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Abstract—Vehicle to Vehicle (V2V) and Vehicle to Infrastruc-

ture (V2I) communication aims to increase safety, efficiency, and

comfort of drivers. Vehicles periodically broadcast their current

status, such as position, velocity, and other information. Received

information is stored in a local knowledge base, often called world

model, and used for application decisions. Because of the potential

impact, V2V communication is an interesting target for mali-

cious attackers. Message integrity protection using cryptographic

signatures only protects against outsider attackers. In addition

to signatures, misbehavior detection mechanisms comparable to

intrusion detection systems (IDS) are needed to detect insider

attackers. Given the complexity and large number of foreseen

V2V and V2I applications, misbehavior detection cannot be a one-

size-fits-all solution. In this paper, we present a flexible framework

that can combine a range of different misbehavior detection

mechanisms by modeling their outputs using subjective logic.

We demonstrate the feasibility of our framework by using a

combination of existing detection mechanisms to increase their

misbehavior detection results.

I. INTRODUCTION

Throughout the past decade, vehicle to vehicle and vehicle
to infrastructure communication (V2X) has attracted signifi-
cant attention in the network research community. This also
includes aspects of security and privacy protection (cf. [1,
Ch. 9]). As a result of this research, emerging standards both
in the U.S. [2] and Europe [3] include the deployment of
security mechanisms that aim to ensure authenticity, integrity
of messages, and privacy protection of drivers. In both stan-
dards, this is done by means of ECDSA digital signatures on
messages and cryptographic certificates issued to vehicles by a
certification authority. In addition, to protect privacy, vehicles
will have multiple pseudonymous and renewable certificates
at their disposal so that they are not directly identifiable and
can change pseudonyms over time to provide unlinkability.
It is generally agreed that these mechanisms will provide a
solid protection against external attackers. Casual road-side
attackers equipped with a laptop and an IEEE 802.11p radio
will not be able to inject spoofed or altered messages into the
communication system.

However, V2X attacker models (e.g., as defined by
ETSI [4]), also include insider attackers that control necessary
credentials to create signed messages with a correct and
valid certificate. Such an attacker will be able to disseminate
incorrect information via perfectly valid messages, for exam-
ple, wrong position claims or warning about inexistent road

obstacles. Depending on specific implementations, this can
lead to incorrect warnings signaled to drivers or even incorrect
automatic reactions of vehicles, like automatic emergency
braking. The potentially life-threatening consequences of such
attacks are obvious.

The risk of insider attacks can be reduced by carefully safe-
guarding the cryptographic key material in hardware security
modules (HSM) [5]. Attackers will then not be able to extract
and use secret keys. In addition, efficient and fast revocation
mechanisms can be used to invalidate cryptographic keys in
case an abuse is detected [6]. However, relying on the security
of an HSM alone is not sufficient, as an attacker may be able to
bypass the protection or just use a valid HSM but feed it with
incorrect input data. And revocation is only effective after an
abuse is detected. So this leads us to the critical question: how
can we detect entities in a V2X system that misbehave in the
sense that they disseminate incorrect and potentially malign
information to other vehicles or road-side entities?

While this is closely related to (anomaly-based) Intrusion
Detection Systems (IDS), we refer to such mechanisms as
misbehavior detection, because they also catch other forms of
misbehavior, such as that caused by malfunctioning sensors in
vehicles. In addition, IDS normally only deal with abstractions
of data, while V2X mechanisms are closely related to the
real-world semantics of the data being processed, such as
location or road condition information. We define the term
misbehavior detection in the context of V2X communication
as the detection of incorrect information in communicated data
where incorrect refers to an abnormal deviation from the actual
information that is being sensed by vehicles and other entities
in the system.

While a wide range of solutions for misbehavior detection
in specific applications exists (cf. Section II), we argue that
the field of V2X communication is too diverse and detection
mechanisms need to be too application-specific for a single
solution to address all requirements. Rather than presenting a
new misbehavior detection mechanism, our contribution in this
paper is, therefore, to propose a flexible framework that can
accommodate existing as well as new mechanisms. Detection
results can be combined and related to each other to support
a wide range of applications.

