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Abstract—Low-power wireless networks play an important role
in the Internet of Things. Typically, these networks consist of a
very large number of lossy and low-capacity devices, challenging
the current state of the art in protocol design. In this context
the Trickle algorithm plays an important role, serving as the
basic mechanism for message dissemination in notable protocols
such as RPL and MPL. While Trickle’s broadcast suppression
mechanism has been proven to be efficient, recent work has
shown that it is intrinsically unfair in terms of load distribution
and that its performance relies strongly on network topology. This
can lead to increased end-to-end delays (MPL), or creation of sub-
optimal routes (RPL). Furthermore, as highlighted in this work,
there is no clear consensus within the research community about
what the proper parameter settings of the suppression mechanism
should be. We propose an extension to the Trickle algorithm,
called adaptive-k, which allows nodes to individually adapt their
suppression mechanism to local node density. Supported by
analysis and a case study with RPL, we show that this extension
allows for an easier configuration of Trickle, making it more
robust to network topology.

I. INTRODUCTION

In the novel Internet of Things (IoT) paradigm, daily objects
called smart objects will form large meshed wireless networks
that are able to gather and exchange large amounts of data. The
size of these networks makes their deployment an undertaking
which challenges the current state of the art in network design
and networking protocols.

A specific flooding algorithm, called Trickle [1], has been
introduced for its suitability in this context. The Trickle
algorithm is based on stochastic timers and a window doubling
mechanism to balance traffic load and response times. While
Trickle was originally designed for propagating and maintain-
ing code updates in wireless sensor networks, it has shown
to be a powerful mechanism that can be applied to a wide
range of protocol design problems and therefore has been
documented by the Internet Engineering Task Force (IETF)
in its own RFC [2]. From then, it has been adopted in many
other protocols. Notable protocols that use Trickle are the IPv6
Routing Protocol for Low Power and Lossy networks (RPL)
[3] and the IPv6 Multicast protocol for Low Power and Lossy
Networks (MPL) [4]. In RPL, Trickle is used to control the
transmission of routing control information. MPL uses Trickle
to forward multicast packets in constrained networks and is
currently being standardized.

Preprint submitted to arXiv

Because of the algorithm’s novelty, optimizing its usage
and design are important ongoing topics and the focus of
many research efforts. Many aspects of Trickle’s performance
are already well understood, however some outstanding issues
remain. One of these issues is that little is known about
the influence of Trickle’s broadcast suppression mechanism
on performance measures such as end-to-end delay and load
distribution, as has been pointed out by recent works [5], [6].
Consequently, the current recommendations on how to config-
ure Trickle’s suppression mechanism are very conservative.

The main contribution of this paper is threefold. Firstly, we
shed light on why Trickle’s suppression mechanism is badly
understood and why it is hard to provide recommendations for
its correct configuration. Secondly, we propose an extension
to Trickle, called adaptive-k, that helps overcome these issues.
This extension allows nodes to adapt their suppression mecha-
nism according to local density information. Thirdly, both an-
alytically and by simulations, we show that this extension has
several advantages compared to the original Trickle algorithm:
1) it leads to a more fair load distribution among nodes; ii) it
ensures good functionality of the Trickle suppression mecha-
nism; iii) it makes Trickle capable of adapting its suppression
mechanism to network topologies of varying densities. As a
case study, we implement adaptive-k Trickle as part of the
RPL protocol. Simulation and physical experiments show that
these improvements lead to easier configuration and better
performance, allowing RPL to easily discover good routes,
while suppressing many redundant control messages.

This paper is organized as follows: in Section II we provide
a description of the Trickle algorithm. We then give a detailed
overview of related work in Section III and discuss which parts
of the Trickle algorithm are not well studied. In Section IV
we take a closer look at the Trickle suppression mechanism
and discuss why setting it correctly is difficult. Additionally,
we propose adaptive-k, an extension to the Trickle algorithm
which allows nodes to adapt this parameter according to local
information on node density. In Section V we present analysis
and simulations of special network topologies which highlight
the benefits of using adaptive-k. Finally, as a case study, in
Section VI we compare the performance of RPL while using
the original and the extended Trickle algorithm. We summarize
our results in Section VIIL



II. THE TRICKLE ALGORITHM

We now describe the Trickle algorithm as in [7]. The Trickle
algorithm has three parameters:

o A threshold value k, called the redundancy constant.

e The minimum interval length [;;,.

o The maximum interval length I, ..
Furthermore, each node in the network has its own timer and
keeps track of three local variables:

o The current interval length I.
e« A counter ¢, counting the number of messages heard
during an interval.
o A broadcasting time ¢ during the current interval.
The behavior of each node is described by the following set
of rules:

1) At the start of a new interval a node resets its timer and
counter ¢ and sets ¢ to a value in [//2, I] uniformly at
random.

