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Abstract—Vibration energy harvesting (VEH) is a promising
source of renewable energy that can be used to extend battery
life of next generation mobile devices. In this paper, we study
the feasibility and accuracy of VEH for detecting hotwords, such
as “OK Google”, used by popular voice control applications to
distinguish user commands from other conversations. The idea
of using power signals of VEH to detect hotwords is based on
the fact that human voice creates vibrations in the air, which
could be potentially picked up by the VEH hardware inside
a mobile device. Using off-the-shelf VEH product, we conduct
a comprehensive experimental study involving 8 subjects. We
analyse two possible usage scenarios for the VEH hardware.
In the first scenario, the user is not required to talk directly
to the device (indirect), but the VEH is expected to pick up
the ambient vibrations caused by user-generated sound waves.
In the second, the user is expected to direct his voice to the
VEH (direct) and talk to it from a close distance. For both
usage scenarios, we evaluate two types of hotword detection,
speaker-independent and speaker-dependent. We find that VEH
can detect hotwords more accurately in the direct scenario
compared to the indirect. For the direct scenario, our results show
that a simple Decision Tree classifier can detect hotwords from
VEH signals with accuracies of 73% and 85%, respectively, for
speaker-independent and speaker-dependent detections. Finally,
we show that these accuracies are comparable to what could be
achieved with an accelerometer sampled at 200 Hz.

Index Terms—Hotword detection, Vibration energy harvesting,
Accelerometer, Voice control applications.

I. INTRODUCTION

With increasing user demand for more power and func-

tionality, manufacturers of mobile devices are forced to find

new energy solutions beyond batteries. For it, there is a

recent focus on vibration energy harvesting (VEH) as a viable

option for mobile devices to generate electrical energy from

ambient sources [1], [2]. VEH is considered one of the most

effective energy harvesting options for the future internet of

things due to the ubiquitous presence of vibration sources

in the environment. Significant recent research confirms that

VEH can harvest usable electric power for personal mobile

devices by harnessing vibrations due to human motion [3]–

[5]. These developments point to future mobile devices that

will be equipped with some sort of VEH hardware to ease the

dependence on batteries.

Although the primary purpose of VEH is to generate electric

power, in principle, it could also be used as a potential sensor

to detect or identify the source of the vibration. The ability

to detect the vibration source can lead to many potential

applications for the VEH hardware beyond its primary use

of energy harvesting. Indeed, recent work has convincingly

demonstrated that VEH can be used as an effective sensor

for human activity recognition due to the fact that different

activities create different patterns of ambient vibrations, which

produce different energy generation patterns in the VEH circuit

[6].

In this paper, we study VEH’s feasibility and accuracy for

detecting hotwords, such as “OK Google”, which are used by

voice control applications to delineate user commands from

background conversations. Because VEH does not require

any power supply to operate, it offers unique power saving

opportunity if used as a sensor for hotword detection. In

contrast, embedded microphones used in mobile devices for

hotword detection consume significant power [7]. To reduce

power consumption of hotword detection, researchers have re-

cently considered other low-power sensors, such as gyroscopes

[8] and accelerometers [7], that consume less power than

MEMS microphones. VEH’s feasibility for hotword detection

will open the door for further power saving opportunities in

wearable devices.

The contribution of this paper can be summarized as fol-

lows:

• We conduct the first study to assess the feasibility and

accuracy of VEH-based hotword detection.

• Using off-the-shelf VEH product, we conduct a com-

prehensive experimental study involving 8 subjects. Our

experiments involve the analysis of two possible usage

scenarios, indirect and direct. In the first, the VEH is

only expected to pick up the ambient vibrations caused

by user speech in the vicinity of the device. In the second,

the user talks directly to the surface of the piezoelectric

beam. For both usage scenarios, we evaluate two types of

hotword detection, speaker-independent, which does not

require speaker-specific training, and speaker-dependent,978-1-5090-2185-7/16/$31.00 ©2016 IEEE
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Fig. 1. A piezoelectric cantilevered beam working as VEH transducer.

which relies on speaker-specific training.

