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Abstract—We present a distributed proactive caching ap-
proach that exploits user mobility information to decide where
to proactively cache data to support seamless mobility, while
efficiently utilizing cache storage using a congestion pricing
scheme. The proposed approach is applicable to the case where
objects have different sizes and to a two-level cache hierarchy, for
both of which the proactive caching problem is hard. Additionally,
our modeling framework considers the case where the delay
is independent of the requested data object size and the case
where the delay is a function of the object size. Our evaluation
results show how various system parameters influence the delay
gains of the proposed approach, which achieves robust and good
performance relative to an oracle and an optimal scheme for a
flat cache structure.

I. INTRODUCTION

Proactively fetching data to reduce delay in mobility
scenarios has been proposed within the context of publish-
subscribe network architectures [1], [2], [3], for vehicular WiFi
access [4], and more recently for cellular networks [5], [6].
Even earlier, prefetching has been proposed and investigated
for file-system and Web access performance enhancement at
least since the mid nineties. In this paper we focus on proactive
caching related to mobility.

Proactive caching achieves gains by making data objects
requested by a mobile user immediately available when the
mobile moves to a new network attachment point, thus reduc-
ing the delay for obtaining the data compared to transferring
it from the original source where the data is located. The
higher delay for obtaining the data from the source can be
due to the larger distance (number of hops), or because the
path to the source includes low capacity links, such as a
low capacity backhaul of femto/small cells or WiFi hotspots.
Proactive caching can exploit mobility information, such as the
probability of a mobile connecting to future attachment points.
Exploiting such mobility information to undertake proactive
actions has been applied to reduce handover delays in WiFi
and cellular networks [7], [8], [9].

We propose a novel distributed approach for proactively
fetching data that a mobile requests in caches located close the
network attachment points where the mobile has some proba-
bility to connect to. The caches that should proactively fetch
data objects are selected based on mobility information and
on the gains from reduced data transfer delay. The approach
is applicable to the case where the requested data objects
have different sizes and to a two-level cache hierarchy, which
are both hard problems. Moreover, our modeling framework
considers the case where a data object’s transfer delay is
independent of the object’s size and the case where the transfer
delay is a function of the object’s size. Although our focus is
on using caching to proactively fetch data based on mobility

prediction, our framework can account for content popularity,
which is a factor considered in traditional caching and data
placement. Moreover, although our objective is to reduce the
data transfer delay, the objective can include other forms of
cost such as network bandwidth or monetary.

A novel aspect of the proposed approach is the use of con-
gestion pricing that considers the demand for caching and the
available storage to efficiently utilize limited cache capacity,
while reducing the delay for transferring the requested data
to a mobile. Congestion pricing also allows us to solve the
proactive caching problem in a distributed manner, by deciding
independently for each data object where it should be cached.
Congestion pricing has been extensively studied for network
flow and congestion control. To the best of our knowledge, the
present work is the first to apply it to proactive caching.

The problem of selecting caches to proactively fetch data
objects requested by mobiles is fundamentally different from
both conventional caching and data (or content) placement.
Both these problems involve caching data objects closer to
potential requesters, based on the popularity of the objects.
In contrast, the problem investigated in this paper involves
proactively fetching data objects requested by mobiles based
on their mobility; different mobiles, independent of the ob-
jects they request, can have different mobility patterns, which
can result in different proactive caching decisions. A second
difference is that, when a mobile eventually moves to a
new attachment point, the cache space that was occupied by
the data requested by the mobile is freed. Also, proactive
caching involves selected caches pulling data from sources and
storing it for a short-term, whereas data placement involves
pushing data to caches and storing it for a longer-term. Finally,
our proactive caching approach does not perform eviction or
replacement when a cache is full, as in conventional caching;
rather, our approach uses congestion pricing to ensure that
the objects proactively cached are those for which the highest
delay gains are achieved. Interestingly, prior work has found
that hierarchical or cooperative caching isn’t helpful when the
user population is above some relatively small threshold [10],
which is due to the heavy-tailed object distributions. However,
such results are not applicable to the two-level proactive cache
hierarchy discussed in this paper, where the decision to cache
data in leaf and mid-level caches depends on the mobility
patterns and the gains from reduced transfer delay.

Proactive caching of data objects requested by a mobile in
caches (or proxies) close to the mobile’s future attachment
points requires knowledge or prediction of mobile user re-
quests. Knowledge of user requests is available natively in
Information-Centric Networking (ICN) architectures, which
employ a receiver-driven model where receivers request con-
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tent by its name from one or more publishers, thus supporting
receiver mobility [11]. Alternatively, one can predict the data
that a mobile is likely to request [12], [13]. Note that the
focus of this paper is not on how mobility prediction can be
performed, nor how the data objects requested are known or
predicted. Rather, the paper focuses on developing and evalu-
ating efficient schemes that exploit knowledge or prediction of
mobility and data requests to proactively cache data to reduce
the transfer delay in mobility scenarios.

In summary, our contributions are the following:

• We propose a distributed proactive caching approach
that selects caches to proactively fetch data objects
based on mobility information and uses congestion
pricing to efficiently utilize cache storage.

• The proposed approach can be applied to the case
where data objects have different sizes and to a two-
level hierarchy of caches.

