
Copyright © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

A Novel Queue Length Aware Distributed Link
Scheduler for Multi-Transmit Receive Wireless

Mesh Networks
Yuanhuizi Xu, Kwan-Wu Chin, Raad Raad

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, NSW, Australia

Email: yx879@uowmail.edu.au, {kwanwu, raad}@uow.edu.au

Sieteng Soh
Department of Computing

Curtin University of Technology, WA, Australia
Email: s.soh@curtin.edu.au

Abstract—Next generation Wireless Mesh Networks (WMNs)
will require a link scheduler that exploits the full advantage of
Multi-Transmit-Receive (MTR) commuication. To this end, we
design a distributed link scheduler called Voting-ALGO that is
aware of queue lengths and uses the celebrated max weight policy
to achieve 100% throughput.

I. INTRODUCTION

In Multi-Transmit-Receive Wireless Mesh Networks (MTR
WMNs), whereby nodes are equipped with adaptive arrays,
nodes can transmit simultaneously to (SynTx), or receive
simultaneously from (SynRx) their respective neighbouring
nodes. Hence, a key constraint of any channel access or link
scheduler over such WMNs must adhere to this so called Mix-
Tx-Rx capability.

To this end, we require a sheduler that addresses the
following problem: given an MTR WMN with stochastic
arrival rates, design a throughput optimal, distributed algo-
rithm that activates the highest weighted links. Since the
seminal contribution of Tassiulas et al. [1], who proposed
a centralized maximum weight policy that is shown to be
throughput optimal using only topological and queue length
information, a number of researchers have sought distributed
schedulers; see [2]. These schedulers, however, assume a k-
hop interference model, and thus do not consider the MTR
capability of nodes.

To date, only a handful of works have investigated cen-
tralized and distributed link scheduling algorithms for MTR
WMNs. The authors of [3] proposed a distributed solution
that allows nodes to hold the channel longer based on traffic
demand. A key observation is that this algorithm has not
considered queue lengths. Indeed, only Bao et al. [4], who
proposed receive-oriented multiple access (ROMA) scheme,
have considered link weights, whereby a heavier weight corre-
sponds to a higher probability of activation. However, ROMA
only provides four different weight values and no solution
is presented on how they can be adjusted to achieve queue
stability. In contrast, our proposed algorithm, called Voting-
ALGO, provides a deterministic method that schedules the
highest weighted links in each transmission slot. Moreover, it
provides the following advantages: 1) it does not have exces-
sive communication overheads associated with data collection,

2) it uses queue lengths to evenly split nodes into transmitter
and receivers at each time slot. Experimental results show
Voting-ALGO achieves higher capacity than prior distributed
link schedulers designed for MTR WMNs.

Next, we outline our network model, and formalize the
problem in Section III. Voting-ALGO, is outlined in Section
IV. Section V presents our evaluation and results, followed by
our conclusions in Section VI.

II. NETWORK MODEL

Consider a WMN represented by a directed graph G(V,E),
where V = {1, . . . , n} is the set of nodes and E = {(u, v) 2
E | u, v 2 V } is the set of directed links. Each node has
a unique ID. All nodes are equipped with b � 1 directional
antennas that share a single channel. We assume bu � |N(u)|
for all nodes, where N(u) is the set of neighbors for node u.
Each node has a transmission range of r. We consider a link
exists if node u and v are within each other’s transmission
range. Thus, two nodes that are located within a distance
smaller than the transmission range are regarded as neighbors.
At any point in time, a node u can transmit to or receive from
|N(u)| neighbors at the same time, but it cannot receive and
transmit simultaneously because of side-lobes. We will refer to
this as the no Mix-Tx–Rx interference constraint. In addition,
we consider the 1-hop traffic model where all routes consist
of one link. In this respect, we will denote the transmitting
end of a link as source, and the corresponding end as receiver.

We assume time is divided into slots of equal length,
denoted by t. The packets are of unit length. In this paper,
we consider the Bernoulli process with parameter �, which is
known as the arrival rate. We use a 0-1 vector with dimension
|E|, and denoted as A(t), to represent a packet arrival at
each queue/link at the beginning of slot t. We assume the
arrivals are independent identically distributed. The arriving
packet is stored in the queue associated to said link. The
vector A(t) is calculated based on the arrival rate �. Let
Qu,v(t) � 0 represent the number of packets in the queue
of link (u, v) at time t. Thus, the queue size vector is denoted
by Q(t) = [Qu,v(t)]. The vector D(t) ✓ {0, 1}|E| denotes
transmitting links at the end of slot t that adhere to the no
Tx-Rx constraint. Thus a link (u, v) is active if Duv(t) = 1.