2) When a node hears a message that is consistent with the
information it has, it increments c by 1.

3) When a node’s timer reaches time ¢, the node broadcasts
its message if ¢ < k.

4) When a node’s timer reaches time [, it increases its
interval length to min(27, I}, ) and starts a new interval.

5) When a node hears a message that is inconsistent with
its own information, then if I > I, it sets [ to Iy
and starts a new interval, otherwise it does nothing.

What constitutes a consistent or an inconsistent message, can
be determined by the user and depends on the setting and/or
application in which the algorithm is used.

Even though the Trickle algorithm is easily understood and
implemented, the configuration of the three parameters k,
Inin and I,y is left to the user. This raises the question of
how one can optimally configure these parameters. Of course,
this depends on many things, such as network topology, the
application, link-layer characteristics etc., which makes giving
good recommendations difficult.

In this work we focus on evaluating how one should
configure the redundancy constant k. In the following section
we first give a detailed overview of the related work carried
out in this regard.

III. RELATED WORK

Since Trickle has become such an important protocol for
the IoT, much research has been devoted to analyzing its
performance and optimizing its usage and design. We list some
of the related works that consider Trickle, both when used for
flooding and when used in RPL.

A. Trickle as a flooding mechanism

The strength of Trickle’s polite gossip policy that suppresses
redundant transmissions depending on the redundancy constant
k is well understood. Simulation results have shown that
Trickle scales well with network density, suppressing many
redundant broadcasts [1], [8]. In [7] the authors provide ana-
Iytical results on Trickle’s message overhead and broadcasting

rate and show how they depend on k and the network size.
These results prove Trickle’s scalability and show that its
message overhead scales linearly in k/I... Additionally,
ways to approximate the message-count in multi-hop networks
are given in [7], [9], where the former focuses on random
spatial networks, and the latter on grid-like topologies.

However, little is known about the influence of £ on other
QoS measures such as hop-count, end-to-end delay and load
distribution. The authors of [10] study the performance of
Trickle as a flooding mechanism compared to classic flooding
and multipoint relaying. They conclude that while Trickle can
outperform both protocols, its performance is highly sensitive
to the choice of parameters, stating: “Simulations showed that
the same set of parameters can render Trickle Multicast the
best or worst performer in a given scenario”.

In more recent work [6] the authors conclude that flooding
using Trickle can perform poorly due to its suppression
mechanism. Since k does not change with node density,
the suppression mechanism favors nodes with few neighbors,
letting them broadcast more often than nodes with more
neighbors. This leads to increased traffic along the edges of
a network and potentially increased end-to-end delays. They
underline the importance of correctly setting k to avoid such
issues. Additionally, they write: “We had not expected such
artifacts - they are rarely mentioned if ever in the literature”.
Similar problems have been identified in [11], where, due to
the suppression mechanism, bottleneck topologies have been
shown to be prone to extremely large end-to-end delays.

Analytical models for the speed at which Trickle can
propagate new data are developed in [5], [12], [13]. In [12]
the authors provide a method for deriving the Laplace trans-
form of the distribution function of the end-to-end delay for
any network topology. In [5], [13] the authors develop and
analyze models for how fast Trickle can propagate data in
chain topologies. The first work considers propagation of data
under realistic assumptions, such as the presence of bit-errors,
however they limit themselves to sparse networks. In [13] the
authors assume idealized error-free chain topologies. Addition-
ally, they propose a small extension of Trickle, increasing the
speed at which data is propagated. However, all models fail
to capture the influence of k£ on Trickle’s performance, due to
the complexity of the analysis or by assuming k = 1.

B. Trickle as a part of RPL

Next to work focused at analyzing Trickle for flooding,
there has also been extensive research on the impact of Trickle
parameters on the performance of the RPL routing protocol,
which uses Trickle to construct a routing table.

In [14], [15] simulation studies on RPL’s performance are
presented. However, they are based on earlier versions of the
RPL draft, in which Trickle’s suppression mechanism is not
yet used (k = 00). Both works conclude that in some scenarios
the performance of RPL is lacking and additional studies are
needed for its usage in large-scale networks.

