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Abstract—Vehicle density is one of the main metrics used for
assessing the road traffic conditions. In this paper, we present a
solution to estimate the density of vehicles that has been specially
designed for Vehicular Networks. Our proposal allows Intelligent
Transportation Systems to continuously estimate the vehicular
density by accounting for the number of beacons received per
Road Side Unit, as well as the roadmap topology. Simulation
results indicate that our approach accurately estimates the vehic-
ular density, and therefore automatic traffic controlling systems
may use it to predict traffic jams and introduce countermeasures.

Index Terms—Vehicular Networks, vehicular density estima-
tion, Road Side Unit, VANETS.

I. INTRODUCTION

Traditionally, vehicle density has been one of the main
metrics used for assessing the road traffic conditions. A high
vehicle density usually indicates that the traffic is congested.
However, the density of vehicles circulating in a city highly
varies depending on the area and the time during the day.

Currently, most of the vehicle density estimation approaches
are designed for using infrastructure-based traffic information
systems, which require the deployment of vehicle detecting
devices such as inductive loop detectors or traffic surveillance
cameras [1], [2]. However, these approaches are limited since
they can only be aware of traffic density in a very specific
and reduced area (i.e., the streets and junctions in which these
devices are already located), making it difficult to estimate
the vehicular density of a neighborhood, or a whole city. In
addition, some of these approaches are not able to perform the
density estimation process in real time (e.g., using cameras
involves hard image treatment and analysis).

In this work, we present a solution to estimate the traffic
density on the roads that relies on the V2I communication
capabilities offered by Vehicular Networks. Unlike previous
works, our proposal allows ITS to continuously estimate the
vehicular density in a certain area by accounting for the
number of beacons received per RSU, as well as the roadmap
topology.

The rest of this paper is organized as follows: Section II
details our proposal for real-time RSU-based vehicular density
estimation, assessing its goodness. Additionally, we discuss
the obtained results and measure the estimated error. Finally,
Section III concludes this paper.

Juan-Carlos Cano, Carlos T. Calafate, Pietro Manzoni,
Computer Engineering Department
Universitat Politecnica de Valeéncia, Spain
Email: {jucano, calafate, pmanzoni} @disca.upv.es

II. REAL-TIME VEHICULAR DENSITY ESTIMATION

In this work we propose a method able to accurately
estimate the density of vehicles, which is based on the number
of beacons received by RSUs and the roadmap topology.
We made a total of 900 experiments. These experiments
involved the simulation of controlled scenarios (i.e., scenarios
where the actual density is known). According to the results
obtained, and using a regression analysis, we propose a density
estimation function capable of estimating the vehicular density
in every urban environment at any instant of time.

A. Features of the Cities Studied

The roadmaps used during the experiments to achieve the
density estimation were selected in order to have different
profile scenarios (i.e., with different topology characteristics).

The first step before starting the simulations was to obtain
the main features of each roadmap (i.e., the number of streets,
the number of junctions, the average distance of segments,
and the number of lanes per street). As for the streets, we
realized that different alternatives could be selected to obtain
the number of streets of a given roadmap. Basically, they are:
(i) the number of streets obtained in SUMO [3], where each
segment between two junctions is considered a street, (ii) the
number of streets obtained in OpenStreetMap (OSM), where
each street has a different “name”, and (iii) the number of
streets according to our Real Attenuation and Visibility (RAV)
radio propagation model, where the visibility between vehicles
is taken into account when identifying the streets [4].

Table I shows the values obtained according to each cri-
terion to count the number of streets for the cities studied.
As shown, the differences between these approaches are
significant (e.g., New York has 700, 827, or 257 streets
when considering SUMO segments, OSM streets, or the RAV
visibility approach, respectively, whereas Sydney has 1668,
315, or 872 streets, depending on the selected criterion).
Therefore, it is important to decide which one to use in order
to obtain accurate results. After some experiments, we realized
that the third approach better correlated with the real features
of cities, since the other two present some drawbacks: they
are not accurate enough, or they present some errors. So, we
choose this approach for the analysis that follows.