TABLE I
MESSAGES USED IN VOTING-ALGO

Message Description
Qs,d The queue-length of link (s, d).
INq(v) and OUTq(v) The total number of incoming and outgoing

packets at node v respectively.
INsetT and INsetR Notification messages sent by nodes in setT

and setR respectively to inform their neigh-
bors which set they joined.

V ote{s ! d,Qs,d} Vote message sent by nodes in setT or setR
to their neighbors in setU.

INq0(v) and OUTq0(v) The number of incoming and outgoing pack-
ets from neighbors in setT or to neighbors
in setR at node v based on received vote
messages.

Consequently, the dynamic queue length of the network model
can be described as Q(t) = A(t) +Q(t� 1)�D(t� 1).

III. PROBLEM DEFINITION

We now formalize the problem at hand. Given queue
length information, design a throughput optimal distributed
algorithm. Formally, argmaxD(T)� s.t. � 2 ⇤ (or
argmaxD(T)

P
Q(T) ⇤ D(T) s.t. � 2 ⇤, where T denotes

the throughput). As mentioned earlier, the Max Weight policy
is throughput optimal. However, it is centralized and requires
instantaneous queue length information, which is not practical
in WMNs. In particular, the centralized policy will incur many
rounds of requests, and signalling overheads as well as prop-
agation delays, which result in stale queue size information.
These limitations thus motivate the design of a distributed
algorithm that is throughput optimal.

IV. THE DISTRIBUTED POLICY

We now expound a distributed policy called Voting-ALGO.
We assume each node has a distinct ID. The basic idea is as
follows. We divide each time slot into two sub-slots: control
and data. The first sub-slot is used for scheduling, during
which time each node determines whether it is in transmitting
set setT or receiving set setR. The second sub-slot data is
used for packets transmission. That is, at such time, all the
nodes in setT transmit one packet to each of their neighbors
that are in setR. Each control sub-slot is further divided into
a number of mini-slots. In the mini-slots, nodes exchange
control messages listed in Table I. Note, we denote the vote
message as “V ote{s ! d,Qs,d}”, where s and d represent
the source and destination nodes of link (s, d), and Qs,d is
the queue length of link (s, d).

Our Voting-ALGO consists of three key stages: initialize,
notify and vote. In the first stage, as shown in Algorithm 1,
the goal is to select the first batch of nodes that are to join setT
or setR. All other nodes move into setU, where setU = V �
setT�setR. Algorithm 2 outlines the pseudocode performing
notify, whereby nodes that have entered setT or setR in Stage-
1 inform their neighbors which set they have joined by sending
the message “INsetT” and “INsetR”. After that, nodes proceed
to the key stage vote which is demonstrated in Algorithm 3.
The main idea is to determine which set, i.e., setT or setR,

Algorithm 1: Stage-1: initialize
Input: node v, neighbors N(v), INq(v), OUTq(v),

INq(N(v)) and OUTq(N(v))
Output: set(v)

1 if INq(v) > max(INq(N(v))) then
2 set(v) “setR”
3 else if OUTq(v) > max(OUTq(N(v))) then
4 set(v) “setT”
5 else if INq(v) = max8u2N(v)(INq(u)) or

OUTq(v) = max8u2N(v)(OUTq(u)) then
6 for u 2 N(v) do
7 if INq(u) = max8u2N(v)(INq(u)) and v > u

then
8 set(v) “setR”
9 else if OUTq(u) = max8u2N(v)(OUTq(u)) and

v > u then
10 set(v) “setT”
11 end
12 else
13 set(v) “setU”
14 end
15 return set(v)

Algorithm 2: Stage-2: notify
Input: node v, set(v), neighborsN(v) and minislot

1 minislot minislot+ 1

2 if set(v) =“setT” then
3 v transmits “INsetT” to every u 2 N(v)
4 end
5 minislot minislot+ 1

6 if set(v) =“setR” then
7 v transmits “INsetR” to every u 2 N(v)
8 end

should nodes in setU join based on the votes cast by their
neighbors. To achieve this, after receiving all the votes, each
node calculates its INq0 and OUTq0 which represents the total
number of votes that elect the node a setR or a setT node. If
INq0 is greater than or equal to OUTq0, the node is included
in setR. Otherwise, it joins setT. From this point onwards,
Stage-2 and Stage-3 is carried out alternately until there is no
node left in setU.

