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Abstract—With recent advancements in drone technology,
researchers are now considering the possibility of deploying small
cells served by base stations mounted on flying drones. A major
advantage of such drone small cells is that the operators can
quickly provide cellular services in areas of urgent demand
without having to pre-install any infrastructure. Since the base
station is attached to the drone, technically it is feasible for
the base station to dynamic reposition itself in response to the
changing locations of users for reducing the communication
distance, decreasing the probability of signal blocking, and
ultimately increasing the spectral efficiency. In this paper, we first
propose distributed algorithms for autonomous control of drone
movements, and then model and analyse the spectral efficiency
performance of a drone small cell to shed new light on the
fundamental benefits of dynamic repositioning. We show that,
with dynamic repositioning, the spectral efficiency of drone small
cells can be increased by nearly 100% for realistic drone speed,
height, and user traffic model and without incurring any major
increase in drone energy consumption.

I. INTRODUCTION

A drone is an unmanned aerial vehicle designed to be
flown either through remote control or autonomously using
embedded software and sensors. Historically, drones had been
used mainly in military for reconnaissance purposes, but with
recent developments in light-weight battery-powered drones,
many civilian applications are emerging. Use of drones to
deploy small cells in areas of urgent needs is one of the
most interesting applications currently being studied by many
researchers [1]–[6]. The greatest advantage of this approach is
that drones can be equipped with small cell base station (BS)
module and sent to a specific target location immediately to
establish emergency communication links without having to
deploy any infrastructure.

In this paper, we go beyond the basic advantage of quick
deployment and seek further benefits that these emerging agile
drones could bring to cellular communication networks. Since
the base station is attached to the drone, technically it is
feasible for the base station to dynamic reposition itself in
response to the changing users locations for reducing the
communication distance, decreasing the probability of signal
blocking, and ultimately increasing the spectral efficiency.
While dynamic repositioning of BSs is a conceptually simple
idea, its realisation would require development of distributed
algorithms for autonomous control of continuous drone move-

ment that would optimise the spectral gain. It is also not
immediately clear whether the benefits of dynamic reposition-
ing would be significant for practical use, given that drone
flying speeds must be restricted to conserve battery life and to
ensure safety operations. Moreover, the impact of user traffic
model on the spectral efficiency gain will also have to be
carefully analysed before any conclusions can be made about
the performance improvement of dynamic repositioning the
drone BSs.

Recent studies [4]–[6] on drone small cells mainly focused
on finding a stationarily optimal location in the air for the
drone to hover, while serving the target area with a given
population and traffic demand. To the best of our knowledge,
the concept of dynamic repositioning drone BSs has not been
adequately explored in the literature to quantify its benefits
in terms of the spectral efficiency gain. In this paper, we
model and analyse the spectral efficiency of a drone small
cell with or without dynamic repositioning and shed new light
on the fundamental benefits of dynamic repositioning. Our
analysis shows that, with dynamic repositioning, the spectral
efficiency of drone small cells can be increased by nearly
100% for realistic drone speed, height, and users traffic model
and without incurring any major increase in drone energy
consumption.

The novelty and contributions of this paper are summarised
as follows:
• We propose an analytical model for a single drone

small cell serving a single user, and derive the spectral
efficiency gain for dynamic repositioning. Our model
sheds new light on the fundamental benefits of dynamic
repositioning for drone small cells as a function of drone
flying speed, height and user traffic parameters. Our
analytical results confirm that dynamic repositioning can
increase spectral efficiency of drone cells significantly.

• We propose two distributed algorithms for autonomous
dynamic repositioning of the drone with an objective
to optimize the spectral efficiency. The first algorithm,
which is simple to implement, enables the drone to make
movement decisions using only local position information
of the active user that it is currently serving. The second
algorithm requires information about user locations in
neighbor cells to minimize interference leakage to the
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surrounding and maximize the overall spectral efficiency
of the entire network area. Both algorithms are evaluated
in realistic multi-cell environments.

• We simulate the proposed dynamic positioning algorithms
using realistic drone and traffic parameters with multiple
cells and multiple mobile users in each cell. As for the
medium access scheme to serve multiple users in each
cell, we consider two widely used methods of resource
allocation, i.e., time division multiple access (TDMA)
and frequency division multiple access (FDMA). Our
simulations show that, even with the simplistic dynamic
repositioning algorithm that requires the local position in-
formation only, the spectral efficiency of drone small cells
can be increased by nearly 100% without any negative
effect on drone battery life. This result is achievable with
both TDMA and FDMA, making dynamic repositioning
a practical solution for a wide range of existing platforms.
A further 8% increase in the spectral efficiency can be
achieved with the more advanced dynamic repositioning
algorithm that requires the neighboring position informa-
tion to minimize interference leakage to adjacent cells.