In the following, we first review existing work on mis-
behavior detection (Section II). Section III introduces our



misbehavior detection framework, and we discuss its utility in
Section IV. We conclude with a discussion of other misbehav-
ior detection frameworks and other application of subjective
logic in Section V and an outlook on open issues in Section VI.

II. MISBEHAVIOR DETECTION

Misbehavior detection is about detection of incorrect in-
formation transmitted in the network. Causes for incorrect
information are malicious intent, as well as malfunctioning
sensors. Both can lead to unclear situations if they are not
filtered out. We argue that vehicles should not rely on other
vehicles to behave correctly. Rather, they should implement
misbehavior detection to detect such erroneous and malicious
messages. Because attackers are typically considered more
challenging by the literature, as evidenced by the large body
of work concerning them [7]–[14], we focus on their detection
in this work.

In previous work, we have illustrated that misbehavior
detection can be divided into two categories: node-centric
and data-centric misbehavior detection [7]. Node-centric mech-
anisms focus specifically on the use of identities to de-
tect attackers, while data-centric misbehavior detection covers
mechanisms that use semantics associated with the exchanged
packets to detect attackers. Both types of mechanisms are
complementary, which we exploit in our framework. We will
illustrate both types with an example from the state of the art.

An example for a node-centric misbehavior detection
mechanism is the trust framework developed by Raya et al. [8],
which discusses how a vehicle can draw conclusions about
messages for certain events based on the trust it has in the
senders associated with the event and the contents of these
messages. We focus on the node-centric aspect of their work.
Based on the type of event and the type of sending vehicle,
a vehicle will assign different trust levels to those senders. A
police vehicle may be given authority for specific event types,
such as accident situations. On the other hand, a vehicle’s
distance to the reported event can be used to assign a different
trust value. For example, a vehicle very close to the event can
have verified its occurrence and should be given higher trust.

Previous work by Leinmüller et al. [9] contains several
examples of data-centric misbehavior detection. These mech-
anisms provide simple and efficient checks using the data
contained in messages by directly analyzing their content and
the associated semantics. For example, the authors define an
acceptance range threshold, which exploits that transmission
range in wireless networks is limited by the channel. One-
hop beacon messages that contain a location much further
away than the maximum transmission range can be regarded as
untrustworthy. Similarly, the mobility grade threshold defines
a maximum speed for a given road (greater than the speed
limit), which can be compared to an estimate of reported
speeds. If a vehicle exceeds the threshold, its messages are
untrustworthy. In addition, the maximum density threshold
defines the maximum amount of vehicles that can be driving in
a particular region, which is a rough metric for detecting Sybil
attacks. The authors have also defined several mechanisms
for cooperative detection between vehicles, which we do not
discuss here.
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Fig. 1: Conceptual overview of our misbehavior detection
framework.

Although both works discuss very useful mechanisms that
can detect attacks, they have only very simplistic mechanisms
to combine information from multiple sources, such as the
vehicle’s sensors, and messages from many distinct vehicles.
The approaches basically use weighted averages with static
and manually determined weights. With this work we propose
a much more flexible framework to integrate arbitrary types of
detection mechanisms in order to enhance detection accuracy
and limit the type of misbehavior that may go undetected.

III. DETECTION WITH SUBJECTIVE LOGIC

A. Overview

Our goal is to create a flexible framework for misbehav-
ior detection that allows to combine a number of different
misbehavior detection mechanisms. Figure 1 shows a concep-
tual overview of the information flow. Vehicles receive new
information from other vehicles or own sensor readings. All
information known is stored in a world model, also called local
dynamic map (LDM) in current standardization [15]. Based on
the world model, information is possibly disseminated to other
vehicles, and local safety and traffic efficiency applications use
the world model contents as information base. In this paper we
focus on how the world model can be represented so that a
number of misbehavior detection mechanisms can analyze and
evaluate the contents. We show how their detection results can
be represented alongside the information, and how detection
results can be merged and used to filter the information that
is send to applications and other vehicles.

B. Requirements

Our proposal aims to support a large number of different
detection mechanisms to detect a wide range of possible
attacks. On the other hand, the world model is a central com-
ponent that should support a number of different applications.
Therefore, we discuss two main categories of requirements:
security requirements and application requirements.