• Our modeling framework considers both the case
where the delay does not depend on the size of the
requested data objects and the case where the delay is
a function of the size of the requested data objects.

• We present a comprehensive set of evaluation results
that show how various system parameters influence the
delay gains of the proposed approach, which achieves
robust and good performance relative to an oracle and
an optimal scheme for a flat cache structure.

The rest of the paper is structured as follows: In Section II
we discuss related work, identifying where it differs from
the work in this paper. In Section III we present the models
and procedures for efficient proactive caching. Specifically, in
Section III-A we consider a flat cache structure while in Sec-
tion III-B we consider a two-level cache hierarchy; for both,
we assume that delays are independent of the requested object
sizes. The case where delays are a function of the requested
object sizes is discussed in Section III-C. In Section IV we
evaluate the proposed proactive caching scheme for scenarios
where the delays experienced by all mobiles are the same and
for scenarios that involve a scaled-down Internet topology,
where different mobiles can experience different delays for
transferring an object from its source. Finally, in Section V
we conclude the paper identifying directions for future work.

II. RELATED WORK

In the context of publish-subscribe ICN networks, work
related to proactive caching includes [1], [2]. The work in
[1] considers proactive caching based on prediction, but does
not investigate specific algorithms. The work in [2] proposes
proactive caching in all caches that lie one-hop ahead, close to
all network attachment points the mobile can attach to; such a
solution will of course lead to inefficient utilization of caches
close to attachment points that a mobile has a small probability
to attach to. On the other hand, our approach involves selecting
a subset of caches close to future network attachment points,
based on the probabilities that the mobile moves to these
points. Moveover, our investigations compare the proposed
proactive caching approach with a naive approach that caches
data objects in all one-hop caches, subject to the availability of
cache storage. The work in this paper differs from our previous

work on proactive caching in ICN networks [14], in that (1)
the current paper proposes an approach based on congestion
pricing to efficiently utilize cache storage, (2) we propose a
proactive caching approach for a two-level cache hierarchy,
and (3a) we consider the case where the delay is independent
of the requested data object size and (3b) the case where the
delay is a function of the object size.

The feasibility of using prediction together with prefetch-
ing for vehicular WiFi access is investigated in [4], which
develops a prefetching protocol, but does not propose or
evaluate specific prefetching algorithms. The work of [5]
investigates proactive caching of video content in caches
located in femtocells. Although the objective of [5] is similar
to our objective, there are key differences in both the network
model and the proposed solution: First, [5] considers a network
of partially overlapping femtocells, which differs from the
model considered in this paper. Second, we consider proactive
caching of data requested by each mobile, based on the
probability the mobile will move to different future attachment
points; once the mobile moves, the data can be removed from
all caches it was proactively fetched. On the other hand,
the problem of [5] is essentially a data placement problem,
which considers the popularity of the requested data [15].
Finally, we consider a decentralized approach using congestion
pricing to efficiently utilize cache storage. On the other hand,
[5] proposes a centralized greedy algorithm. The work of
[6] considers proactive caching (or seeding) to minimize the
peak of the total load in a cellular network, subject to user
impatience constraints, which essentially impose a maximum
delay for the content to be available to users requesting it.
An offline water-filling algorithm that determines the content
transfer schedules, initially assuming perfect knowledge of
future user interests, is proposed; the algorithm is later adapted
to handle uncertainty of user interests and traffic. Our work
differs in that our constraint is the cache storage, rather than
the network capacity as in [6]. Furthermore, [5], [6] do not
consider the case where the transfer delay is a function of the
object size.

III. EFFICIENT PROACTIVE CACHING

Proactive caching is used to prefetch data requested by a
mobile, so that it is immediately available when the mobile
connects to its new network attachment point, thus reducing
the transfer delay. We consider two cases for the transfer delay.
In the first case, the transfer delay is independent of the size
of the requested data objects, while in the second the transfer
delay is a function of the data object size.

The transfer delay is independent of the requested data
object size when the object size is small, e.g. fire/security
alerts, thus the transfer delay is determined primarily by the
propagation delay rather than the transmission delay. The delay
for obtaining an object from its the original remote source is
denoted DR, whereas the delay for obtaining an object from
the local cache is denoted DL. These delays can depend on
the distance to the source or cache, e.g. in number of hops.
Note that, although we use the term delay, DR and DL can in
general include the cost (e.g. network, monetary) for obtaining
data from the source or a remote location, which is independent
of the requested data object size. For the above assumption of
the transfer delay, Section III-A describes the proactive caching



approach for a flat set of caches, while Section III-B considers
proactive caching in a two-level cache hierarchy.

The transfer delay will depend on the data object size
when it is dominated by the transmission delay, e.g. for large
objects such as video files. For example, when the mobile
is connected to a WiFi hotspot (or 3G/4G small cell), the
delay for transferring a data object from a local cache is
proportional to the object size and inversely proportional to
the WiFi (or 3G/4G) data rate. On the other hand, if the
object is transferred from a remote location over a lower
capacity backhaul link (e.g. xDSL) that connects the hotspot
(or small cell) to the Internet, then the delay is inversely
proportional to the backhaul rate, which is smaller than the
WiFi (or 3G/4G) rate. As above, the delay can actually involve
any cost that is proportional to the object size, e.g. cost per
unit of transferred data in the case of data volume charging.
Section III-C describes our proactive caching approach when
the delay is a function of the requested object size.