The remainder of the paper is structured as follows. Related
work is reviewed in Section II. Section III introduces the
system model. In Section IV, we present the analytical model
and theoretical results for a single drone cell. Our proposed
algorithms and simulation results for a network with multiple
drone cells are presented in Sections V and VI, respectively.
Finally, we conclude our paper in Section VII.

II. RELATED WORK

Drones have been considered both in the context of data
gathering in wireless sensor networks [7]–[9], and more re-
cently in the context of delivering data to mobile users in
cellular networks. Since the focus of this paper is on cellular
networks, we only review the drone-related research relevant
to cellular networks.

Because of the flexibility and agility of drones, deploying
the drone base stations (BSs) in optimal locations to maximize
various network metrics are investigated in the literature. Al-
Hourani et al. [10] provided an analytical model to find an
optimal altitude for one UAV that provides the maximum
coverage of the area. A service threshold in terms of max-
imum allowable path loss is defined in this model. Another
recent study by Mozaffari et al. [11] studied the problem of
finding the optimal cell boundaries and deployment location
for multiple non-interfering UAVs. The objective of that study
was to minimize the total transmission power of the UAVs.

UAVs were also expected to establish emergency communi-
cation links during disaster situation and thus improve public
safety in [3]. That work showed that by optimal placement of
UAVs the system throughput can be improved significantly.
Brute force search was used to find the optimal location of
UAVs in the target area.

Finding the 3D optimal location for deploying a drone cell
was studied in [12]. When some users with QoS requirements
are distributed in an area, a 3D location could be found for

deploying a drone cell to provide services for the maximum
number of users satisfying their SNR (Signal to Noise Ratio)
constraints.

Multiple interfering UAVs bring more challenges such as
the distance between UAVs. The problem of the optimal
deployment of two interfering drone small cells is investigated
in [4]. Rohde et al. [2] addressed the problem of cell outage or
cell overload using UAVs to temporarily offload the traffic to
neighbor cells in 4G networks. In that work, a central planning
model for the placement of UAV relays was discussed, the
feasibility of the solution was also proved using an analytical
model.

Moreover, a propagation model for air-to-ground commu-
nication is studied in [13] and [10]. Those studies derived a
closed-form expression based on elevation angle to present the
probability of having LoS (Line of Sight) connection for low
altitude platforms.

There are a few other studies in the area of optimizing
the deployment of the drone BSs. However, they have not
considered the mobility of drones after the deployment, to
see how dynamic repositioning of the drones can improve the
network performance.

Note that in our previous work [14], we focused on the
spectral efficiency gain of dynamically repositioning a single
drone. Here, we consider multiple interfering drone BSs,
devise various heuristic algorithms, and validate them through
extensive simulation. In addition, we consider practical com-
mercial drone BSs in this work, which mandates that drones
should not fly too high or too fast. In contrast, the existing
studies [4], [8] usually considered the application of drones in
wireless sensor networks or city-wide broadcasting services,
where drones can fly at a height of several hundreds of meters
and at a speed of several tens of kilometers per hour. More
specifically, we propose that drone BSs should not fly too high
in cellular networks because,
• (a) Drones flying at a high altitude, e.g., larger than

10∼20 meters, will significantly increase the inter-cell
interference as shown in the 4G/5G networks [15].

• (b) Drones flying at a higher altitude will cause much
more energy consumption than that at a lower alti-
tude [16], [17].

• (c) Drones flying at a high altitude are susceptible to
wind, thus they will have to be made heavy and large,
which are not safe to use in practice in case of crash.

Besides, we propose that drone BSs should not fly too fast
in cellular networks because,
• (a) Drones flying at a higher speed will cause much more

energy consumption than that at a lower speed [18].
• (b) Drones flying at a high speed will cause tremendous

damage in case of collision.
As practical assumptions, we propose that the flying height

of drone BSs should be around 10 meters as widely used by
small cell BSs in the 3GPP LTE networks [19], [20], and
the flying speed of drone BSs should be around 10m/s, which
does not cause extra energy consumption compared with drone



hovering as shown in the measurement study for the state-of-
the-art drones [18].