From a security perspective, our framework must be able
to flexibly support various different detection mechanisms, in-
cluding node-centric and data-centric mechanisms. Therefore,
the framework should model known other vehicles, as well



as known information items. Also, the connection between
vehicles and information should be modeled. If vehicles are
marked as likely attackers by node-centric mechanisms, the
information received from them should be rated accordingly.
Some detection mechanisms reward positive behavior of vehi-
cles while others penalize bad behavior, and both need to be
represented in our model. In addition, some mechanisms will
be more certain about their results than others. Therefore, our
framework should support uncertainty. In addition, uncertainty
allows different weights for mechanisms in certain situations.
Given that we aim to combine a number of different detection
mechanisms, it is likely that multiple statements about the
same information item or vehicle will be the norm rather
than the exception. Such different statements need to be
merged by our framework to come to a conclusive statement
about information items and vehicles. Besides such multiple
statements about the same item, our framework should support
statements about different items that are related to each other.
For instance, our framework should support transitivity of
statements where applicable.

As discussed above, the number of security mechanisms
used in our framework will result in a large number of
statements about information items and vehicles. Applications
need a way of accessing information in the world model that
takes into account these statements in a way that is useful for
the application. For example, safety relevant applications have
strict requirements about the trustworthiness of information
they operate on. Other applications may support differing lev-
els of information trustworthiness. In all cases, our framework
needs to resolve transitivity and conflicts of statements before
returning information to applications.

C. World model graph representation

In our framework, we require a representation that allows
us to represent both node-centric and data-centric mechanisms
and their results in a consistent way. We now introduce a
graph representation for the world model, as illustrated in
Figure 2. The directed graph represents the entire world view
of the vehicle v

me

, including knowledge about other vehicles
(v4 and v5) and data that was received (d3 and d5), which
is indicated by the edges. We annotate these edges with
evaluations that represent trust (in vehicles) and confidence
(in information). Besides edges from v

me

to information,
there are also edges from vehicles v

i

to some information.
These represent knowledge about the confidence in data from
other nodes. For example, we assume that other vehicles only
disseminate information if they have some confidence it is
correct. Therefore, we model this default sender confidence
in our world model. Similar to this, vehicles can express trust
in other vehicles. v5 has expressed its trust in v4, which is
represented by edge o4.

D. Subjective logic detection representation

All statements of misbehavior detection mechanisms are
represented by annotations of edges in the world model graph
(see Section III-C). We use subjective logic, introduced by
Adun Jøsang [16], to represent the detection mechanisms’
statements. Subjective logic is especially suitable for our use
case, because it allows to model uncertainty, models possible
and negative statements, and offers a wide range of logical

operators to combine and relate different opinions, thereby
addressing all our requirements discussed in Section III-B.

The main construct of subjective logic is an opinion, which
is represented as follows:1

o := (b, d, u). (1)

Opinions represent both trust in other vehicles and confi-
dence in data. Opinions annotate each edge in the world model
graph and have an opinion holder h and a subject s:

h

o�! s. (2)

The opinion holder h and subject s are both nodes in
the graph representation, as shown in Figure 2. As explained
in Section III-C, opinion holders are the own or the other
vehicles and subjects are other vehicles or data. Each opinion
is expressed as a triple of

• belief b 2 [0, 1], meaning that a mechanism thinks a
vehicle is honest or data is correct;

• disbelief d 2 [0, 1], meaning that a vehicle is considered
an attacker or data is incorrect; and

• uncertainty u 2 [0, 1], representing the extent to which a
mechanism is unsure about its result.

In subjective logic, belief, disbelief and uncertainty are mu-
tually exclusive. This is represented by requiring b+d+u = 1.

Subjective logic opinions address all the security require-
ments we discussed in Section III-B. Namely, opinions allow
for explicit modeling of positive statements, negative state-
ments, and uncertainty. In addition, we discussed a number
of requirements that relate to merging of different opinions,
which are supported by subjective logic, as well. To perform
calculations on opinions, subjective logic defines a number
of operators, which extend classical logic operators, such as
boolean AND or OR. The full list of subjective logic operators
is discussed in [18]. The two most applicable to our framework
are consensus and transitivity.