• We show that, in the direct scenario, VEH can detect hot-

words with accuracies of 73% and 85%, respectively, for

speaker-independent and speaker-dependent detections.

We further demonstrate that these accuracies are com-

parable to what could be achieved with an accelerometer

sampled at 200 Hz.

• Finally, for the direct scenario, we provide evidence

that orientation of the piezoelectric beam relative to the

speaker has a significant impact on hotword detection

accuracy. This finding may serve as an important input

to the design of next generation energy-harvesting mobile

devices.

The rest of the paper is organized as follows. We provide

a brief overview of VEH and its potential use as a hotword

detector in Section II. VEH data collection process is explained

in Section III, followed by hotword training and classification

methods in Section IV. Results of VEH-based hotword detec-

tion are presented in Section V. Related work is reviewed in

Section VI and the conclusions in Section VII.

II. VEH OVERVIEW

A. What is VEH?

Vibration energy harvesting (VEH) is the process of captur-

ing environmental vibrations and converting them into electri-

cal energy. Numerous vibration sources exist around us such

as natural geographical vibrations (e.g. earthquakes), wind

movement, machinery vibrations, human motion, and acoustic

noise, to name a few. VEH has the potential to replace batteries

or at least extending the battery life time for small, low-

power electronic devices. Vibrations are typically converted

into electrical energy using three transduction mechanisms

[9]: piezoelectric, electromagnetic (capacitive), or electrostatic

(inductive). Piezoelectric transducers are the most favourable

due to their simplicity and compatibility with MEMS [10]. The

piezoelectric effect was discovered in natural quartz crystals,

but today’s piezoelectric transducers are typically made from

patented, proprietary ceramics.

Fig. 1 shows a typical usage configuration of a piezoelectric

cantilevered beam to implement a VEH transducer. One end

of the beam is fixed to the device, while the other is set

s

shout 1

shout 2
shout 

Fig. 2. Effect of shouting on the VEH piezoelectric beam.

free to oscillate (vibrate). When the piezoelectric material

is subjected to a mechanical stress due to any source of

environmental vibrations, it expands on one side and contracts

on the other. Positive charges accumulate on the expanded side

and negative charges on the contracted side, generating an AC

voltage as the beam oscillates around the neutral position. The

amount of voltage is proportional to the applied stress, which

means that different vibration patterns would generate different

AC voltage patterns. In most applications, the generated AC

voltage is rectified to produce a DC, which can be used to

power different sensors, such as an accelerometer, a gyroscope,

or a microphone. However, the focus of our study is to

investigate whether the AC signals can be used directly to

detect hotwords.

B. Impact of speech on piezoelectric VEH

Human speech creates sound waves which move through the

air in forms of air pressures. Therefore, a VEH should be able

to detect changes in air pressures caused by human voice. To

experimentally demonstrate this effect, we have asked a user

to shout three times on top of a piezoelectric cantilever, while

the generated voltage signal is being recorded. Fig. 2 shows

the impact of the air pressure on the piezoelectric material.

The device is responding by giving a voltage peak each time

the air pressure hits the beam. This small experiment provides

clear evidence that VEH can be used as a potential sensor

to detect the presence of speech. Because the patterns of

air pressures would be different when the human pronounces

different phrases, we should be able to detect hotwords using

VEH.

C. Study of VEH for hotword detection

Pervasive hotword detection requires continuous sensing of

audio signals, which results in significant energy consumption

when a microphone is used as an audio sensor. How to reduce

audio sensing energy cost using other low-power sensors that

can also register voice signals is a recent research trend in the

literature. For example, researchers have shown that, instead

of microphones, gyroscopes [8] or even accelerometers [7]

can be used to detect hotwords at a fraction of the energy

consumption. Assuming that the future wearable devices will

have VEH to harvest energy from the ambient vibrations

including human speech [11], [12], our proposal of using VEH
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Fig. 3. VEH-based hotword detection.

output patterns for hotword detection will open the door for

further power saving opportunities in wearable devices.