With the above practical assumptions, it is particularly in-
teresting to investigate the spectral efficiency gain of dynamic
repositioning of drone BSs in the cellular networks, if there
exists some gain at all. We will answer this fundamental
question in the following sections.

III. SYSTEM MODEL

In this section, we describe the system model for the
proposed dynamic repositioning of drone BSs. When a drone
is moving across its cell, the distance between the drone and
its users will change and in turn affect the strength of the
received signals. As a result, the drone needs to update its
moving direction constantly according to the position of active
users who have data requests. The direction should be selected
in a way to maximize the spectral efficiency of the network.

A. Network Scenario

Let’s consider a network area consisting of N cells, with
each cell having a pre-determined shape, e.g., square (with a
edge length of l (in meter)), or disk (with a radius of R (in
meter)). In each considered cell, there is a drone that can either
move with a constant speed of v (in m/s) or hover at a low
height of h (in meter). There are U mobile users in each cell.
Initially all drones are located above the center of their cells.

Each drone, which may be connected to a nearby macro cell
tower with a wireless back-haul link, is responsible to provide
wireless communication services for the users in its cell.

The ground distance or the two-dimensional (2D) distance
between user u and drone n is defined by the distance between
the user and the projection of the drone location onto the
ground, denoted by ru,n. The Euclidean distance or the three-
dimensional (3D) distance between user u and drone n is
presented by du,n =

√
r2u,n + h2.

We further assume that each drone is transmitting data to
users with a fixed transmission power of Ptx (in watt), B
(in Hz) is the total bandwidth, and f (in Hz) is the central
carrier frequency. As we are considering a multi-user system,
the amount of allocated bandwidth to an active user u in a
cell is denoted by bu (1 ≤ u ≤ U , 0 ≤ bu ≤ B).

B. Traffic Model

The traffic model for each user follows the recommended
traffic model by 3GPP [20]. More specifically, we define two
times, i.e., reading time and transmission time,
• The reading time is defined as the time interval between

the end of the download of the previous data package and
the user request for the next one. In this paper, the reading
time of each data package is modeled as an exponential
distribution with a mean of λ (in sec).

• The transmission time is denoted by τ and defined as the
time interval between the request time of a data package
and the end of its download.

Based on the above definition, during a transmission time
τ , the associated user is called an active user. The set of all

active users in a cell n at a specific time t is denoted by Qn(t)
(1 ≤ n ≤ N ). At a user’s data requesting time, the user will
request a data package with a fixed size s (in MByte).

C. Channel Model

In this paper, we consider a practical path loss model
incorporating both LoS (Line of Sight) transmissions and
NLoS (Non Line of Sight) transmissions. More specifically,
the path loss function is formulated according to a probabilistic
LoS model [10], in which the probability of having a LoS
connection between a drone and its user depends on the
elevation angle of the transmission link. According to [10],
the LoS probability function is expressed as

PLoS(h, ru,n) =
1

1 + αexp(−β[θ − α])
, (1)

where α and β are environment-dependent constants, θ equals
to arctan(h/ru,n) in degree, and h denotes the drone height as
discussed before. As a result of (1), the probability of having
a NLoS connection can be written as

PNLoS(h, ru,n) = 1− PLoS(h, ru,n). (2)

From (1) and (2), the path loss in dB can be modeled as

ηpath(h, ru,n) = Apath + 10γpath log10(du,n), (3)

where the string variable ”path” takes the value of “LoS”
and “NLoS” for the LoS and the NLoS cases, respectively. In
addition, Apath is the path loss at the reference distance (1
meter) and γpath is the path loss exponent, both obtainable
from field tests [19].

D. MAC Layer

Regarding the multiple access scheme to allow multiple
users to be served by drone BSs, we study two resource
allocation methods, namely FDMA and TDMA, which will
be explained in the following subsections.

1) FDMA: In the FDMA method, each drone simultane-
ously serves all the active users by equally dividing the whole
available bandwidth among them. When a transmission for
a request finishes, the amount of released bandwidth is again
shared equally among the unfinished requests. Subsequently, in
this method all active users in a cell will receive data from their
serving drone BS. It is important to note that the orthogonal
FDMA (OFDMA) technique adopted in the 4G LTE networks
divides the frequency channel into sub-carriers, and thus it is
merely a special case of FDMA.

Also note that the equal bandwidth division ensures fairness
among the active users. To achieve different levels of trade-
off between performance and fairness, other unequal resource
allocation methods can be studied in our work. Since it is
straightforward to do so and does not affect our framework,
we omit such discussion for brevity.