• Consensus is used to merge several opinions of the same
holder about the same subject (for example, the outputs
of two mechanisms). Given h

o1�! s and h

o2�! s, we
denote the consensus as o3 = o1 � o2, such that h o3�! s.
Let o1 = (b1, d1, u1) and o2 = (b2, d2, u2). Then
o1�o2 = ((b1u2+b2u1)/, (d1u2+d2u1)/, (u1u2)/)

where  = u1 + u2 � u1u2.
• Transitivity is used to combine related opinions. Given
h

o1�! s and s

o2�! t, we denote the transitive opinion as
o3 = o1 ⌦ o2, such that h o3�! t.
Let o1 = (b1, d1, u1) and o2 = (b2, d2, u2). Then
o1 ⌦ o2 = (b1b2, b1d2, d1 + u1 + b1u2). Complete trust is
modeled as o1 = (1, 0, 0): then, o3 = o2.

In combination, these operators can be used to evaluate
information in the world model graph. Whenever an applica-
tion requests information from the world model, we follow a
path from the own vehicle vme to the information as shown
in Figure 2. Consider, for instance, d3 is requested by an
application. There are two paths from vme to d3 in the graph:

1In later papers, e.g., [17], an additional value a, representing an opinion’s
atomicity, is added; however, we keep the original opinion format.
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Fig. 2: This figure shows our graph representation of the world, and the possible relations in it. v
me

is the vehicle storing this
data, v

i

are other vehicles, d
i

are data items.

1) vme
o3�! v5

o4�! v4
o5�! d3 and

2) vme
o2�! d3.

To acquire a merged opinion about d3, consensus and
transitivity can be combined. The first path is merged using the
transitivity operator; the result is then merged with the second
path using consensus:

oresult = ((o3 ⌦ o4)⌦ o5)� o2. (3)

As can be seen, subjective logic opinions and operators
allow for a very flexible annotation of a vehicle’s world model
that supports both security and application requirements. De-
tectors of all sorts can be used in this framework to contribute
their opinions on trustworthiness of data and vehicles. In the
next section, we discuss applications for specific detection
mechanisms in more detail using some examples.

IV. DISCUSSION

In Section II, we introduced two types of misbehavior
detection mechanisms. One type operates on the assumption
that certain nodes are more trustworthy than others, and the
other verifies common behavior by analyzing beaconing data.
We will use such detectors to show how our framework can
improve misbehavior detection by mechanism combination in
an example scenario: vehicles are driving in a dense city
road network. The speed limit is 50 km/h. Traffic flows freely,
and some drivers speed slightly, up to 60 km/h. At the same
time, an ambulance vehicle rushes towards an accident scene.
Using its special right of way, the ambulance speeds and takes
shortcuts to arrive at the scene as fast as possible.

Data-centric detector: As data-centric detector, we take
the mobility grade threshold (MGT) from [19]. The detector
continuously examines received beacon messages, calculates
the estimated vehicle speed from relative location distance, and
determines speed plausibility. In the city scenario, the detector
considers all speeds up to 60 km/h as plausible and higher
speeds increasingly unlikely.

Node-centric detector: As node-centric detector, we take
the default vehicle trustworthiness discussed in [8]. Each
vehicle is assigned a default trust value, which is higher if
the vehicle is assumed to be better protected against attacks.
We assume that the ambulance car in our scenario has a higher
trust rating than regular vehicles.

Intuitively, the data-centric detector will detect movement
of regular vehicles correctly. However, the ambulance move-
ment will likely be interpreted as an attack for two reasons.
First, the ambulance has special rights of way and will move
with much higher speeds than regular vehicles. Second, the
ambulance is not bound to adhere to road markings, such as
specific lanes to take turns on intersections, and so forth. As
a result, the ambulance car’s movement pattern will in general
be less predictable than that of a regular car and can easily be
mistaken for an attack. If the data-centric detector would be
adapted to accept higher speeds and unpredictable movements,
attackers might not be detected.

What is therefore needed is a combination of the data-
centric detector with the node-centric detector such that all
regular vehicles that move implausibly fast are detected as
attackers with the exception of special cars, such as ambu-
lances. While this detection rule could be hard-coded for this
simple example scenario and two detectors, managing specific
exceptions will quickly become too complex in different
scenarios and with different combinations of detectors. In our
framework, we introduce subjective logic and its operators as
an abstraction step that facilitates easy and flexible combina-
tion of mechanisms for all kinds of scenarios. For the example
scenario, the detectors can be integrated as follows.