Later, Trickle’s suppression mechanism was deemed neces-
sary to ensure scalability of the protocol and has been made



part of RPL’s current RFC. Currently, the RFC recommends
using k£ = 10. Based on this recommendation, additional sim-
ulation studies have been performed [16], [17]. However, these
studies do not consider the effect of topology characteristics
on RPL’s performance and keep parameter settings fixed.

The authors of [18] were the first to consider the effect of
the redundancy constant k£ on RPL’s performance. They show
that if configured incorrectly, Trickle’s suppression mechanism
can lead to sub-optimal routes, especially in networks that
are heterogeneous in terms of density, such as random spatial
topologies. This is again due to the inherent unfairness of
Trickle’s suppression mechanism. They propose a modification
of Trickle, which tries to remove this unfairness by prioritizing
nodes that have not broadcasted for a long period of time.

Recently, link instability was identified as a problem for
new nodes in a network [19]. Due to the lack of link quality
measurements, new nodes have been observed to blindly
connect to the first available node in an RPL network, even
though better alternatives might exist. They address this issue
by adding a probing phase, where nodes first measure the link
quality to their neighbors based on a Trickle timer, before
selecting a preferred parent. As a result, nodes take more time
to join a network, but benefit from having more stable routes.

Lastly, an extensive simulation study on the effect of the
redundancy constant k£ and I,;, on RPL’s performance is
given in [20]. In their study they consider several network
densities and vary k between 1 and 15. They observe that one
of the RPL parameters that affects routing table construction to
the greatest extent is the redundancy constant k. Additionally,
they conclude “There exists a trade-off between network
convergence time and other performance parameters, such
as the number of DIO messages transmitted and number of
collisions that depends on k” and that setting k& should not be
done independently of network density.

IV. THE REDUNDANCY CONSTANT

Clearly, the redundancy constant k is one of the most
important parameters of Trickle, but its effect on performance
is not well understood. The reason that the influence of the
redundancy constant is not well studied is twofold. First of
all, as was shown in [18], [20], the performance of Trickle
for a given parameter setting greatly depends on the network
topology. This makes studying the effect of the redundancy
constant difficult and is why analytical works mostly focus on
k = 1 and simple network topologies. Secondly, as mentioned
in the previous section, many of the studies related to Trickle
consider it in the context of RPL, where the redundancy
constant was only introduced in later draft versions.

Consequently, the current parameter recommendations for
configuring Trickle are often vague or conservative. In the
Trickle RFC [2] it is stated that “In general, it is much more
desirable to set k to a high value (e.g., 5 or 10) than infinity.
Typical values for k are 1-5: these achieve a good balance
between redundancy and low cost”. Looking at the RPL RFC
[3] we find that the default setting is k¥ = 10, which is rather
arbitrary, stating “This configuration is a conservative value

for Trickle’s suppression mechanism.” However, in the IETF
draft “Recommendations for Efficient Implementation of RPL”
[21] we find “A constant of 3-5 has been found adequate in
deployments.” Lastly, the latest MPL draft [4] recommends
using k = 1, focusing heavily on overhead reduction.

The reason these recommendations are conservative and
varying is because optimally setting k£ is non-trivial and
depends greatly on the network topology and the application
for which the Trickle algorithm is used. However, one might
assume that given some network topology, it should be possi-
ble to optimally set the redundancy constant.

Clearly, in sparse networks, where nodes have few neigh-
bors, k should be set to a low value for the suppression
mechanism to work. In very dense networks, a higher value of
k makes more sense, since nodes have to compete with many
other nodes for the medium, and a low value of & can thus lead
to sub-optimal data dissemination. Hence, when setting k, it
is important to take network density into account. However, in
many cases, networks are heterogeneous and consist of both
sparse and dense parts, which makes setting %k difficult.

Adaptive-k: a density-aware redundancy constant

With these considerations in mind, it makes sense to set k
for each node individually. Ideally, we would want nodes to
set their own k in a distributed fashion according to their node
degree. However, since we want Trickle to be self-sufficient,
we cannot rely on nodes having perfect knowledge on the
number of neighbors they have. What we do know is that
nodes keep track of the number of Trickle messages they
receive during an interval with a counter c. This ¢ contains
implicit information on the number of neighbors of that node.
Therefore, we propose an extension to the Trickle algorithm,
called adaptive-k, which leverages this information and allows
nodes to set their value of k& autonomously. This extension is
done by a slight modification of rule 4 of the algorithm:

4*. When a node’s timer hits time I, it sets k equal to
f(e), it increases its interval length to min (27, Iiyax)
and starts a new interval.