2) TDMA: In the TDMA method, instead of allocating the
bandwidth equally to all the active users, the whole bandwidth
is devoted to only one user during each time slot. Among all
the active users, the one that has the maximum received signal
strength is selected.



E. Performance Metrics

The Signal to Noise Ratio (SNR) of user u connected to
drone n is defined as

SNRu(h, ru,n) =
Spath(h, ru,n)

Nu
, (4)

where Nu (in watt) represents the total noise power including
the thermal noise power and the user equipment noise figure,
which is given by [21]

Nu = 10
−174+δue

10 × bu × 10−3, (5)

where δue is the user equipment noise figure (in dB).
In (4), Spath(h, ru,n) (in watt) indicates the received power,

which can be obtained by

Spath(h, ru,n) =
bu
B
Ptx10

−ηpath(h,ru,n)

10

=
bu
B
PtxA

′
path(du,n)−γpath ,

(6)

where A′path = 10
−Apath

10 .
Plugging (5) and (6) into (4), yields

SNRpathu (h, ru,n) =
PtxA

′
path(du,n)−γpath

BN ′
, (7)

where N ′ = 10
−174+δue

10 × 10−3.
Moreover, the Signal to Interference plus Noise Ratio

(SINR) of user u connected to drone n can be expressed as

SINRpathu,n (h, ru,n) =
Spath(h, ru,n)

Iu +Nu

=
Spath(h, ru,n)(∑

i∈N,i6=n,ru,i≤κ S
path(h, ru,i)

)
+Nu

,

(8)

where Iu (in watt) represents the interference signal from
neighbor cells received by user u. Assuming an interference
distance κ, all neighbor drones up to distance κ which are
transmitting data to their active users create interference sig-
nals for the user u. It is important to note that our SINR
analysis applies to both the FDMA and the TDMA cases.

Note that in this paper we focus on the analysis of small
cell networks (SCNs) with an orthogonal deployment in the
existing macrocell networks, where small cells and macrocells
operate on different frequency spectrum, i.e., Small Cell Sce-
nario #2a defined in [22]. Indeed, the orthogonal deployment
of dense SCNs within the existing macrocell networks has
been selected as the workhorse for capacity enhancement in
the 3rd Generation Partnership Project (3GPP) 4th-generation
(4G) and the 5th-generation (5G) networks. This is due to its
large spectrum reuse and its easy management [23]; the latter
one arising from its low interaction with the macrocell tier,
e.g., no inter-tier interference.

The spectral efficiency (SE) (bps/Hz) of an active user u
associated with drone n can be formulated according to the
Shannon Capacity Theorem as [24]

Φpathu (h, ru,n) = log2(1 + SINRpathu,n ). (9)

Given the probabilistic channel model, the average SE for
user u can be expressed as

Φ̄u(h, ru,n) =PLoS(h, ru,n)
(

log2(1 +
SLoS(h, ru,n)

Iu +Nu
)
)

+PNLoS(h, ru,n)
(

log2(1 +
SNLoS(h, ru,n)

Iu +Nu
)
)
.

(10)

Then, the average SE for each cell can be computed from

Φ̄(n) =

∑U
u=1 Φ̄u(h, ru,n)

U
. (11)

Consequently, the average SE of the considered N -cell
system can be obtained by

Φ̄ =

∑N
n=1 Φ̄(n)

N
. (12)

Note that Φ̄ should be a function of time t because both
ru,n and Iu may change with time due to the movement
of drones. In order not to make the notations unnecessarily
complicated, we omit t in the expressions of Φ̄, ru,n and Iu.
We will explicitly state otherwise if t should be considered in
the corresponding expressions.

According to the definition of the average SE, the average
user data rate (in bits/sec) can be written as

R̄u = Φ̄u(h, ru,n)× bu. (13)

In the considered multi-user multi-drone system, we define
a fairness metric according to the Jain index to evaluate the
fairness among the users, which is formally presented as [25]

J (R̄1, R̄2, . . . , R̄U ) =
(
∑U
u=1 R̄u)2

U
∑U
u=1(R̄u)2

. (14)

F. The Proposed Optimization Problem
In this paper, we study the optimization problem to find

the best direction for each drone at a certain time t with the
objective of maximizing Φ̄ in a small time slot ∆t.

The problem can be formulated as

(ω∗1 , . . . , ω
∗
N )t = max Φ̄(t+ ∆t)

s.t |ru,n(t+ ∆t)− ru,n(t)| ≤ v∆t.
(15)

where ω∗i denotes the optimal direction of the ith drone small
cell at time t. Note that in Problem (15), t and ∆t should be
considered in the expressions of Φ̄ as well as ru,n and Iu.
Also note that the constraint of Problem (15) is due to the
finite moving distance of drones in ∆t.