First, mechanism output needs to be modeled as subjective
logic opinions. For the data centric detector, we use the
following mapping:

odata = (0, d, 1� d), (4)

d = min(

max(V � 60, 0)

80

, 0.5), (5)

where V is the speed calculated using two consecutive bea-
con messages. Essentially, all speeds below 60 km/h result
in an indifferent opinion, modeled by complete uncertainty,
o = (0, 0, 1). Speeds above 60 km/h will lead to increasingly
distrusting opinions; the maximum disbelief o = (0, 0.5, 0.5)

is reached at 100 km/h. However, the mechanism never results
in disbelief values higher than 0.5, because some uncertainty
about the result always remains.

The node-centric detector mapping is slightly simpler. We
use two fixed opinions for regular vehicles and ambulance cars:

oregular = (0, 0, 1), (6)
oambulance = (0.5, 0, 0.5). (7)
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Fig. 3: Example world model graph for data-centric and node-
centric detector.

Finally, we model receiving a message from another ve-
hicle with an edge that is associated with a default opinion,
namely:

osender = (1, 0, 0). (8)

The reason is that we assume that each vehicle that sends
a message has a certain default confidence in the contained
data, otherwise the vehicle should discard the message and
not transmit it. In more complex settings, the default sender
opinion could be replaced by the actual misbehavior detection
results of the other vehicle, but for this example we will use
the simpler default opinion.

Having received several beacon messages from the ambu-
lance (v

a

), the complete world model graph looks as shown
in Figure 3. We assume the ambulance moves with 80 km/h,
therefore odata = (0, 0.25, 0.75), that is, the ambulance would
be considered an attacker using the data-centric detector alone
(regardless of how uncertainty is treated, which may be
application-dependent if the application can cope with this).

To get the merged confidence in the ambulance’s beacon
messages, we combine the data-centric, node-centric, and
default sender opinions using subjective logic consensus and
transitivity:

o = odata �
�
oambulance ⌦ osender

�
,

= (0, 0.25, 0.75)�
�
(0.5, 0, 0.5)⌦ (1, 0, 0)

�

= (0, 0.25, 0.75)� (0.5, 0, 0.5)

⇡ (0.43, 0.14, 0.43). (9)

Looking at the merged opinion o ⇡ (0.43, 0.14, 0.43), we
can see that the ambulance’s beacon message is more likely to
be correct (b = 0.43) than it is likely to be false (d = 0.14),
with some uncertainty remaining (u = 0.43). To further
reduce uncertainty, more node- and data-centric mechanisms
can be added to the framework. Still, for this example scenario
the two detection mechanisms proved to be sufficient for
correctly detecting attackers that try to send beacons with
implausible speed values while still correctly distinguishing
messages from ambulance cars and other vehicles with higher
default trustworthiness.

V. RELATED WORK

Misbehavior detection and ways to combine output of sev-
eral mechanisms have been an ongoing effort in V2X research.
Golle et al. [10] have developed one of the earliest data-centric
misbehavior detection mechanisms for V2X. Specifically, they

introduce an abstract framework that allows each vehicle to
tag observed events with positive or negative hypotheses on
the basis of a particular model of the system. The observed
events include input from the vehicle’s sensors, as well as
received messages from other vehicles. At any point in time,
the vehicle can evaluate the different hypotheses against the
received events and determine the most likely explanation.
However, the authors use some simplifying assumptions about
the exchange of messages between vehicles. Fundamentally,
our approach is similar to theirs, because we also use data-
centric misbehavior detection mechanisms that essentially test
information contained in messages against existing models.
However, we use subjective logic to better cope with con-
tradictory information and we represent individual vehicles
as well as data in our model, allowing vehicles to exchange
reproducible results.