Here f is some predefined function, which is the same for
all the nodes of the network. We argue that a natural candidate
is the following function:

kmirﬂ ac < kmirﬂ
f(c) = q lac],  kmin < ac < knax, (D
kmaxa ac > kmaxa

with some fixed o € [0, 1] and ki, kmax € N. The function f
should be bounded by below by some ki, to avoid a deadlock
with all nodes having £ = 0. One should think of k,,;, being
small, i.e. 1 or 2. Throughout this paper we assume ki, = 1.
Furthermore, f should be bounded from above by kp.x to
ensure scalability of the algorithm. Lastly, as recommended in
the Trickle RFC, kpax X Imin should at least be two to three
times as long as it takes to transmit k. packets.



Intuitively, this extension does what we would like it to do.
Whenever a node receives many broadcasts during an interval,
it knows it has many neighbors, and hence it should have a
high k& value in order to be able to compete for the medium.
When a node receives few transmissions, it either does not
have a lot of neighbors, or its neighbors are having a hard
time broadcasting their own information, and for both cases
the node should lower its redundancy constant k.

Note that our extension is backward compatible with the
Trickle RFC: the RFC itself acknowledges that nodes can
be configured with a different redundancy constant, with the
possible drawback of an uneven load distribution. In the next
section we show that Trickle with adaptive-k actually leads to
a more even load distribution.

V. EVALUATION OF TRICKLE WITH ADAPTIVE-K

In this section we will analyze the Trickle algorithm with
adaptive-k for some special network topologies, highlighting
its benefits. For simplicity, we assume in all these cases that
all nodes are perfect receivers and transmitters, meaning that
transmissions never fail and are received instantaneously, so
that we can focus on the performance of Trickle without
considering any MAC-layer protocols. Furthermore, we focus
only on the control traffic generated by Trickle and assume all
nodes to have the same data and that [ = I, for all nodes.

A. Single-cell network

First, let us consider a simple network consisting of n nodes
that are all within communication distance of each other. Let
f(c) be as in Equation (1) with ki, = 1.

Assume all nodes are synchronized, i.e. all nodes start new
intervals at the same time. Then it is easy to see that, if & < 1,
regardless of their initial value of k, each interval nodes will
decrease their k, until eventually they all set £ = 1. From that
point on nodes will never receive more than one transmission
per interval, and hence k will stay fixed to one. For most
applications this setting can be regarded as optimal, since we
only need one transmission to reach all nodes.

Now assume the intervals of nodes are not necessarily
synchronized. If k is the maximum value for the redundancy
constant among nodes during a single interval, then we know
that each interval there will be less than 2k transmissions [7].
Hence, if o < 1/2, each interval nodes will decrease their k
and eventually all set & = 1. From that point on, there will
be at most 2 transmissions per interval. If, however, « > 1/2
and n — oo, nodes will eventually set k& = ky,.x and there
will be at most 2k,,,x transmissions per interval. This also
highlights the fact that f should be bounded to ensure scal-
ability. However, note that regardless of a and ky,,, Trickle
with adaptive-k will have at most as many transmissions per
interval as the original Trickle with k = Ky ax.

B. Star network

Consider now a network consisting of n + 1 nodes, where
one central node is connected to all other n nodes, which
are all not connected to any other nodes. Note that this
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Fig. 1.  Asymptotic broadcasting probabilities of adaptive-k in the star
network. 1 — p. is the probability that the central node broadcasts, while
p}, is the probability that other nodes broadcasts.

is in contrast with the previous scenario, where all nodes
had the same number of neighbors. Assume all nodes are
synchronized, i.e. all nodes start intervals at the same time.
Suppose the unmodified Trickle algorithm is used with
k < n+1, then the central node will broadcast if it is among
the first £ nodes to schedule a broadcast, which happens
with probability "_]f_l. Hence, if £ = 1, the central node
will broadcast a fraction % of the intervals and all other

+1
nodes will broadcast a fraction nLH of the intervals. This

clearly results in a very unfair load distribution and f—jll
broadcasts per interval on average. If £ > 1, the central node
will broadcast a fraction niﬂ of the intervals and the rest will
always broadcast, also leading to an unfair load distribution
and a high message count.