For clarification, all of the parameters defined in this section
are summarized in Table I.

IV. ANALYSIS FOR A SINGLE-DRONE SINGLE-USER
SYSTEM

To study the fundamentals on the potential gain that dy-
namic repositioning of drones can achieve, we first analyze a
model with just one drone BS serving a randomly deployed
static user in a disk-shaped cell. We assume a cell with a
radius R and one static user u located at the ground distance
r0 (r0 ≤ R) from the center of the cell.



Table I: Symbol and Definition of Parameters

Parameter Definition
N Number of Cells
U Number of Users in Each Cell
B Total Bandwidth
R Radius of a Disk-shaped Cell
l Edge Length of a Square Cell
f Working Frequency
h Drone Height
v Drone Speed
Ptx Drone transmission power
λ Mean Reading Time
A Reference Distance Path Loss (LoS/NLoS)
γ Path Loss Exponent (LoS/NLoS)
δue UE Noise Figure
α, β Environmental Parameter for Urban Area
κ Interference Distance
s Data Size
∆t Time Slot

A. Main Results for a Hovering Drone

First, we assume that there is a drone that can be deployed
at a low altitude h, hovering above the center of target cell and
serving the user located at r0 during the transmission time τ .
Given the fact that both the user and the drone are not moving,
the spectral efficiency of the user does not change during the
transmission time and can be formulated as

Φ̄hov(h, r0) =PLoS(h, r0)
(

log2(1 + SNRLoS(h, r0))
)

+PNLoS(h, r0)
(

log2(1 + SNRNLoS(h, r0))
)
.

(16)

In reality, the user can be located anywhere in the cell
with various ground distances. Without loss of generality, we
assume the user is located in the cell following a uniform
distribution. As a result, the probability density function for
the ground distance of the user from the center of the target
cell can be calculated as

f(x) =
2πx

πR2
. (17)

Therefore, the expected SE for a user receiving data from
the hovering drone BS at height h can be computed by

Φ̄hov(h) =

∫ R

r=0

Φ̄hov(h, r)f(r)dr. (18)

B. Main Results for a Dynamic Repositioning Drone

Next, we investigate the SE performance for a dynamic
repositioning drone BS, which is initially located above the
center of target area. Here, when the user is randomly and
uniformly deployed in the cell, the drone will move towards
the user with a low speed of v while it is transmitting data
to the user during the transmission time τ . During τ , the data
rate increases because of the shortening distance between the
drone and the user and the increasing elevation angle from
the drone to the user, which results in a larger probability of
having a LoS connection.

Let us start with a static user located at the ground distance
r0 from the initial location of dynamic repositioning drone BS.

Depending on the drone’s speed and the initial ground distance
toward the user, the drone may finish transmitting before
reaching the user. Otherwise, the drone can reach the user
before τ (i.e., r0 reduces to zero), and continues transmitting
while it is hovering on top of the user. Therefore, we define a
moving time tm, which is equal to min{ r0v , τ} and the average
SE performance can be evaluated as

Φ̄mob(h, r0) =c

∫ r0−vtm

r=r0

(
PLoS(h, r)Φ(h, r)

)
dr

vtm

+c

∫ r0−vtm

r=r0

(
PNLoS(h, r)Φ(h, r)

)
dr

vtm

+(1− c)Φ̄hov(h, 0),

(19)

where c is the fraction of the transmission time that the drone is
moving towards the user ( tmτ ). Obviously, 1− c is the fraction
of time that the drone is hovering on top of the user.

Considering the uniform distribution of the users, the av-
erage SE over all possible user locations can be calculated
as

Φ̄mob(h) =

∫ R

r=0

Φ̄mob(h, r)f(r)dr. (20)

C. Comparison of the Hovering Drone and the Dynamic
Repositioning Drone

Now we study the potential gain that dynamic repositioning
of drones can achieve by comparing the SE performance
of the hovering drone with the dynamic repositioning one.
The SE of the drone BS flying at h can be significantly
improved compared to that of the hovering drone BS at the
same height h. In the following Theorem 1, we derive an
approximate upper bound of such performance improvement,
which depends on the cell radius and the drone height.