A. Proactive caching in a flat cache structure

In this section we present our approach for selecting the
caches that should proactively fetch data objects, in the case of
a flat set of caches and when the transfer delay is independent
of the size of the requested data objects. Under this assumption,
as we will see, the data object is either fully cached or not
cached. Our objective is to minimize the average delay across
all requested objects, subject to the cache storage constraints.
Note that in a flat cache structure, the caches are independent,
hence prefetching decisions are also independent.

Let qls denote the probability that the mobile requesting
object s moves to cache l and Bl denote the maximum storage
at cache l; we initially assume that all objects have the same
size o. Note that the probability qls can depend on the specific
mobile, its current or past location, and the time instant, but
for simplicity we do not make this dependence explicit in the
notation. Also, let Sl be the set of objects requested by mobiles
that have non-zero probability to move to cache l and L be the
set of caches. We define the following optimization problem:

min
bls

∑
s∈Sl

Ds (1)

subject to
∑
s∈Sl

o · bls ≤ Bl , ∀l ∈ L, (2)

where Ds =
∑

l∈LDl
s is the average delay for obtaining object

s and bls equals one if the object s is proactively fetched in
cache l and zero if it is not proactively fetched in cache l. Dl

s is
equal to qlsDR if the object is not in cache l (bls = 0) and needs
to be obtained from its original remote location and qlsDL if
the object is stored in cache l (bls = 1). The above optimization
problem involves selecting for each data object s requested by
a mobile, based on the mobile transition probabilities, Figure 1,
the subset L′ ∈ L of caches that will proactively fetch object
s so that it is immediately available to the mobile when it
connects to an attachment point close to the cache, in order to
achieve the optimization target (1) while satisfying the cache
storage constraint (2).

In order to efficiently utilize the cache storage, we intro-
duce a congestion price pl which is adapted based on the

demand for caching and the available storage. Specifically,

pl(t+ 1) =
[
pl(t) + γ

(
o · bl(t)−Bl

)]+
, (3)

where bl(t) is the aggregate demand at cache l at time t and γ
is the price update factor, which determines how quickly the
cache congestion price adapts to changes of the demand for
caching. For the evaluation in Section IV, the cache price is
updated when a new cache request appears.

The decision to proactively fetch an object s at cache l is
based on the following rule:

bls =

 0 if qls(DR −DL) < pl

1 if qls(DR −DL) ≥ pl
(4)

The above decision rule provides a distributed and decentral-
ized approach to decide, for each object s and for each cache l,
whether the object should be prefetched. Of course, the object
will actually be prefetched only if cache storage is available.
Adjusting the cache price using (3) directs the system towards
efficient use of cache storage, while achieving the optimization
target (1). Specifically, when the cache is underutilized, i.e.
cache storage is available, the congestion price decreases, thus
allowing more objects to be proactively fetched in the cache
based on the decision rule (4). On the contrary, when the
cache demand is larger than the cache size, then the price
increases which in turn, due to (4), reduces the number of
objects that are requested to be cached. Furthermore, when
the cache price is such that the amount of requested cache is
equal to the cache storage, then due to the decision rule (4)
we are certain that these requests correspond to the highest
values of qls(DR−DL), hence the minimum in (1) is achieved.
Note that content popularity can be incorporated in the above
model if we replace qls with the sum qls + rs, where rs is the
popularity of object s.

Two practical issues related to the application of the
decision procedure (4) include where the decision is taken and
if the decision is to proactively cache an object, when should
prefetching start. Regarding where the decision is taken, one
option is for the mobile requesting object s, or some proxy
on behalf of the mobile, to inform all caches located close
to its possible future attachment points about its transition
probability: When cache l learns the probability qls, then
together with the delays DL, DR and the cache congestion price
pl it can apply the decision rule (4). Alternatively, the caching

l1

l2

L’

1l
sq

mobile 2l
sq

source

Fig. 1. The proactive caching problem involves selecting, based on the mobile
transition probabilities, the set L′ of caches to proactively cache object s, in
order to achieve (1) while satisfying (2). In the proposed scheme the decision
to proactively prefetch a data object is taken independently for each cache.



decision can be taken at the mobile, or its proxy, in which
case it would need to learn the delays DL, DR and the cache
price pl from all caches it has some probability to connect to.
The second issue of when to start to prefetch a data object is
related to the time interval after which the mobile connects to
its next network attachment point and the time for the cache
to download the requested object from its remote location.

When a mobile moves to its new attachment point, then it
can directly receive the requested object from the local cache,
if the cache had prefetched the requested object. Otherwise, the
mobile obtains the requested object from the original source.
When a mobile connects to its new attachment point, then
the space occupied in all caches that proactively cached that
mobile’s data can be freed; of course, if the local cache at the
mobile’s new attachment point had prefetched the mobile’s
data, then the corresponding space will be freed after the
data is transferred to the mobile. The above actions require
communication and cooperation among caches.