V. EVALUATION

In order to investigate the performance of Voting-ALGO,
we use MatGraph [5], a Matlab toolkit that works with simple
graphs. Our Matlab experiments are conducted over topologies
with 50 nodes, whereby the degree for each node is fixed and
equals to five. We compare Voting-ALGO against link based
centralised algorithm (LBC-ALGO), node based centralised
algorithm (NBC-ALGO), JazzyMAC [3] and ROMA [4]. Both
LBC-ALGO and NBC-ALGO require the global queue length
information. LBC-ALGO selects the set of heaviest-weighted,

Algorithm 3: Stage-3: vote
Input: node v, set(v), neighborsN(v), location(N(v))

Queue-lengths Qv,N(v), QN(v),v and minislot
Output: set(v)

1 minislot minislot+ 1

2 W ;
3 Y ;
4 if set(v) 6= “setU” then
5 for u 2 N(v) and set(u) =“setU” do
6 if set(v) =“setT” then
7 v transmits V ote{v ! u,Qv,u} to u
8 else if set(v) =“setR” then
9 v transmits V ote{u! v,Qu,v} to u

10 end
11 else if set(v) =“setU” then
12 for u 2 N(v) and set(u) =“setT” do
13 W W [{u}
14 end
15 forall the w 2W do
16 v receives V ote{w ! v,Qw,v} from w
17 end
18 INq0(v) =)

P
8w2W Qw,v

19 for u 2 N(v) and set(u) =“setR” do
20 Y Y [{u}
21 end
22 forall the y 2 Y do
23 v receives V ote{v ! y,Qv,y} from y
24 end
25 OUTq0(v) =

P
8y2Y Qv,y

26 if INq0(v)  OUTq0(v) then
27 set(v) “setT”
28 else
29 set(v) “setR”
30 end
31 return set(v)

non-interfering links at every time slot to transmit, where
weight is the length of queue of each link. While the queue
length variable used in NBC-ALGO denotes the sum of the
queue length of every outgoing links at each node. In every
slot, the nodes with longest queue length are placed into setT
and their neighbours into setR.

In the experiments, we assume all traffic traverse a single
hop. A packet arrival occurs with probability � at the begin-
ning of a time slot. The arrivals are independent and identically
distributed according to a Bernoulli process.

Figure 1 shows the mean total queue backlog summed over
all links as the arrival rate � increases. The error bars shown
indicate 95% confidence interval of the mean value, which
represents the true queue length. When � approaches a certain
limit, the average total backlog will increase to infinity. This
limit is viewed as the boundary of the capacity region. The
results are collected after 100,000 time slots.

From Figure 1, we can see that, generally, Voting-ALGO is

superior to other algorithms as it ensures all queues are stable
with the same traffic load. We see that Voting-ALGO achieves
the same capacity region as LBC-ALGO. This result indicates
that the performance of Voting-ALGO is approximately similar
to centralized approaches. In other words, Voting-ALGO is
throughput optimal.

McR

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

400

500

600

700

800

900

1000

Arrival rate

Voting�ALGO
LBC�ALGO
NBC�ALGO
JazzyMAC
ROMA

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Fig. 1. Queue length under increasing arrival rate with 95% confidence
interval

VI. CONCLUSION

This paper has presented a novel queue aware distributed
link scheduler for MTR WMNs whereby nodes have the
capability to form multiple links simultaneously. Experiment
results show the throughput achieved by Voting-ALGO is two
to nine times higher than that of JazzyMAC. An immediate
future work is to further reduce signaling messages and to
consider the case when the number of directional antennas is
less than the number of neighbors.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross layer
control in wireless networks,” IEEE Transactions on Networking, vol. 14,
pp. 302–315, Apr. 2006.

[3] S. Nedevschi, R. Patra, S. Surana, S. Ratnasamy, L. Subramanian,
and E. Brewer, “An adaptive, high performance mac for long-distance
multihop wireless networks,” in ACM MOBICOM, (New York, NY,
USA), pp. 259 –270, 2008.

[4] B. Lichun and J. Garcia-Luna-Aceves, “Transmission scheduling in ad
hoc networks with directional antennas,” in ACM MOBICOM, (New York,
NY, USA), 2002.

[5] E. R. Scheinerman, “Matgraph: a MATLAB toolbox for graph theory,”
Department of applied mathematics and statistics, the Johns Hopkins
University, Baltimore, Maryland, pp. 1– 7, 2008.