Fig. 3 shows the architecture used in our study for VEH-

based hotword detection. The generated AC voltage data is

continuously fed to a trained binary classifier, which classifies

the input signal into either hotword or non-hotword. No actions

will be taken during the normal conversation (speech contains

no hotword), but if hotword is detected, the system will

switch to the command mode. To realise the proposed binary

classifier, we first need to collect AC data from both hotword

and non-hotword speeches, and then train a suitable classifier

to detect hotwords. These steps are explained in the following

sections.

III. VEH DATA COLLECTION

In this section, we explain our VEH hardware setup and the

data collection process.

A. VEH Data Logger

We built a data logger to collect the output of a piezoelectric

VEH. We chose a product called Volture from MIDÉ [13],

which implements a piezoelectric VEH providing AC voltage

as its output. In order to access the generated AC voltage signal

of the VEH, an Arduino Uno is used as a micro-controller.

We also included a 3-axis accelerometer (MMA7361LC) in

the middle of the data logger, so any ambient vibrations

can also be recorded in forms of accelerations. The Arduino

micro-controller is programmed to sample the data from both

the VEH and the accelerometer at a sampling rate of 1000

Hz. The sampled data is saved on an 8GB microSD card

which is integrated to the Arduino using microSD shield.

A 9V battery is used to power the Arduino. Two switches

have been included, one to switch between the on/off mode

of the device and the other to control the start and stop of

data logging, which allows us to save AC data from different

phrases into different files. Fig. 4 shows the internal and

external appearances of our data logger.

B. Experimental setup

We have collected data from many different experimental

setups as summarised in Table I. We collected data from eight

participants, four males and four females. Since our aim is

to detect hotwords from phrases commonly used in typical

conversations, we collect data in two different phases. In phase

one, the user is asked to speak the hotword “OK Google”

and repeat it 30 times. In the second phase, the user is asked

to repeat each of three choices of a non-hotword phrases,

12.5 cm
4 cm

6 cm

(a) External Appearance.

On/Off Switch

9V battery 
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VEH transducer 
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(Arduino Uno)
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Fig. 4. External and internal appearances of VEH data logger.

“fine, thank you”, “good morning”, and “how are you” 10

times, giving a total of 30 ’non-hotword’ cases per user. The

subjects are asked to utter all the phrases at their normal

talking levels and take a break of few seconds between every

two consecutive phrases. All experiments are carried out in a

quiet room to eliminate background noise as much as possible.

C. VEH Usage Scenarios

During our data collection, we consider two possible usage

scenarios of the VEH hardware, direct vibrations and indirect
vibrations. The former scenario represents the case when

the user is expected to bring the device close to his mouth

when giving a command and talk directly on the surface

on the piezoelectric beam. In our design, the piezoelectric

energy harvester is left visible outside the VEH hardware

case to implement the direct scenario (see Fig. 4(a)). The

latter scenario is designed for cases when it is not practical or

desirable to have a visible piezoelectric surface, but hotwords

are expected to be detected from ambient vibrations captured

by a VEH embedded somewhere in the mobile device. Data

collection for these two scenarios are explained below.

• Direct vibration scenario:

In this scenario, the user is asked to direct his voice

towards the piezoelectric beam from a 3 cm distance. To

study the impact of the piezoelectric beam’s orientation

on the hotword detection, we considered two different

orientations. The data is first collected while the piezo-

electric beam has a flat (horizontal) orientation. Then, the

data is collected with the beam in its vertical orientation.

Fig. 5 shows the two different orientations and how the

direction of the airflow from user’s speech affects the

cantilever beam.