Now suppose the modified Trickle algorithm is used with
f(c) as in Equation (1), but this time, for illustrative purposes,
let kyax = 00. It is easy to see that eventually, only the central
node will be adapting its redundancy constant and the rest of
the nodes will set & = 1. Suppose the central node starts
an interval with & = an (i.e. it heard all of its neighbors
transmit the previous interval), and suppose it is the m’th node
to schedule a broadcast during that interval. If m > an, then
the central node’s message will be suppressed and £ = an
the next interval as well. If m < an, then the central node
will broadcast, suppressing the transmissions of the last n —m
nodes to schedule a broadcast, and hence k = a(m — 1) the
next interval. Continuing this reasoning one can deduce that
the redundancy constant of the central node evolves according
to a Markov chain. Analyzing the Markov chain for n — oo
(see Appendix) then tells us the following.

Let p, be the probability that the central node’s broadcast
is suppressed during an arbitrary interval. Then, as n — oo,

L -1
0 az(z+1)/2

Pa = 2)

i\
i=0 v
Note that the central node successfully broadcasts with proba-
bility 1 — p,. Let p}, be the probability that a node other than
the central node successfully broadcasts during an arbitrary

interval. Then, as n — oo,

oLl
P =—(1-pa). 3

Plots of the probabilities are shown in Figure 1.
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We conclude that for o = 1 the star network with dynamic &
is asymptotically fair and

1

pr=1l-p=1-- )
€

Note that this is quite remarkable, since as n — oo, the
central node has to compete against infinitely many other
nodes for the medium. Moreover, on average Trickle with
adaptive-k will have fewer broadcasts per interval than the
original algorithm.

C. Random spatial network

We now consider random spatial networks consisting of 200
nodes placed uniformly in a square region. Since analyzing
this case analytically is too difficult, we resort to simulations.
We consider the original Trickle algorithm with £ = 1,5 and
10, as well as the Trickle algorithm with adaptive-k for four
different functions f(c) of the form as in Equation (1).

From the single-cell network we learned that for dense
homogeneous networks setting o to a lower value is smart,
since it reduces the amount of traffic. On the other hand, from
the star network we learned that for highly heterogeneous
networks, a high value of « contributes to more fairness in
the network, which can also lead to a reduction of the amount
of traffic. Since realistic spatial networks should be a mix of
the two scenarios, we will consider several values of « in the
range [%, 1], and try to determine what value performs well
for such topologies. For this purpose we set ki, = 1 and
kmax = 30, to be able to capture the effect of the number
of neighbors of a node on its message count. Additionally,
we consider three network densities, where the average node
degree is either 5, 10 or 15. For each setting and density, we
simulate 10 networks with different topologies for 200 time
units, where all nodes start with I = I;,,,x = 1 and uptodate

(b) Medium network (average degree = 10)

(c) Dense network (average degree = 15)

Broadcasting probability per node degree for the adaptive-k Trickle algorithm. The three figures correspond to the three different network densities.

information. For each node degree we calculate the average
broadcasting probability, i.e., the fraction of intervals nodes
with that number of neighbors broadcast.

Results for the original Trickle algorithm can be found in
Figure 2. We can immediately see Trickle’s tendency to favor
low-degree nodes, letting them broadcast often. Nodes with
degree bigger than k have a hard time transmitting. This effect
is clear for each of the three network densities.

The trend in these probabilities is also as one would expect.
If a node has less than k£ neighbors, it will broadcast almost
every interval. If a node however has N > k neighbors then,
ignoring the fact that neighbors can be suppressed as well, it
will broadcast if it is among the first £ nodes to schedule a
broadcast during that interval, which roughly happens with
probability k/(N + 1). Hence, the probability of a node
with N neighbors broadcasting can roughly be estimated by
min(1, k/(N+1)). In Figure 4 we have plotted this probability
for £k = 1, 5 and 10 and one can see the same trends in the
plots of Figure 2.
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Fig. 4. Estimate for the broadcasting probabilities for different values of k.

If we then look at the results for the Trickle algorithm with
adaptive-k in Figure 3, we find that transmission load is being
distributed more fairly. Note, however, that for « = 1, high
degree nodes are being favored and all nodes broadcast with

30



relatively high probability. For a = 1/2, we see there is still
a tendency to favor low degree nodes, especially in sparse
networks, but less so than for the original Trickle algorithm.
The most appropriate setting for « for these networks in terms
of fairness seems to be in the range of 2/3 and 3/4. For
these two settings on average there are less broadcasts than
for k = 5, while the transmission load is distributed fairly.

Dense Network

Mean redundancy constant

Node degree

Fig. 5. The average redundancy constant per node degree.