The model presented above can be extended to objects with
different sizes, by replacing the constraint in (2) with∑

s∈Sl

os · bls ≤ Bl ,

where os is the size of object s. Additionally, the cache
price pl on the right side of the inequalities in (4) should
be replaced with os · pl. For objects with different sizes, the
optimization problem becomes identical to the 0/1 Knapsack
Problem, which falls within the class of NP-hard problems.

Another extension is when the remote and local delay is
different for different data objects and caches, hence they
can be denoted Ds,l

R , Ds,l
L and the decision rule (4) can be

adapted accordingly. Instead of maintaining different delays
for different objects or mobiles, delays can be associated with
object or mobile types, or can depend on the mobile’s initial
network attachment point. In all these cases, the actual values
of the delay can be estimated in a measurement-based manner.

1) Optimal for equal-size objects: For a given set of cache
requests, the optimal in the case of equal size data objects,
can be obtained for a flat set of caches as follows: For each
cache l, we order the cache requests in decreasing value of
qls(DR−DL). Then, starting from the request with the highest
qls(DR−DL), we fill the cache until the constraint Bl is reached.

The above procedure for obtaining the optimal is performed
in rounds: in the beginning of each round we have a given set
of cache requests. This is unlike the solution based on cache
congestion pricing, where the decision of whether to cache an
object is taken iteratively, based on (4), for each cache request,
hence can be applied on-line. A practical issue with the optimal
solution is the duration of each round, which determines the
number of cache requests considered; this duration depends
on the time interval after which a mobile connects to its new
attachment point and DR.

B. Proactive caching in a two-level hierarchy
Next we consider a two-level cache hierarchy. Each leaf

node can be under only one mid-level cache, Figure 2, and an
object can be proactively fetched at a leaf cache, at a mid-level
cache, or both. The delay for obtaining an object from a mid-
level cache is DM, which satisfies DL < DM < DR. At any time

instance, there will be a given set of cache requests from the
mobiles that are active at that time instant. For each such time
instance, the proactive cache problem for a two-level cache
hierarchy has similarities with the data placement problem
[16], where the probability of an object being requested at
a specific cache is given by the probability of the mobile
moving to the corresponding network attachment point. The
authors of [16] show that the data placement problem with
different object sizes is NP-complete. Although there are cases
where the placement problem in a hierarchical network with
equal size objects can be solved in polynomial time [17], such
solutions have a high polynomial degree and apply to an offline
version of the problem.

In a two-level cache hierarchy, the leaf cache can corre-
spond to caching that is performed at a local area network,
such as femto/small cell, hotspot or home network, whereas
the mid-level cache can correspond to caching at the ISP that
connects the local network to the Internet.

Our approach to solve the proactive caching problem in
a two-level cache hierarchy first considers two flat cache
selection problems: one assuming that the object is proactively
fetched in the mid-level cache and the other assuming that the
object is not proactively fetched in the mid-level cache. Each
of the aforementioned flat cache problems can be solved using
the distributed approach presented in Section III-A, by having
the mid-level cache send the leaf caches the delay DR, which
is the delay for obtaining the object from the remote source,
and the delay DM, which is the delay for obtaining the object
from the mid-level cache. Each leaf cache, using (4), decides
whether to cache the specific data object for each of the two
problems: For the problem where the object is assumed not
to be cached in the mid-level cache, the leaf cache uses (4)
to decide if the object should be prefetched in the leaf cache.
Whereas, for the problem where the object is assumed to be
cached in the mid-level buffer, the leaf cache uses (4) replacing
DR with DM to decide if the object should be prefetched in
the leaf cache. Each leaf cache informs the mid-level cache
about the resulting average object delay for each of the two
problems: qlsDR or qlsDM if the decision is not to proactively
fetch the object and qlsDL if the decision is to proactively fetch
the object in the leaf cache.

After receiving from all leaf caches the delay for the two
problems, the mid-level cache takes the sum of the delays for
each problem: Dmid

M in the case the mid-level cache proactively
fetches the data object and Dmid

R in the case the mid-level cache

l1 m1 mN……

source

mid-level caches

leaf caches

1l
sq 1m

sq
Nm

sq

…

Fig. 2. In a two-level cache hierarchy, each mid-level cache cooperates with
its leaf caches to decide which will proactively cache a data object. No such
cooperation is necessary between mid-level caches.



does not proactively fetch the data object. The decision of
whether to cache or not cache a data object in the mid-level
cache is determined based on a decision rule that resembles
(4): If Dmid

R −Dmid
M ≥ pmid then the object is proactively fetched

in the mid-level cache, otherwise it is not fetched. The variable
pmid is the congestion price for the mid-level cache, which is
updated in a similar manner as the congestion price for the leaf
caches (3), but based on the demand for caching in the mid-
level cache and the storage available in the mid-level cache.
Following its decision, the mid-level cache then informs the
leaf caches which delay factor (DR or DM) they should use in
(4) to eventually decide whether to cache a data object.

The above procedure is distributed and requires some
cooperation between the mid-level cache and its leaf caches.
Moreover, it can be applied to a hierarchy with more than one
mid-level caches, as long as each leaf cache is a child of only
one mid-level cache. The proactive caching decision for each
mid-level cache and its leaf caches follows the above approach,
and can be performed independently of other mid-level caches.