TABLE II
MAP FEATURES

Map Streets | Junctions | avg. segment distance (m.) | lanes/street | SJ Ratio
New York 257 500 45.8853 1.0590 0.5140
Minnesota 459 591 102.0652 1.0144 0.7766
Madrid 628 715 83.0820 1.2696 0.8783
San Francisco 725 818 72.7065 1.1749 0.8863
Amsterdam 1494 1449 44.8973 1.1145 1.0311
Sydney 872 814 72.1813 1.2014 1.0713
Liverpool 1758 1502 49.9620 1.2295 1.1704
Valencia 2829 2233 33.3653 1.0854 1.2669
Rome 1655 1193 45.8853 1.0590 1.3873
TABLE I TABLE III
NUMBER OF STREETS OBTAINED DEPENDING ON THE APPROACH USED PARAMETERS USED FOR THE SIMULATIONS
City SUMO | OSM | RAV Parameter Value
New York 700 827 257 New York, Minnesota, Madrid,
anes'ota 1592 105 459 roadmaps San Francisco, Amsterdam, Sydney,
Madrid 1387 1029 628 Liverpool, Valencia, and Rome
San Francisco 1710 606 725 roadmap size 2000m % 2000m
Amsterdam 3022 796 1494 .
number of vehicles [100, 200, 300...1000]
Sydney 1668 315 872 .
- beacon message size 512B
Liverpool 3141 1042 1758 , L.
Valencia 5154 1050 T 2329 warning messages priority AC3
Rome 2780 | 1484 | 1655 beacon priority AC1
interval between messages 1 second
RSU deployment policy Uniform Mesh [5]
MAC/PHY 802.11p
. . radio propagation model RAV [4]
Table II shows the main map features for the cities under mobility model Krauss [8]
study (i.e., the number of streets according to the RAV channel bandwidth 6Mbps
leorith th b £ ti th dist £ max. transmission range 400m
algorithm, € number oI junctions, € average distance O simulation time 30s

segments, and the number of lanes per street). We also added
a column labeled as SJ Ratio, which represents the result
of dividing the number of streets between the number of
junctions. As shown, the first city (New York) presents an SJ
ratio of 0.5130, which indicates that it has a simple topology,
whereas the last cities in the table present a greater value,
which indicates a more complex topology. This aggregated
factor correlates well with the obtained results.

B. Simulation Environment

Simulations were done using the ns-2 simulator, where the
PHY and MAC layers have been modified to closely follow
the IEEE 802.11p standard, which defines enhancements to the
802.11 required to support ITS applications. We assume that
all the nodes of our network have two different interfaces: (i)
an IEEE 802.11n interface tuned at the frequency of 2.4 GHz
for V2I communications, and (ii) an IEEE 802.11p interface
tuned at the frequency of 5 GHz for V2V communications. To
prove how maps affect the performance of vehicular commu-
nications, we selected nine street maps, each one representing
a square area of 4 km?. In order to deploy RSUs in the maps,
we use the Uniform Mesh deployment policy [5], that consists
on distributing RSUs uniformly on the map. The advantage
of this deployment policy is that it achieves a more uniform
coverage area since the distance between RSUs is the same,
preventing RSUs to be positioned too closely, or too sparsely.
As for the mobility of the vehicles, it has been performed with
CityMob for Roadmaps (C4R) [6], a mobility generator able
to import maps directly from OpenStreetMap, and generate
ns-2 compatible traces. Table III shows the parameters used.