• Indirect vibrations scenario:



TABLE I
EXPERIMENTAL SETUP.

Participants 8 volunteers: 4 male and 4 female.
Classes 2 classes: ’hotword’ and ’non-hotword’:

– ’hotword’ class includes one phrase

∗ ’Okay Google’

– ’non-hotword’ class includes three phrases

∗ ’Fine, thank you’.
∗ ’Good morning’.
∗ ’How are you?’.

Dataset 60 instances/participant: 30 ’hotwords’ and 30 ’non-
hotwords’. In total, 480 instances.

Device
orientation

2 orientations: horizontal and vertical (as shown in
Fig.5).

Device posi-
tion

on a table with 3 cm distance between subjects’
mouth and the device.

In this scenario, the VEH is only expected to pick up

the ambient vibrations caused by user speech in the

vicinity of the device. The 3-axis accelerometer in the

data logger is used to capture the ambient vibrations

in terms of accelerations, which are later converted into

VEH power signals using a second order mass spring

damping model whereby the linear damper represents the

combined damping offered by electrical and mechanical

domains [4]. A second order mass spring damping model

can be represented by a transfer function (in the Laplace

domain) as in Equation (1).

z(t) = L−1Z(s) =
A(s)

s2 + b
ms+ k

m

, (1)

where m is the proof mass, k is the spring constant, b is

the damping factor, A(s) and Z(s) denote, respectively,

the Laplace transforms of the input force a(t) and the

proof mass displacement z(t).
Simulink is used to simulate the response of this mass-

spring-damper system. Once the gravity is filtered out

from the data, the filtered data is converted to proof
mass displacement using the previous Laplace domain

transfer function. Next, the resulting proof mass displace-

ment, z(t), is limited by the limit of the proof mass

displacement, ZL. Finally, the generated harvested power

is determined by:

p(t) = bż2(t) (2)

This model has been used in [4], [14] to estimate

the amount of power harvested from human motion

vibrations. The configuration values, m = 10−3kg,

ZL = 10mm, k = 0.17, and b = 0.0005, have been

optimised in these research for typical human activities.

In this study, we use the same model parameters to

capture the vibrations generated by user speech in the

vicinity of the device, as our main interest is hotword

detection rather than power maximization and the VEH

in mobile devices is likely to be configured to maximise

power from human activity. The entire procedure is

3 cm

Air flow

(a) Flat orientation.

3 cm

Air flow

(b) Vertical orientation.

Fig. 5. Flat and vertical orientations of the VEH data logger.

implemented using MATLAB and SIMULINK [15].

Although, our prototype collects both VEH and accelerome-

ter data at 1000 Hz sampling rate, most mobile devices restrict

the accelerometer sampling rate to a maximum 200 Hz in order

to reduce power consumption [7]. Therefore, we downsampled

our accelerometer sampling rate to 200 Hz to match the

current availability of accelerometer’s sampling rate in mobile

devices and to provide a fair comparison. In total, we have five

different datasets, three of them are VEH datasets for indirect

scenario and direct scenario for two different orientations

(flat and vertical). The remaining two sets are accelerometer

datasets for two different sampling rates 1000 Hz and 200 Hz.

The accelerometer datasets are used for comparison purposes

of both VEH and accelerometer-based hotword detection.

IV. HOTWORD TRAINING AND CLASSIFICATION

The VEH data obtained in both indirect and direct scenarios

have been used to evaluate VEH-based hotword detection in

comparisons with accelerometer-based hotword detection.

Feature extraction is a critical initial step in any classifica-

tion process. This step transforms the input data into a set of

features which are expected to extract the relevant information

from the input data in order to perform the desired task.

Table II shows our considered features set for VEH-based

hotword detection, which was also considered previously in

[7] for hotword detection from accelerometer data. The table

shows single axis features, which are extracted from the single

axis signals of VEH, in both direct and indirect scenarios,

and each axis of the accelerometer signal separately. Besides

the single axis features, the table shows multiaxis features

which were extracted from the combination of the three axes

of the accelerometer signal. Because all our hotwords were

completed within 2 seconds, we used a time window of 2

seconds to extract the features.