C. Proactive caching when delay is a function of object size
In Sections III-A and III-B we assumed that the transfer

delays DL, DM, DR are independent of the data object size. In
this section we consider the case where the transfer delay is a
function of the data object size. As we will see, in this case
there can be gains if a part of an object, and not necessarily
the whole object, is proactively cached.

Let RL be the rate for transferring to a mobile data stored
locally at a cache close to the mobile’s attachment point,
and RR be the rate for transferring to a mobile data from
a remote source. We assume that RR < RL, which justifies
why proactively caching can be beneficial. As an example, RL

can be the rate for transferring data across a WiFi or 3G/4G
interface, while RR can be the rate for transferring data across a
hotspot or small cell’s backhaul link, which is typically smaller
than the rate of a WiFi or 3G/4G interface.

Assume that some part xls of object s that has size os
is proactively fetched to cache l, whereas the remaining part
os − xls would need to be obtained from the object’s original
remote location. If the mobile requesting object s moves
to an attachment point close to cache l, then the delay for
transferring the whole object s is given by

Ds(x
l
s) =

xls
RL

+
os − xls
RR

=
os
RR

−
(

1

RR

− 1

RL

)
xls . (5)

In the last equation we have assumed that the rates RL, RR

are the same for all caches l. The results presented below are
similar when the rates are different for different caches.

Consider a utility function Us(d) that represents a mobile
user’s valuation for delay d in transferring object s. Us(d) is
a decreasing function, and possible shapes for it are shown in
Figure 3. Figure 3(a) corresponds to the case where a user
obtains no value when the delay is above some maximum
threshold, and obtains a value that increases linearly as the
delay approaches zero. The sigmoid utility in Figure 3(b)
corresponds to the case where a user obtains maximum value
when the delay is below some minimum threshold, while he
obtains zero value when the delay is above some maximum
threshold; such a curve approximates the exact step utility of
hard real-time applications, with strict delay requirements.

Delay, d

U(d)

(a)

Delay, d

U(d)

(b)

Fig. 3. Example utilities as a function of delay.

We can define the utility U l
s(x

l
s) = Us(Ds(x

l
s)/q

l
s), which

is now a function of the part xls of object s that is proactively
fetched in cache l. Note that in the last equation we have
added the factor 1/qls to account for the transition probability
to cache l. Hence, if a mobile has a higher probability to
move to cache l compared to some other cache, then it would
need to proactively cache a larger amount of the data object
to achieve the same utility. We assume that the utility function
U l
s(x

l
s) is continuous and strictly increasing in the interval

[ml
s,M

l
s], where ml

s ≥ 0 and ml
s < M l

s ≤ os are minimum
and maximum values of xls for which the following hold:
U l
s(x

l
s) = U l

s(m
l
s) for xls ≤ ml

s and U l
s(x

l
s) = U l

s(M
l
s) for

xls ≥ M l
s. As an example, a utility function that corresponds

to Figure 3(a) is U l
s(x

l
s) =

R
qls
(xls −ml

s), for xls ∈ [ml
s,M

l
s],

where R = 1
RR
− 1

RL
.

As in the previous two subsections, we define a cache
congestion price that is updated as in (3), with o·bl(t) replaced
by xl(t) =

∑
s∈Sl

xls(t), which gives the aggregate demand for
cache storage at l, when data objects can be partially cached:

pl(t+ 1) =
[
pl(t) + γ

(
xl(t)−Bl

)]+
, (6)

where as before γ is a price update factor.

The framework below follows the model of [18]. We define
the following decision rule for selecting the amount xls of
object s to be proactively fetched in cache l:

xls =


ml

s if 1
U l

s(m
l
s)
≤ pl

U l
s
−1
(

1
pl

)
if 1

U l
s(M

l
s)
< pl <

1
U l

s(m
l
s)

M l
s if pl ≤ 1

U l
s(M

l
s)

(7)

Unlike the binary decision rule (4), where a data object is
either fully cached or is not cached, with (7) it may happen
that only a part of object s is fetched at cache l: xls is a
continuous variable with values in [ml

s,M
l
s], where ml

s ≤ 0
and ml

s < M l
s ≤ os.

Using the results from [18], it can be shown that a system
where the amount xls of object s to be proactively fetched in
cache l is determined by (7) and the cache price is updated
according to (6), with an appropriately small value γ, will
converge and solve the following optimization problem:

max
ml

s≤xl
s≤M l

s

∑
l∈L

∑
s∈S

Vs(x
l
s)

subject to
∑
s∈Sl

xls ≤ Bl , l ∈ L

where S is the set of all data objects, Sl is the set of objects
cached at l, L is the set of all caches, and

Vs(x
l
s) =

∫ xl
s

ml
s

1

U l
s(y)

dy , ml
s ≤ xls ≤M l

s .



As an example, for the utility U l
s(x

l
s) =

R
qls
(xls−ml

s), we have

Vs(x
l
s) =

qls
R log(xls −ml

s).