Theorem 1. Assuming a uniform distribution of users in
a disk-shaped cell, an approximate upper bound of the SE
improvement ratio for the dynamic repositioning drone over
the hovering drone is given by

Φ̄mob
Φ̄hov

≈
log2(

PtxA
′
LoSh

−γLoS

BN ′ )

log2(
PtxA′NLoSR

−γNLoS

BN ′ )
. (21)

Proof. To obtain the upper bound of the SE improvement,
we consider the case of τ → ∞. Note that a very large τ
implies that the drone has enough time to reach on top of the
user and finish the transmission at that optimal position. The
optimal position is established in the sense that the probability
of having a LoS connection is equal to 1, thus achieving the
maximum SE performance. As a result, the maximum SE of



the dynamic repositioning drone should be that of a hovering
drone directly above the user, which can be derived as

Φ̄mob(h)τ→∞ ≈
2

R2

∫ R

r=0

Φ̄mob(h, 0)rdr

≈ 2

R2

∫ R

r=0

log2(1 + SNRLoSu (h, 0))rdr

SNRLoSu (h,0)�1
≈ 2

R2

∫ R

r=0

log2(SNRLoSu (h, 0))rdr

≈ 2

R2

∫ R

r=0

log2(
PtxA

′
LoSh

−γLoS

BN ′
)rdr

≈ log2(
PtxA

′
LoSh

−γLoS

BN ′
).

(22)

Similarly, the minimum SE of the hovering drone should
be achieved when there exists a NLoS connection between
the drone and the user. Such SE is given by

Φ̄hov(h) ≈ 2

R2

∫ R

r=0

Φ̄hov(h, r)rdr

≈ 2

R2

∫ R

r=0

log2(1 + SNRNLoSu (h, r))rdr

SNRNLoSu (h,r)�1
≈ 2

R2

∫ R

r=0

log2(SNRNLoSu (h, r))rdr

≈ 2

R2

∫ R

r=0

log2(
PtxA

′
NLoSd

−γNLoS
r

BN ′
)rdr

≈ log2(
PtxA

′
NLoS

BN ′
)

+
2

R2

∫ R

r=0

log2

(
(h2 + r2)−γNLoS/2

)
rdr

r�h
≈ log2(

PtxA
′
NLoS

BN ′
)− 2γNLoS

R2

∫ R

r=0

log2(r)rdr

≈ log2(
PtxA

′
NLoS

BN ′
)− γNLoSlog2(R)

≈ log2(
PtxA

′
NLoSR

−γNLoS

BN ′
).

(23)

Then, an approximate upper bound of the spectral efficiency
ratio of the dynamic repositioning drone over the hovering
drone can be obtained by the ratio of Φ̄mob(h)τ→∞ over
Φ̄hov(h) as shown in (21), which concludes our proof.

In order to get some sense about how large is the SE
improvement ratio derived in Theorem 1, we provide some
numerical results in Figure 1 with the parameters set to
R = 40m, v = 10, 15, 20m/s, s = 2MByte, Ptx = 24dBm,
and B = 10MHz. From Figure 1, we can observe that the
dynamic repositioning drone flying at h = 10m can improve
the SE up to 57% compared with the hovering drone BS. The
SE is getting larger for the dynamic repositioning drone with
a longer transmission time τ , because a larger τ implies that
the drone has more time to fly closer to the user.

Moreover, a higher drone speed promises a higher SE. The
reason is that a drone with a higher speed can fly closer to
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Figure 1: SE for hovering and dynamic repositioning drone at
height 10m vs. transmission time for different drone speed

the user in a shorter time frame than that with a lower speed.
However, the benefit of the high drone speed wanes as the
transmission time increases. Hereafter, we focus on the drone
speed of v = 10m/s, which is a practical speed for the drone
as discussed in Section I. Moreover, according to [18] and
as discussed in Section I, the power consumption of a drone
moving with a speed of 10m/s is almost equal to the power
consumption of a hovering drone at the same height.

This huge SE improvement motivates us to optimize the
moving direction for the drone BSs in order to achieve
their potential SE performance. To consider more practical
networks, multiple mobile users and multiple dynamic repo-
sitioning drones are considered in the following sections. In
the sequel, we assume that both the hovering drone BSs and
the dynamic repositioning ones are operating at the same low
height, and the benefits of the dynamic repositioning drone
BSs will be quantified.

V. THE PROPOSED DYNAMIC REPOSITIONING SCHEME
FOR A MULTI-DRONE MULTI-USER SYSTEM

Given the huge SE improvement resulting from the dynamic
repositioning of drone BSs, we extend our scheme to the appli-
cation on a multi-drone multi-mobile-user network scenario.