For classification, we chose a Decision Tree (DT) classifier1,

which is a simple, yet powerful and very popular tree-based

tool for classification and prediction [16]. The DT classifier is

implemented in the widely used WEKA [17] software, which

we used for our study. In the DT classifier, the classification

process starts at the root of the tree and grows sequentially un-

til reaching a leaf node. The central focus of the tree growing

1Authors in [7] also used DT



TABLE II
THE SELECTED FEATURES.

Time-domain
features – Single axis features: calculated for VEH data and the three axes of the accelerometer x, y, and z separately:

∗ Mean: the central value of a window of samples
∗ Variance: a measure the amount of variation or dispersion from the mean.
∗ Standard Deviation: the square root of the variance.
∗ Minimum: the minimum value in a window of samples
∗ Maximum: the maximum value in a window of samples
∗ Range: The difference between the maximum and the minimum values in a window of samples
∗ Absolute Mean: average of absolute values,
∗ Coefficient of Variation: ratio of standard deviation and mean times 100; measure of signal dispersion,
∗ Skewness (3rd moment): measure of asymmetry of the probability distribution of the window of samples,
∗ Kurtosis (4th moment): measure of peakedness of the probability distribution of the window of samples,
∗ First, second and third quartiles: measures the overall distribution of the signal samples over the window,
∗ Inter Quartile Range: the difference between the upper (third) quartile and the lower (first) quartile of the window of

samples; also measures the dispersion of the signal samples over the window,
∗ Mean Crossing Rate: measures the number of times the signal crosses the mean value; captures how often the signal varies

during the time window,
∗ Absolute Area: the area under the absolute values of the signal samples. It is the sum of absolute values of the signal

samples over the window,

– Multiaxis features: calculated as a combination of the three axes of the accelerometer:

∗ TotalAbsArea: sum of AbsArea of all three axis.

TotalAbsArea =

L∑

i=1

|Accx|+ |Accy |+ |Accz | (3)

where |Accx|, |Accx|, and |Accx| are the absolute values of the three axes of the accelerometer x, y, and z respectively.
L is the length of the window.

∗ TotalSVM: the signal magnitude of all accelerometer signal of three axis averaged over the time window.

TotalSVM =

∑L

i=1

√
Acc2x +Acc2y +Acc2z

L
(4)

Frequency-
domain features – Single axis features:: calculated for VEH data and the three axes of the accelerometer x, y, and z separately:

∗ DomFreqRatio: it is calculated as the ratio of highest magnitude FFT coefficient to sum of magnitude of all FFT coefficients.
∗ Energy: it is a measure of total energy in all frequencies. It is calculated as the sum of the squared discrete FFT component

magnitudes.

Energy =

L/2∑

i=1

F 2
i (5)

where Fi is the magnitude of FFT coefficients.
∗ Entropy: captures the inpurity in the measured data. It is calculated as the information entropy of the normalized values

of FFT coefficient magnitude.

Entropy = −
L∑

i=1

Fnilog2(Fni) (6)

where Fni is the normalized value of FFT coefficient magnitude.

algorithm is testing and selecting the feature with the most

inhomogeneous class distribution, based on its information

gain. The IG of feature fi measures the expected reduction in

entropy caused by partitioning the data (instances) according

to this feature. The calculation of information gain is based

on calculating the entropy H(S) of a set of classes S.

H(S) = −
n∑

i=1

pi log2 pi (7)

where n is the number of different activity classes and pi is

the proportion of all instances belonging to the ith class. The

information gain is then calculated using:

Gain(S, fi) = H(S)−
∑

v∈V alues(fi)

|Sv|
|S| H(Sv) (8)

where Sv is the subset of S for which feature fi has a value

v (i.e., Sv = s ∈ S|V alues(fi) = v) and |S| denotes the

cardinality of the set S.