Moreover, at the optimum the requested amount of data to
be proactively cached {xls

∗
: s ∈ S, l ∈ L} achieves utility

proportional fairness: for any other set of cached data sizes
{xls : ml

s ≤ xls ≤M l
s, s ∈ S, l ∈ L},∑
l∈L

∑
s∈S

xls − xls
∗

U l
s(x

l
s
∗
)
≤ 0 .

Utility fairness can be seen as a way to allocate limited
resources in a manner that is fair from an application perspec-
tive, since it takes into account the actual valuation (utility)
for a specific amount of resources (cache storage in our
case). In contrast, resource-oriented fairness definitions, such
as proportional fairness and max-min fairness, seek to allocate
resources in a fair manner from a resource-centric perspective,
which does not necessarily reflect the requirements at the ap-
plication level. Thus, considering utility fairness in the model
of this section results in an application-oriented approach for
performing proactive caching.

IV. EVALUATION

In this section we evaluate the proposed Efficient Proac-
tive Caching (EPC) scheme using the OMNeT++ simulation
framework. We present results for a flat and a two-level cache
hierarchy, for data objects that have the same size and when
the delay is independent of the object size. Evaluation results
for different object sizes and when the delay is a function of
the object size will be included in a followup of this paper.

A. Simulation model

We consider scenarios where the delay for obtaining a data
object is the same for all mobiles (referred to as fixed delay
scenarios) and scenarios where the delay for obtaining a data
object from the source is variable and depends on the number
of hops between the source and the mobile (receiver); the latter
scenario involves a scaled-down Internet topology containing
400 nodes, with each node representing an autonomous system
(AS) [19]. The value of various system parameters considered
in the simulations are shown in Table I. In the fixed delay
scenarios, there are a total of 160 mobile users that issue
requests for objects of the same size. The mobiles can move
to 8 different network attachment points, where there is a
corresponding local leaf cache. At a higher level, there is a
mid-level cache. Whenever a mobile performs a handover, we
assume that a new mobile enters the system, thus the total
number of active mobiles in the system always remains 160. In
the scenarios with scaled-down Internet topology, we conduct
simulations over a set of 10 different neighborhoods, with
each neighborhood having 160 mobile users, yielding a total
of 1600 mobile users. Each neighborhood is composed by 8
ASes lying on the edge of the topology. The vast majority
of such ASes are stub (access) networks to the Internet. For
each neighborhood, we randomly select an initial stub AS
and then form the neighborhood by selecting 8 stub ASes
based on minimum hop distance from the initial stub AS. The
underlying idea is that the selected nodes are neighbors of
the initial stub AS, thus typically they should be a few hops
away for mobile users hosted by the initial stub AS. Note that

the neighbors are selected so there are no overlaps between
different neighborhoods.

A mobile user can move with some transition probability to
one of the 8 different attachment points, each with its own local
cache. In the fixed delay scenarios there is one mid-level cache,
whereas in the scaled-down Internet topology scenarios there
is one mid-level cache in each neighborhood. We consider
4 different sets of mobile transition probabilities, Table I,
with different skewness, where a higher skewness corresponds
to a higher probability to move to a particular attachment
point (equivalently, cache). We also assume that the destination
network attachment point (equivalently, the destination cache)
with the highest transition probability is different for different
mobiles, such that the number of active mobiles moving to
a specific cache is on average the same, and equal to 20
throughout the simulation. Finally, note that with the EPC and
optimal schemes the transition probabilities used in the caching
decisions are measured as the simulation progresses.

The performance of the EPC scheme depends only on the
ratio of delays DR/DL and DM/DL, because the decision rule
for both the leaf cache (4) and the mid-level cache has a
linear dependence on the delays and the congestion price is
adjusted to achieve high utilization; hence we consider the
delay ratios rather than the absolute delay values. Assuming
that the leaf cache performs caching at a local area network
(e.g. femto/small cell or hotspot) and that the mid-level cache
performs caching at the ISP that connects the local network to
the Internet, we have taken DM/DL = 2 and 5, which can be
seen as the number of hops or the actual delay for obtaining
a data object from an ISP cache relative to a local network
cache. We have considered DR/DL = 10 and 18; together
with the values of DM/DL, these give values of DR/DM in
the range [2, 5]; the lowest value DR/DM = 2 corresponds to
the case where an ISP has a direct peering link with the content
provider network (source for a data object), in which case their
distance is two AS hops. At the other side, studies have shown
that the average inter-AS path length has remained practically
constant and equal to 4.2 over the last 12 years [20], and
for this reason we have selected the highest value of DR/DM

to be 5. For the scaled-down Internet topology scenarios, we
consider DM/DL = 5 and DR/DL = 9

5 (# hops − 1) + 1; the
latter gives an average DR/DL equal to 10, since the average
number of hops between a source and receiver in the scaled-
down Internet topology is 6.

The performance of the proposed EPC scheme is compared
to the optimal scheme described in Section III-A1, to a naive
scheme, and an oracle. It is important to note that the optimal
scheme in the case of a flat cache structure is implemented such
that the cache allocation is performed whenever cache storage
is freed. In addition to being time consuming, the ability to
implement frequent cache allocations can be constrained by
the time for actually transferring the data objects to the caches
where they are proactively fetched.