It is apparent that the movement of drones will dynamically
change the interference pattern that affects the SE of the
system. As a result, optimizing the moving path of drones
during the operation time is one of the challenges in designing
the system. Assuming a global knowledge of all drones and
all users in the system, a centralized controller can find the
optimal locations for all drones that maximize the SE (see
section III-F). However, finding the optimal location is of high
complexity and cannot be achieved in real time. Alternatively,
at each time slot, each drone in a cell can dynamically choose
the moving direction between 0 and 2π to maximize the SE.
In order to reduce the complexity of the problem, discrete
angles are introduced to reduce the search space. For instance,
suppose that the angle step is ∆g = π/M , then 2M candidate
directions, i.e., {0, πM , 2πM , . . . , 2π− π

M }, will be examined by
each drone. Then, each drone will update its movement angle
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Figure 2: Multi-drone multi-user system containing 49 square
cells

and transmit data to users at each defined time slot ∆t while
moving.

Given N drones in the network area, there are (2M)N

possible cases at each time slot, making the complexity of
centralized controller method in the order of O(2MN ), which
is difficult to implement in a real-time manner.

Therefore, we propose distributed algorithms that each
drone can choose a moving direction at each time slot,
independent of the other drones. As a result, the complexity
of the system reduces to O(2NM) at each time slot.

To this end, we define two criteria and let each drone
calculate the metric based on either criterion for each possible
direction. Then the drone decides its moving direction based
on maximizing the criterion.

A. Maximization of SNR

The first criterion is based on the maximization of SNR
(Signal to Noise Ratio) for active users in each cell. In this
strategy, each drone focuses only on its active users during a
time slot. Each drone assumes that there are no other drones
in the neighborhood, and given the location of its own active
users, calculates the SNRs for every active user and every
candidate angle. Finding the best moving angle based on such
SNR maximization criterion can be formally presented as

ωtn = arg max SNRn n ∈ {1, . . . , N}
s.t |ru,n(t+ ∆t)− ru,n(t)| ≤ v∆t.

(24)

When there is no pending request, drones stay hovering at
their current location.

B. Maximization of SLR

The movement of each drone also changes its interference
toward the active users in the neighbor cells. As a result,
we propose another criterion for each drone that not only
considers the received signal for its own active users, but also
attempts to reduce the interference to the other active users in
the neighbor cells. In this criterion, we assume that each drone
knows the location of the active users in the neighbor cells as

Figure 3: Spectral efficiency for both hovering drone BSs and
dynamic repositioning drone BSs at low altitude h =10m

well. The amount of interference from drone n to the other
active users is referred to as Leakage [26], which is defined
as follows,

Ltn =
∑

j∈N,j 6=n,djn≤κ

( ∑
∀u∈Q tj

Spath(h, ru,n)
)
. (25)

Based on (25), each drone calculates the SLR (Signal to
Leakage Ratio) value for every candidate direction for the
active users in the neighbor cells. Such SLR value for each
user u of drone n can be written as

SLRtu =
Spath(h, ru,n)

Ltn
. (26)

Similar to SNR criteria, when there is no pending request,
drones stay hovering at their current location. Finding the best
moving angle based on such SLR maximization criterion can
be formally presented as

ωtn =arg max SLRn n ∈ {1, . . . , N}
s.t |ru,n(t+ ∆t)− ru,n(t)| ≤ v∆t.

(27)

VI. SIMULATION RESULTS

In this section, the performance of our proposed algorithms
is evaluated in a multi-drone multi-mobile-user small cell
network through simulation using MATLAB.

A. Simulation Scenarios and Parameters

Here, we consider 49 square cells, each with an edge length
of 80m, which can be approximated by a disk with a radius
of 40m. In each cell, there are 5 users moving according to a
random way point (RWP) model. In the RWP model, each user
selects a random destination independent of other users and
moves there with a random speed. As a result, user would be
uniformly distributed in the cell during the simulation time.
Following the recommended 3GPP traffic model, the mean
reading time for each user is set to 20sec, and each request of
user generates a 2MByte data packet [20]. Unless otherwise
stated, parameter values used in simulations are set according
to Table II.