Finally, in Figure 5, we show the average value of k per
node degree for the dense network scenario. Clearly, there is a
linear dependency on the number of neighbors a node has and
its average redundancy constant, where the slope depends on
«. This is also what one would like to see; the more neighbors
a node has, the higher its redundancy constant should be to
be able to compete for the medium.

VI. A CASE STUDY: RPL

Lastly, to confirm that the adaptive-k extension to the
Trickle algorithm can improve the performance of the pro-
tocols that it is used in, we perform a case study using RPL.
First, we provide a general description of the RPL routing
protocol. Then, we present simulation results for network of
varying density using RPL. Finally, we confirm the simulation
results with experimental data from a physical test bed.

A. RPL basics

RPL is a distance vector routing protocol for low-power and
lossy networks (LLNSs) that uses the Trickle algorithm to build
a Destination Oriented Directed Acyclic Graph (DODAG).
The DODAG is a tree-like network-graph, rooted in a single
node, in which all nodes learn a route towards the root node.
While RPL supports both upwards and downwards routes, in
this work we only focus on upward routes. The DODAG is
shaped according to one or more objective functions (OF),
which can specify metrics for the cost of routes or give
rules/constraints when building links.

The DODAG is built starting from the root as follows. The
root advertises information about the graph using DODAG
Information Object messages (DIO), which are disseminated
based on a Trickle timer. DIO messages contain information
about the DODAG, its configuration parameters and the ‘rank’
of the sender in the DODAG - a monotonically decreasing
measurement indicating the distance of the sender to the root
according to the objective function(s). Non-root nodes process
these DIOs and based on the objective function and/or some
local criteria, decide whether to join the network. After joining,

they establish which directly reachable nodes can forward data
most efficiently towards the root (i.e. have the lowest rank),
and select one of them as the preferred parent. Then, they
compute their own rank, and start transmitting DIO messages.

Once all nodes have selected a parent and have become a
part of the DODAG, we say that the DODAG has been formed.
Whenever a node then needs to send a message to the root, it
sends it to its parent, which then forwards it to its own parent
until it reaches the root.

Clearly, in order to be able to forward messages as effi-
ciently as possible, nodes need to quickly update their rank to
the ‘optimal’ rank. However, as we saw in the previous section,
the original Trickle algorithm tends to favor nodes with low
degree. Therefore, low degree nodes will be able to broadcast
DIO’s more often than high degree nodes. This introduces the
problem that nodes tend to favor low degree nodes as their
parents, possibly leading to sub-optimal routes, since routes
through high degree nodes might be more efficient. One hopes
that using Trickle with adaptive-k could solve this problem,
since it distributes the transmission load more evenly.

Rank=0

Fig. 6. Example of a simple DODAG using hop count as an Objective
Function. Node 4 has two parents, and selects node 2 as the preferred one.

B. Simulation results

We implement adaptive-k as part of the Contiki 2.7 oper-
ating system [22]. Contiki is an open-source operating system
for constrained devices, which includes a full 6LoWPAN
stack, together with an implementation of the RPL protocol,
called ContikiRPL. We simulate different topologies in Cooja,
a cross-level simulator for Contiki. Cooja [23] internally uses
the MSPsim device emulator for cycle accurate Tmote Sky
emulation, as well as a symbol accurate emulation of the
CC2420 radio chip. We use the Unit Disk Graph Radio
Medium (UDGM) model for radio propagation, with no loss.
UDGM penalizes collisions heavily, while end-to-end delivery
fails only due to filled MAC queues. At the link layer, we
use the default CSMA/CA implementation in Contiki with
no radio duty cycling (nullrdc). The RPL DODAG is formed
according to the Objective Function Zero (OF0) [24]. OF0
in Contiki is implemented as a hop-count based selection
metric, which uses local expected transmission count (ETX)
measurements to select between parents with the same rank.
Unnecessary parent switches are avoided by adding a simple
hysteresis mechanism [25].
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As in the previous section, we again look at topologies with
three different network densities, where this time one root and
100 non-root nodes are uniformly placed in a square area of
100100 meters. For each topology, the transmission range is
such that the average node degree is 5, 10 and 15, respectively.
We simulate a Constant Bit Rate data gathering application -
every non-root node sends one 80-byte packet (including all
headers) to the root node every minute. For each topology, we
consider the original Trickle algorithm with ¥ = 1,5 and 10
and adaptive-k Trickle with @ = 2 Epin = 1 and kpax = 10.
We simulate each configuration 100 times for 2 hours with
Lin = 2°ms and I pax = 2%°ms. We measure the mean time
until formation of the first DODAG, the mean number of DIO
transmissions per node and the mean network stretch after 2
hours. Network stretch is defined as the fraction of nodes with
a rank higher than the minimal rank, i.e. take more hops than
necessary to reach the root.