With the naive scheme, a mobile requests caching for
all data objects, provided that storage is available. With the
oracle, for each new cache request we assume that the data
object is prefetched (provided there is cache space) by the
cache located at the attachment point where the mobile will
eventually connect to (hence the name oracle). Unlike the
optimal scheme, which allocates cache storage in rounds



TABLE I. PARAMETER VALUES. THE VALUES DESIGNATED WITH *
ARE DEFAULT VALUES, I.E. THE VALUES IF THE SPECIFIC EVALUATION

SCENARIO DOES NOT INDICATE OTHERWISE.

Parameter Values
Fixed delay Scaled-down Internet topology

# of active mobiles 160 160 per neighborhood
10 neighborhoods

# of attachment points 8 8 per neighborhood
Avg. mobile trans probs SKD50%: 50%, 20%, 10%, 7.5%, 5%, 3× 2.5%

SKD70%∗: 70%, 2× 10%, 3× 2.5%, 2× 1.25%
SKD90%: 90%, 3× 2%, 4× 1%

Std. dev. of trans probs 5%∗, 30%
Delay DM/DL = 2, 5∗ DM/DL = 5

DR/DL = 10∗, 18 DR/DL = 9
5 (#hops-1)+1

Total cache (leaf+mid) 0− 320 objects, default:240∗

considering the requests from active mobiles, the EPC, naive
and oracle iteratively, for each new cache request, take caching
decisions that do not change until the corresponding handoff
is performed.

B. Evaluation results
In this section we compare the various schemes in terms

of the gains in reducing the average delay for the mobiles to
obtain the requested data objects, compared to the delay if no
caching is used, i.e. when all data objects are obtained from
the original sources. Because the performance of the naive
and oracle schemes showed very small dependence on the
mobile transition probabilities, for these schemes we do not
show results for different transition probabilities.

The results shown are the average of 10 runs for each sce-
nario in the fixed delay case and 10 runs for each neighborhood
in the case of the scaled-down Internet topology. Each run
has a duration that corresponds to 10.000 handoffs. For these
parameters, the 95% confidence interval was within 5% of the
average values, hence they are not shown in the graphs.

The conclusions from the evaluation are the following:

• The gains of EPC are higher when there is more
mobility information, i.e. for a higher skewness of the
mobile transition probabilities; these gains are close to
those of the optimal scheme for a flat cache structure
and the oracle.

• For a higher skewness of the mobile transition proba-
bilities, EPC achieves higher gains when more storage
is allocated to leaf caches. Moreover, the gains of EPC
are significantly higher than the naive scheme when
more storage is allocated to the leaf caches.

• Even for a relatively high variation of the mobile
transition probabilities, EPC’s gains are robust, and
significantly higher than the naive scheme, when the
skewness of transition probabilities is high and when
more storage is allocated to leaf caches.

1) Comparison of Efficient Proactive Caching (EPC) with
the naive, optimal, and oracle schemes: Figure 4(a) considers
a fixed amount of total cache storage TC. The x-axis shows the
percentage MC/TC of the total cache storage that is allocated
to the mid-level cache; hence, 0% indicates that all cache
storage is equally distributed to the leaf caches, whereas 100%
indicates that all cache storage is allocated to the mid-level
cache. Figure 4(a) shows that EPC achieves a higher gain than
the naive scheme for small values of MC/TC. Moreover, EPC’s
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Fig. 4. Influence of mobile transition probabilities on gain. Fixed-delay,
DR/DL = 10, DM/DL = 5, TC = 240 (total cache).

gain is close to the optimal scheme, in the case of a flat cache
structure (MC/TC = 0). On the other hand, for larger values
of MC/TC the gains of all schemes are close, and become
equal when all storage is allocated to the mid-level cache; this
occurs because the capacity of the mid-level cache is larger
than the total demand and all requested objects can be cached,
thus the gains for all schemes are equal and determined by the
delay of the mid-level cache. Figure 4(a) also shows that the
oracle achieves the best performance when all the storage is
allocated to leaf caches, whereas the best performance of the
EPC and naive schemes for the specific system parameters is
achieved when MC/TC = 75%.

2) Influence of mobile transition probabilities: Figure 4(b)
shows that when the skewness of the mobile transition proba-
bilities increases, then the gains of EPC are higher when more
storage is allocated to the leaf caches. Moreover, when the
skewness is large (i.e. SKD90%), then EPC achieves more
than 80% of the gains achieved by the oracle and almost 90%
of the gains achieved by the optimal scheme for a flat cache
structure. It is important to note that, for large skewness, the
EPC scheme achieves a higher gain than the naive scheme
even when the allocation of storage to leaf and mid-caches
is selected to achieve the best performance for each scheme:
Specifically, for MC/TC = 25% EPC achieves gain 68%,
which is more than 30% higher than the highest gain achieved
by the naive scheme, namely 52% for MC/TC = 75%.

3) Influence of delay ratios: Comparing Figure 5(a) to 4(a)
shows that when the delay for obtaining data objects from their
original sources is higher, then the performance of all schemes
is generally higher, especially when more storage is allocated
to the mid-level cache (larger values of MC/TC). Figure 5(b)
shows that when the delay for obtaining data from a mid-level
cache is close to the delay for obtaining the data from a leaf
cache (DM/DL = 2), then EPC achieves the highest gains when
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Fig. 5. Influence of delay ratios on gain. Fixed delay, SKD70%, TC = 240.

all storage is allocated to the mid-level cache.