A well-known algorithm, which has been widely used for

building decision trees over the years, is C4.5 [18]. In this

algorithm, pruning is used to reduce the size of the tree to

its optimal size, without reducing predictive accuracy. A tree

that is too large, risks overfitting the training data and poorly

generalizes to new samples. A small tree might not capture
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Fig. 6. Ambient vibrations captured by the internal accelerometer when different phrases were uttered by Female 1 compared to a silent case: (a) raw
acceleration data and (b) VEH power estimated from acceleration data using the mass-spring model.

important structural information about the sample space [19].

In all usage scenarios, we evaluate two types of hotword

detection, speaker-independent and speaker-dependent. In the

speaker dependent case, the classification process is applied

on the data collected from each individual participant. On

the contrary, in the speaker independent hotword detection,

all of the data gathered from the eight participants were first

mixed and then fed to the classifier. In both cases, a 10-fold

cross validation scheme [20] is used to get the results. In

this scheme, the original data set is randomly divided into 10

equally sized subsets, where 9 of them are used for training

and one subset is used for testing. This is repeated 10 times

(the folds) and then the average of the results is reported.

V. RESULTS

In this section, we present the results of our hotword

detection study using piezoelectric VEH. We first present

results for the indirect usage scenario, followed by the direct

scenario. For both scenarios, we analyse the results for speaker

independent as well as speaker dependent detections. The

results of VEH-based hotword detection is compared with

accelerometer-based detection. We also investigate speaker

identification using piezoelectric VEH and compare it to the

accelerometer-based identification. Finally, we analyse the

impact of speech direction relative to the piezoelectric beam

on the performance of hotword detection. In all of our results,

we use the total accuracy as our evaluation metric. The total

accuracy is calculated using Eq. 9 as a percent value.

Accuracy =
TP + TN

N
× 100(%), (9)

where TP is the number of instances where speaking the

hotword is correctly recognized as speaking the hotword, TN
is the number of instances where speaking the non-hotword is

correctly recognized as speaking the non-hotword, and N is

the total number of instances.

A. Indirect Vibrations

Recall, that in this scenario, the VEH is expected to capture

only the ambient vibrations caused by the user speech. Fig.

6(a) shows the 3-axial accelerometer output signals sampled

at 1000 Hz, which represent these ambient vibrations. We see

that there are no or negligible vibrations when the user remains

silent (the top graph). However, the presence of ambient

vibrations are clearly captured in the next four graphs. These

results are in line with [7], which showed that human speech

can be detected by accelerometers.

As explained in Section III, accelerometer traces can be

used to estimate the power that can be potentially harvested

by VEH. Fig. 6(b) shows estimated traces of power if VEH

was used to harvest the ambient vibrations caused by user

speech. We can see that the amount of power that could be
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harvested from such ambient vibrations is very low, in the

order of tens of nW. However, we are not really interested

in the amount of power generated by speech, but rather the

patterns of power generation that could be used to detect

hotwords. In this regard, we do see that the power amplitudes

for all four phrases are certainly higher than the silence and

that they all exhibit different power patterns. This implies that

the indirect usage scenario may also be able to detect hotwords

with some success.

To formally assess the discriminating capacity of the pat-

terns of VEH power generation for hotword detection, we use

the information gain theoretic analysis explained in Section

IV. IG is a measure that determines how useful a given feature

is for discriminating between the classes to be learned. Fig.

7 shows the IG of VEH power signals for the first nine

features used for hotword detection. Indeed, this analysis of

the features shows that many features provide positive gains,

giving evidence that even these low power signals contain

information to detect hotwords.

Table III shows the hotword detection accuracy results for

indirect VEH. We find that for speaker independent, VEH

can detect hotwords with 54% accuracy, which means that

users would have to repeat the hotword just about once on

average to get the voice control system into the command

mode. However, the accuracy improved to 63% with speaker

dependent training.