First of all, we find that DODAG formation time is not
greatly affected by the choice of k; only for sparse net-
works does the formation time suffer from low values of
k (Figure 7a). Secondly, for the original Trickle algorithm,
the average number of DIO’s increases quickly with k, as
expected. However, the DIO count of Trickle with adaptive-k
is comparable to that of the original algorithm with k£ = 1
(Figure 7b). Lastly, for the original Trickle algorithm with
low k the average network stretch remains high, probably
due to Trickle favoring low degree nodes. As k increases
the network stretch decreases; nodes are able to broadcast
more easily, allowing for discovery of better routes at the
cost of high overhead. However, we find that for adaptive-k,
for every scenario the network stretch after 2 hours is almost
zero; only in the sparse case there are 2 or 3 nodes that have

Network topology

(b) Average number of DIO’s

sparse medium dense

Network topology

(c) Network stretch

medium dense

Influence of the redundancy constant in RPL for different topologies. All values show the average of 100 runs and the 95% confidence interval.

not yet discovered the optimal route (Figure 7c), which could
potentially be avoided by increasing kpip.

Furthermore, the DIO broadcasting probability per node is
similar as in the random spatial simulations, with adaptive-k
distributing the load most fairly, while still suppressing many
transmissions (Figure 8).

In summary, the network stretch shows that Trickle with
adaptive-k allows for good routes to be discovered, as if &
was high, while only broadcasting few DIO’s, as if k was set
low, while distributing the message load evenly among nodes.

C. Experimental results

To confirm the simulation results, we implement the same
code as in the previous section, on a set of 43 WSN430 nodes
in the Rennes IoT-Lab physical test bed. WSN430 nodes have
the same MSP430 micro-controller and TI CC2420 radio chip
as the Tmote Sky. We configure the nodes to use the minimum
available transmission power (-25 dBm), which is enough to
form a network with at most 4-hops to the root. To enable
more accurate measurement, we use larger Trickle intervals,
Imin = 2*ms and I, = 2?*ms. The rest of the parameter
settings are identical as in the simulations. For each value of
the redundancy constant, we perform five experiments, where
each experiment runs for one hour. As nodes are booting up
randomly, links are fairly unstable, and there is no central
clock in the system, we only show the results for the overall
number of transmissions as measured at the link-layer, and the
end-to-end packet delivery ratio. All charts show the average
measured values and the 95% confidence interval of the mean.

100
95

90 { ¥ I ¥

85
80

PDR [%]

5000

4000

3000

2000

1000

Number of transmissions [#]

k=1 k=5 k=10 a=2/3

Data === DIO ===
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end packet delivery ratio (PDR) during 1h of operation at the IoT-Lab test
bed.



The experimental results confirm the simulation results;
setting a proper value of the redundancy constant significantly
impacts the overall traffic in the network (Figure 9). In this
particular network topology, a high value for the redundancy
constant does not improve routing, and therefore should be
set low. The proposed adaptive-k handles the situation well,
balancing between the overhead control traffic and high end-
to-end packet delivery ratio.

VII. CONCLUSIONS

In this paper we studied the effect of the suppression mecha-
nism on the performance of the Trickle algorithm. The current
Trickle standard proposes a fixed value of the redundancy
constant, which is sub-optimal in networks of varying density.
As a result, there is no clear agreement within the research
community to what the preferred setting should be.

By looking at different network topologies, we showed
that having a fixed value for the redundancy constant makes
Trickle unfair in terms of load distribution, favoring nodes
with few neighbors. Moreover, it makes Trickle vulnerable to
changing network topologies. Depending on the application
where Trickle is used, this unfairness can lead to various
consequences, such as increased end-to-end delays (MPL) or
creation of sub-optimal routes (RPL).

As a solution, we proposed adaptive-k, an extension of
Trickle which allows nodes to set their own redundancy
constant according to local information on network density.
Through analysis and simulations we showed that this exten-
sion makes Trickle more fair in terms of load distribution,
while still suppressing many redundant transmissions. Finally,
by simulations and experiments on a physical test bed, we
showed that the adaptive-k extension improves the perfor-
mance of the RPL routing protocol, by keeping the overhead
of control traffic low, while still discovering good routes.