4) Influence of total cache storage: Next we consider a
scenario with the scaled-down Internet topology. Figure 6(a)
shows the influence of the total cache storage on the perfor-
mance in the case of a flat cache structure, while Figure 6(b)
shows the same influence when the mid-level cache of each
neighborhood can store 80 objects. Observe that while the gain
of the naive scheme increases linearly with the total cache,
the gains for the EPC and oracle increase slower for larger
values of the total cache. Furthermore, the optimal scheme
exhibits a stepwise behavior, which is a result of its operation:
the optimal scheme recomputes the cache allocation whenever
cache storage is freed; this is also the reason that the optimal
scheme has, for small values of cache storage, a higher gain
than oracle: the oracle scheme decides where an object is
cached when the corresponding request appears; this decision
does not change until the corresponding handoff is performed.
However, it may happen that when the decision was made there
was no available storage at the cache where the mobile will
eventually move to. On the other hand, the optimal scheme
continuously recomputes the cache allocation when storage
space becomes available, hence can take advantage of any free
cache space right before a handover is performed.

5) Transient behavior: Figure 7 shows that when the
system starts with no knowledge of the mobile transition
probabilities, EPC’s gain converges to its steady state value
slower than the other schemes; this is due to the dynamic
updating of cache congestion prices and the measurement-
based estimation of mobile transition probabilities. Moreover,
as expected, the convergence time is larger for smaller values
of factor γ: after a change of the mobile transition probabilities
from SKD70% to SKD90% at time 5000, the gain reaches 95%
of its steady state value after approximately 750 handovers for
γ = 0.5 and 490 handovers for γ = 8.
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Fig. 6. Influence of total cache size on gain. Scaled-down Internet topology.

6) Influence of variation of mobile transition probabilities:
Comparison of Figures 8 and 4(a) shows that EPC’s gains are
robust to the variation of the mobile transition probabilities: for
values of MC that EPC achieves the highest gains (50% and
75%), an increase of the standard deviation of the transition
probabilities from 5% (Figure 4(a)) to 30% (Figure 8) reduces
the gains of EPC by less than 10%. Moreover, the higher
variation of the transition probabilities appears to influence
the oracle more than the other schemes. This is because the
higher variation can lead the oracle to require more leaf-level
caching than what is available, hence is forced to use the mid-
level cache which achieves lower delay gains; this is verified
by the higher use of the mid-level buffer by the oracle, for a
higher variation of the transition probabilities.

7) Comparison of fixed delay with scaled-down Internet
topology: Comparison of Figure 9, which is for the scaled-
down Internet topology, and Figure 4(a), which is for fixed
delay, shows that the variation due to the Internet topology has
a larger influence on the oracle scheme; similar to the above
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Fig. 9. Scaled-down Internet topology, DR/DL = 10, DM/DL = 5, TC =
240 (total cache).
explanation for the higher variation of the mobile transition
probabilities, this is because the higher variation results in
the oracle scheme requiring leaf-level caching more than the
available storage, thus forcing it to use the mid-level cache for
which the delay gains are lower.

V. CONCLUSIONS

We have presented and evaluated a proactive caching
scheme for reducing the delay in mobile scenarios, which
exploits mobility information and uses congestion pricing to
efficiently utilize cache storage. Our modeling framework
includes the case of a flat cache structure and a two-level
cache hierarchy, and the case where the delay is independent
of the size of the requested objects and where the delay is a
function of the object sizes. Our evaluation results show how
various parameters influence the delay gains of the proposed
scheme, which achieves robust and good performance relative
to a scheme which attempts to naively cache all data objects,
an optimal scheme for a flat cache structure, and an oracle
which knows a priori a mobile’s future attachment point.

Ongoing and future work includes extending the proactive
caching scheme to consider cases where the same data object
is requested by more than one mobile user, thus exploiting
mobility information together with object popularity. A second
extension is to allow a mobile, after a cache miss, to obtain
the requested data object not from the original source, but
from another cache that proactively fetched the object and is
closer to the mobile than the original source; this corresponds
to a hierarchy with two or more levels of caches, which
can be further motivated when inter-ISP charging costs are
present. The proposed models can also be extended to include
constraints on the available capacity, such as a low capacity
backhaul in femto/small cells and WiFi hotspots, thus captur-
ing in a uniform manner the constraints on cache storage and
network capacity. Another direction for future work involves

adapting the proposed proactive caching framework that uses
congestion pricing to achieve efficient cache utilization to
dense femto/small cells and WiFi hotspots with overlapping
coverage. The content placement problem in such topologies
is NP-hard [5], hence a solution like the one proposed in
this paper that uses congestion pricing can have advantages.
Finally, an interesting direction is the application of proactive
caching and congested resource pricing in mobile software
agent scenarios, where mobility involves software relocation
rather than device/physical mobility. In this context, the con-
strained resources can be storage, for delay critical applications
that process a large amount of data, or CPU processing.
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