(a) Jain Index for dynamic repositioning and
hovering drone BSs

(b) The average changing direction value for
dynamic repositioning drone BSs

(c) The average transmission time for each
user request

Figure 4: Comparison of (a) Jain index, (b) average turning angles, (c) average transmission time for hovering and dynamic
repositioning drones

Table II: Parameter values in our simulation

Symbol Definition Value
N Number of Drones 49
h Drone Height 10 m
v Drone Speed 10 m/s
B Total Bandwidth 10 MHz
f Working Frequency 2 GHz
Ptx Drone Transmission Power 24 dBm [19]
δue UE Noise Figure 9 dB
U Number of Users in Each Cell 5
l Edge Length of a Square Cell 80 m
λ Mean Reading Time 20 sec
A Reference Distance Path Loss (LoS/NLoS) 41.1/33 [19]
γ Path Loss Exponent (LoS/NLoS) 2.09/3.75 [19]
α, β Environmental Parameter for Urban Area 9.61, 0.16 [27]
κ Interference Distance 200 m
s Data Size 2 MByte
∆t Time Slot 100 msec
T Simulation Time 400 sec
∆g Angle Step 5◦

We consider an average interference distance of 200m, and
hence, each drone creates interference for up to two tiers of
neighbor cells as illustrated in Figure 2. From Figure 2, we can
see that outer cells will receive lower interference than inner
cells. To obtain unbiased results, we collect the data just from
the 9 inner cells as shown in Figure 2. Moreover, to mitigate
the randomness of the results, all results have been averaged
over 10 independent runs of 400-second simulations.

B. The SE Performance

In Figure 3, we plot the SE performance for both the
hovering drone BSs and the dynamic repositioning drone BSs
at a low altitude of h = 10m. From this figure, we can draw
the following observations:

• The SE performance suffers from a huge loss in the face
of inter-cell interference from neighbor cells compared to
the single-cell system.

• Moreover, it can be concluded that the introduction
of the dynamic repositioning capability to drones can
significantly improve the SE performance without any
negative effect on the energy consumption. More specif-
ically, as mentioned earlier, the power consumption of
a drone moving at 10m/s is almost equal to the power
consumption of a hovering drone at the same height [18].

• The SLR criterion performs slightly better (about 7-8%)
than the SNR criterion, which can be attributed to the
fact that the SLR criterion has more information than the
SNR one, and can manage the drone movement while
reducing interference to neighboring cell users.

• The performance gain is equally achievable by means of
FDMA and TDMA, which implies a wide application for
the proposed dynamic repositioning scheme.

C. The fairness Performance

Furthermore, we study the fairness performance for the
proposed criteria and the proposed bandwidth allocation al-
gorithms. In Figure 4a, we show the fairness in terms of the
Jain’s index for the interested schemes. From this figure, we
can draw the following observations:

• The dynamic repositioning drone BSs can deliver better
fairness compared to the hovering ones. The reason is
that the dynamic repositioning drones can change their
location in order to improve the overall SE, thus elim-
inating the notion of cell-edge users and resulting in a
higher fairness metric.

• The fairness metric for the FDMA method is higher than
that of the TDMA method. The reason is that the TDMA
method allocates the whole bandwidth to just one user
at each time slot, and hence other users may experience
bandwidth starvation, resulting in a lower fairness metric.



D. Drone Turning Angles

As dynamic repositioning requires the drone to change its
direction every ∆t sec, we analyze the average degree of
change of direction in Figure 4b. It is encouraging to see
that the average turning angle is very small and confined to
between 14 and 18 degree depending on the choice of our
control algorithms.

E. Tranmission Time Performance

Following the improvement of spectral efficiency of dy-
namic repositioning drones observed in the Figure 3, the
average transmission time for each user request is reduced
by our proposed methods as well. As illustrated in Figure 4c,
dynamic repositioning drones can decrease the transmission
time by around 50%.

VII. CONCLUSION AND FUTURE WORK

We have proposed dynamic repositioning of drone BSs as a
novel method to increase the spectral efficiency of drone small
cells at a low altitude, e.g., 10m. We proposed two distributed
algorithms that can be used to autonomously reposition the
drones in response to user activities and mobility. We have
shown that dynamic repositioning of drones can nearly double
the spectral efficiency in a multi-drone multi-mobile-user small
cell network, while its energy consumption can be kept at the
same level as the network where drones are hovering above
pre-determined positions.

Our work opens up several directions of new research. With
advancements in camera technology and video processing,
drones in the future could identify obstacles in real time. Such
knowledge could be used to design more advanced dynamic
repositioning algorithms to largely increase the probability
of LoS communications with active users. Another direction
would be to actually implement the proposed algorithms in real
drones and conduct real-life experiments. Such experiments
will provide insights to more practical issues and help improve
the dynamic repositioning algorithms.
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