As future work, we plan to investigate the performance of
other possible functions f(c) for adaptive-k. Additionally, we
aim to extend the analysis to the minimum Trickle interval.
The Trickle RFC already gives guidelines that is should be set
with respect to the redundancy constant, but it greatly depends
on the physical deployment of the networks. We believe
that having both settings dynamic, depending on the network
topology, would give better out-of-the box performance.
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APPENDIX
ASYMPTOTIC ANALYSIS STAR NETWORK

Denote the Markov chain of the redundancy constant of
the central node by K (™) = {K{™*)}2 e, the central
node’s k = Ki(n’a) in the ¢th interval. First consider the case
a =1 Let § = {0,1,2, .., n} denote the state space of
the chain, where the first two states correspond to the central
node having £ = 1 and receiving zero or one transmissions
during the previous interval respectively, and the other states
correspond to the current value for k. Then the Markov chain
with state space S has the following transition matrix

1 1
ar 0 - 00 1-0y
1 1
g 0 o 00 1-gy
1 1 2
it om0 0 0 I-y
P =
1 1 1 n—1
n+1 n+1 e n+1 0 1- n+1
11 1 1 q_ _n_
n+1 n+1 n+1 n+1 n+1

With some calculus one can use P to determine the steady-
state distribution {g;}”_ of the Markov chain. This allows us
to determine the steady-state probability that a broadcast by
the central node is suppressed when n grows large, that is

)

However, it is difficult to extend the analysis to general values
of «. Therefore, we will resort to a different method, which
leverages the particularly nice structure of the matrix P.

Instead of considering K (™) for general n, we will
directly consider the case n — oo. First, define

lim P[broadcast is suppressed]

= lim g, =€
n—oo n—oo

PO o, >Phﬁansy

Ki("’a)/n = I:| .

Then, recalling the structure of the transition matrix P, one
can deduce for z,y € [0, a:

¥ 0<y<ax
PO(z,y) = lim PO () ={w, ar<y<a,
1, y=oa.

That is, starting from z, the chain moves with probability x
to some point in [0, az] uniformly and with probability 1 — z
it moves to the atom «.

We will analyze the Markov chain K(®) = {K(®
with transition function as in (6). For = < «, let 7, (z) be the
steady-state density of K(®) and let p, be the steady-state
probability of the chain being in the atom a.

From (6) it is clear that 7,(y) = 0 for o®> < y < « and
hence for iy < a? we can write

2

wa(y)// To(z)/a dz + po /. @)
y/a
Moreover, using (6) we can write

2

zm=Aaﬂ—@m@MM+ﬂ—wm- ®)

Note, that it follows that 7, (0) = % Additionally, for o = 1,
Equation (7) is easily solved and we find 71 (z) = e~* and,
in line with Equation (5), p; = e 1.

For o < 1, the solution to (7) can be written recursively by
defining 7, () on distinct intervals as follows

To(2) = T i(x), for o't <z < o,
where
7TOt,l(l') =0, 71'(172(%) = pa/a,
1—1
. 1 o
Ta,i(T) = Mo i1(a’) + —/ Ta,i—1(y) dy, for i > 2.
« z/o

Determining p,, requires a different method. Let T}, be the
first return time to the atom «. That is
T, =min{i > 1: K(a) a | K(“) at.
We will calculate E[T,] and then make use of the fact that
Pa = 1/E[T,]. Define
X =K T, >

Let f;(x) be the density function of XZ-(O‘). We show that

i (1 - =z

A ) = az+1 ( a1+1
-3

. ,
)7, 0<z<att

otherwise.

9

For i = 1 we know that Xl(a) ~ U[0, a?], which is indeed
in agreement with (9). Now suppose (9) is true for some j,
then

adtt (a)
fa) = [ 5@ s pr, > 11T >

aitl

a /;z=y/a

Furthermore, as remarked below (6), starting from x the
Markov chain moves with probability z to a point in [0, az],
avoiding the return to «, and hence

@) o BT, > +1]T, > .

J+1
« a]J,»l
PT,>j7+1 Ta>'=/ r dr = .
1> 411> )= [ frar= 5
Combining we find
J+1 T \J
f]+1(y) = Oéj+2 ( - m) )

which proves (9).
Now noting that for ¢ > 0 we can write

Pl >i| =PIy >i—1|P[Ty >i| Ty >i—1],
and using the fact that P[T,, > 0] = 1, we deduce

T >z :Ha?

ali+Di/2

Finally, we conclude

= <§:P[Ta >i]> =

-1
o0 i(it1)/2
Pa = (Z 72' .

=0
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