We tested our proposal by evaluating the performance of

a Warning Message Dissemination mechanism, where each
vehicle periodically broadcasts information about itself or
about an abnormal situation (traffic jams, icy roads, etc.). To
increase the realism of our results, we include the possibil-
ity that vehicles share accident notification messages in our
simulations. In fact, we consider that vehicles can operate in
two different modes: (a) warning, and (b) normal. Vehicles in
warning mode inform other vehicles about their status by send-
ing warning messages periodically (every second). Normal
mode vehicles enable the diffusion of these warning packets
and, every second, they also send beacons with information
such as their positions, speed, etc. These periodic messages
are not propagated by other vehicles. The warning messages
exchanged between vehicles and RSUs are built according
to the Vehicular Accident Ontology (VEACON) [7], which
provides a standard structure to enable data interoperability
among the different entities involved in transportation systems.

C. Density Estimation Function

After performing the topological analysis of the studied
maps, we obtained the number of beacons received by each
RSU during 30 seconds, taking into account that each vehicle
sends one beacon per second, and that these messages, unlike
warning messages, are not disseminated by the rest of the
vehicles. Figure 1 shows the results obtained for the different
cities studied. As shown, the performance in New York and
Minnesota in terms of number of beacons received highly
differs from the rest of the cities. This is caused because New
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Fig. 1. Number of beacons received when varying the vehicular density.
TABLE IV
PROPOSED EQUATION COEFFICIENTS

Coeff. Value

a 2.4328753582642619E+02
8.8667060945557523E+00
-4.2340086242746855E+02
3.2563178030488615E+01
1.8200236614892370E+02
-6.4626326366022894E+01

0 || 0| o

York and Minnesota have a low SJ ratio (i.e., they are simple
roadmaps). As expected, complex roadmaps (maps which have
a higher SJ Ratio) present a number of received beacons lower
than simple roadmaps for a similar vehicular density. Figure 1
also shows that the vehicular density not only depends on the
number of beacons received, but also on the SJ ratio (according
to data shown in Table II). Therefore, the characteristics of the
roadmap will be very useful in order to accurately estimate the
vehicular density in a given scenario.

After observing the direct relationship between the topology
of the maps, the number of beacons received, and the density
of vehicles, we proceed to obtain a function to estimate, with
the minimum possible error, each of the curves shown in
Figure 1. To this purpose, we performed a regression analysis
that allowed us to find an algebraic expression offering the
best fit to the data obtained through simulation.

Equation 1 shows the density estimation function, which
is able to estimate the number of vehicles per km? in urban
scenarios, according to the number of beacons received per
RSU, and the SJ ratio (i.e., streets/junctions).

f o og-in(
f@y)=a+b-ln<x>+2+d-m<x>2+yz+g;m

In this equation, x is the number of beacons received by
each RSU, and y is the SJ ratio obtained from the roadmap.
The values of the polynomial coefficients (a, b, ¢, d, f, and g)
are listed in Table IV.

To determine the accuracy of our proposal, it is necessary to
measure the estimated error. Table V shows the different types
of errors calculated when comparing our density estimation

ey

TABLE V

DENSITY ESTIMATION ERROR

Error Absolute Relative
Minimum -5.736426E+01 -1.218902E+00
Maximum 5.135632E+01 1.784647E+00

Mean -1.642143E-14 3.634060E-02

Std. Error of Mean 2.596603E+00 3.592458E-02

Median -1.914503E+00 -2.313015E-02

function with the values actually obtained. Note that the
average relative error is of only 3.63%. We consider that this
error can be neglected, thus validating our proposed function.

III. CONCLUSIONS

This paper proposes a method that allows estimating the
vehicular density in urban environments at any given time by
using V2I communications. To develop the vehicular density
estimation algorithm, we have taken into account not only
the number of beacons received by the RSUs, but also the
topology of the map where the vehicles are located. As a
result of a large number of simulations, we have obtained
an equation that is able to accurately predict the vehicular
density. Results show that our proposal allows estimating the
vehicular density for any given city with a high accuracy,
thereby allowing governments to improve their traffic control
mechanisms.
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