy models for RFID. In Advances in Cryptology - Asiacrypt 2007,
Lecture Notes in Computer Science, pages 68–87. Springer-Verlag, 2007. ISBN 978-3-540-
76899-9.

[28] S.A. Weis, S.E. Sarma, R.L. Rivest, and D.W. Engels. Security and privacy aspects of
low-cost radio frequency identification systems. In Security in Pervasive Computing, pages
201–212, Boppard, Germany, 2003. ISBN 3-540-20887-9.

18