To see how these results compare to hotword detection using

the 3-axial accelerometer itself, we conducted the training and

classification with the acceleration data collected at 1000 Hz

and sub-sampled at 200 Hz. Table IV shows the hotword

detection results that could be achieved using the accelerome-

ter. Once more, we found that speaker dependent outperform

speaker independent, but we find that accelerometer achieves

much higher accuracies than VEH. For example, even with 200

Hz, accelerometer can achieve accuracies of 76% and 87%,

respectively, for speaker independent and speaker dependent

TABLE III
ACCURACIES (%) OF HOTWORD DETECTION FOR INDIRECT VEH.

Speaker Independent 54.38
Female 1 53.33
Female 2 63.33
Female 3 46.67
Female 4 56.67

Speaker Dependent Male 1 78.33
Male 2 66.67
Male 3 70.00
Male 4 75.00
Average 63.75

TABLE IV
ACCURACIES (%) OF HOTWORD DETECTION FOR ACCELEROMETER.

Acceleometer Sampling Rate 200 Hz 1000 Hz
Speaker Independent 76.04 83.13

Female 1 81.67 83.33
Female 2 83.33 83.33
Female 3 86.67 95
Female 4 85 87.33

Speaker Dependent Male 1 96.67 96.67
Male 2 93.33 98.33
Male 3 90 85
Male 4 80 95
Average 87.08 90.5

detections. The better performance of accelerometer compared

to VEH can be explained by the 3-dimensional information

available in the accelerometer (VEH has only 1-dimensional

power data). However, VEH performance can be improved by

harnessing voice vibrations more directly as examined in the

following section.

B. Direct Vibrations

In this subsection, we examine the benefit of capturing

voice vibrations more directly from the user. As explained

in Section III, with this scenario, we conduct the training and

classification using the AC voltage signal collected directly

from the piezoelectric beam in our VEH data logger. Fig. 8

shows the patterns of AC voltage for silence and when the four

phrases are spoken by Female 1. We see that voltage produced

by silence is significantly lower than those produced by voice.

We also notice that silence has a more periodic voltage pattern,

which captures the background (noise) vibrations, while the

voltage is markedly biased in the positive direction when

phrases are spoken. This is expected because, in this scenario,

sound waves continuously hit directly on one surface of the

piezoelectric beam causing it to vibrate asymmetrically around

the neutral position.

Table V presents accuracies when VEH AC Voltage is

used for hotword detection with user speaking directly to

a flat surface of the piezoelectric beam. Compared to the

ambient vibration examined in the previous subsection, we

can see marked improvement in the performance. With direct

vibration capture, VEH can detect hotwords with accuracies

of 73% and 85%, respectively, for speaker dependent and

speaker independent detections, which are now comparable

to accelerometer-based results with 200 Hz sampling.



TABLE V
ACCURACIES (%) OF HOTWORD DETECTION FOR DIRECT VEH.

Speaker Independent 73.04
Female 1 81.67
Female 2 76.67
Female 3 88.33
Female 4 88.33

Speaker Dependent Male 1 96.67
Male 2 85.00
Male 3 75.00
Male 4 93.33
Average 85.63
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Fig. 8. VEH output signals for the direct scenario when different phrases
were uttered by Female 1 compared to a silent case.

C. Speaker Identification

Previous work [7] has noted that accelerometer can be used

to distinguish a user’s voice from other users, which can

be useful for user authentication applications. Therefore, in

this subsection, we investigate VEH AC Voltage for speaker

identification. To do so, we perform a multiclass classification

by considering the data of each of the eight participants as

a separate class. Fig. 9 shows the confusion matrix when

VEH AC Voltage is used for speaker identification with user

speaking directly to a flat surface of the piezoelectric beam.