Rezgui & Cherkaoi [11] describe the use of data mining
to analyze patterns of messages received by a vehicle. The
goal of their analysis is to detect misbehavior in the sense of
inconsistent messages by extracting rules from messages that
are received over time. The principle idea behind their work is
that data mining can identify patterns in data without requiring
an underlying model that explains them. Hence, the approach
can detect inconsistencies that are not detected by manually
designed mechanisms. However, it is difficult to determine
whether a message that is inconsistent with previous messages
is false, or simply indicates a change in the real world (e.g.,
relatively rare occurrences like crashes). Also, the authors’
work did not analyze the usefulness of the rules, and the
authors have only tested their mechanism for a small scenario
(68 vehicles).

Stübing et al. [12] describe a model focused on maintaining
an accurate world model in the presence of regularly changing
pseudonyms. To this end, the authors have used a Kalman filter
to perform position estimation, which is updated according to
newly received beacon messages. Their approach effectively
revokes pseudonyms in the direct vicinity of the vehicle with
high probability, which is useful for both attack detection, as
well as collision avoidance applications.

Ghosh et al. [13] have developed a data-centric misbehav-
ior detection mechanism that performs a root-cause analysis
on the available information regarding a specific event. The
authors determine the trajectory driven by a driver between
the reception of the event and its reported location. This
is compared against two different trajectories: a free-flow
and a crash notification trajectory. The mechanism avoids
marking messages as malicious that are related to a crash,
because the underlying model changes to accommodate the
case of a legitimate alert. However, this work only provides
a mechanism to establish after-the-fact that misbehavior has
occurred. This means the mechanism must be combined with
others in order to be effective. Our framework can be used
to allow vehicles to store trajectories and transmit them to
each other or a back-end authority, providing solid evidence
for revocation.

Raya et al. [8] describes the establishment of trust in
nodes based on the data they transmit. Specifically, the authors
propose ways to evaluate the trust a vehicle should have based
on its history and several parameters, which then allow the
dynamic establishment of trust between vehicles. The authors



describe several decision logics, including Bayesian inference
and the Dempster-Shafer Theory of evidence. Our work instead
uses subjective logic, which allows a more intuitive representa-
tion, higher expressiveness, and more resilience. This resilience
is especially important for short-term decisions, because many
important events may consist of anomalous data, for instance,
an accident has unusual speeds for a given scenario.

Bamberger et al. [14] discuss the use of subjective logic
for V2X. Similar to our work, they incorporate opinions from
other vehicles and the evaluation of the own vehicle, repre-
sented using subjective logic. However, their work focuses
on node-centric detection, neglecting data-centric detection
mechanisms. In our work, we use subjective logic to represent
both trust in vehicles as well as confidence in information,
allowing us to model data-centric detection with subjective
logic and combining it with node-centric mechanisms.

Gomez et al. [20] have discussed the use of subjective
logic to represent the trustworthiness of data transmitted by
sensors in a wireless sensor network for monitoring cows.
The authors have used subjective logic to represent deterio-
rating sensor accuracy during battery depletion. Although the
authors acknowledge the need for attack detection, they do
not specifically address this issue. However, they implemented
subjective logic as part of a real-world system and have shown
that its use has led to a significant overall improvement of the
assessed system.

VI. CONCLUSION

In this paper, we raise the issue of misbehavior detection
in vehicular networks and highlight its importance for gaining
trustworthy vehicular communication systems. As we have
discussed, single detection mechanisms are insufficient and
need to be combined in a flexible framework in order to
enhance accuracy and allow easy interaction with applications.

The framework we propose is based on subjective logic
which suits very well the requirements of a misbehavior
detection frameworks in V2X communication. All data known
to a vehicle can be captured in a world-model and can then
be annotated by detection mechanisms with opinions. Such
opinions can not only express belief or disbelief in a stated
fact or data source, but also model uncertainty. Using logic
operators such as consensus or transitivity, we have shown
examples how a combination of mechanisms becomes easily
possible.

In our on-going work, we are currently implementing
our framework to allow more detailed evaluation. While our
examples have shown the general applicability of our approach,
this of course opens a lot of questions related to scalability,
overhead, and feasibility in more complex situations with more
and more complex detection mechanisms.

If those can be addressed successfully, a subjective-logic-
based detection framework should be incorporated into future
V2X systems to enhance robustness and security. As the set of
detection mechanisms is not fixed and can easily be extended
during operation time, our framework would also allow to
react to future attacks by designing and deploying appropriate
detectors into vehicles.
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