The results of the accelerometer-based identification are shown

in parenthesis for comparison purpose. The results show that

accelerometer outperforms VEH for speaker identification.

The overall accuracy of VEH-based speaker identification is

56.87% compared to 85.83% for accelerometer-based identifi-

cation. This reveals that VEH-based speaker identification still

has a room for improvement which we consider as a future
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Fig. 9. Confusion matrix of the VEH-based speaker identification. Results of
the accelerometer-based identification are shown in parenthesis for comparison
purpose.

TABLE VI
ACCURACIES (%) OF HOTWORD DETECTION FOR VERTICALLY SPEAKING

TO VEH.

Speaker Independent 62.92
Female 1 88.33
Female 2 80
Female 3 83.33
Female 4 65

Speaker Dependent Male 1 90
Male 2 80
Male 3 56.67
Male 4 83.33
Average 78.33

work.

D. Impact of VEH Orientation

Finally, we examine the impact of the orientation of the

piezoelectric beam relative to the speaking or air flow direc-

tion. Table VI shows the accuracy results when the speaker is

speaking vertically to the beam (see Section III). Interestingly,

although the distance between the user and the beam is the

same in both orientations, the vertical orientation degrades

hotword detection performance significantly. These results

show that if direct vibration usage scenario is planned for

VEH-based hotword detection, VEH placement within the

mobile device may have to be carefully designed.

VI. RELATED WORK

Voice control applications such as Siri [21] and Google Now

[22] have emerged recently to improve user’s interactivity.

These voice control applications use hotwords such as “Okay

Google” or “Hi Galaxy” to distinguish user’s voice command

from other conversations. One major challenge of voice control

applications is the intensive sensing of audio signals which

requires the microphone to be continuously ON to monitor

user’s voice commands [23]. One way to reduce the energy

cost of audio sensing is the use of low-power sensors, e.g.,

accelerometer and gyroscope instead of the microphone.

MEMS sensors such as accelerometer and/or gyroscope

have been widely used for human activity recognition [24]–

[27] and indoor positioning applications. Matic et al, [28] have



also shown that accelerometer can be used for recognizing

speech activity based on detecting phonation caused vibrations

at the chest level. This can help in activating the voice

control applications automatically, which usually require user

interaction by a simple gestures on a button or using a Near

Field Communication (NFC) tag.

In an attempt to reduce audio sensing energy cost,

Michalevsky et al., [8] used the gyroscope sensor for digits

recognition instead of the microphone. Gyroscope sensors

consume less power than microphones, however, the authors

in [8] had to upsample the received gyroscope samples at

4000 Hz to achieve acceptable accuracy, which is also power

consuming. On the other hand, Zhang et al., [7] exploited the

accelerometer sensor for energy-efficient hotword detection.

They showed that accelerometer sampled at only 200 Hz can

detect hotwords with comparable accuracy to microphones.

They also showed experimentally that the accelerometer is

more energy efficient than both microphone and gyroscope

sensors.

To our knowledge, this is the first work to demonstrate that

hotword detection is viable with VEH signals. Since VEH

does not require power supply to generate AC signals, the

possibility of VEH-based hotword detection opens up new

power-saving opportunities for wearable devices.

VII. CONCLUSION AND FUTURE WORK

To address battery issues, VEH is expected to be included

in many emerging wearable devices. Using experiments with

real subjects and VEH devices, we have shown that hotwords

can be detected from the power generation patterns of VEH

circuits with up to 85% accuracy. Given that VEH devices do

not require any power supply to operate, VEH-based hotword

detection has the potential for significant power saving. Our

study has further revealed that the orientation of the VEH

device relative to users’ talking direction can have a major

impact on the performance of VEH-based hotword detection.

Future work will focus on experimenting with larger datasets,

evaluating performance under user mobility and noisy environ-

ments, analysing power consumption of VEH-based hotword

detection, and studying the impact of harvester size on the

accuracy of hotword detection.
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