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Abstract—Providing fault-tolerance (FT) support to Internet
of Things (IoT) systems is an open challenge, with many
implementations providing static, tightly coupled FT support
that does not adapt and evolve like IoT systems do. This
paper proposes a pluggable framework based on a microservices
architecture that implements FT support as two complementary
microservices: one that uses complex event processing for real-
time FT detection, and another that uses online machine learning
to detect fault patterns and pre-emptively mitigate faults before
they are activated. We provide an early evaluation of how our
framework can handle a real-world scenario.

Index Terms—internet of things, fault tolerance, microservices,
complex event processing, machine learning

I. INTRODUCTION

The Internet of Things (IoT) is a vision in which the Internet

extends to everyday objects as a means of bridging the gap

between the physical and virtual worlds [1]. This opens up the

Internet to a vast network of interconnected ”smart” objects

that not only harvest information from their environment

and interact with the physical world, but also adopt existing

Internet standards to provide services for information transfer,

analytics, and communications [2].

Fundamentally, IoT is driven by data, whether exchanged
between devices or services across the Internet. Therefore,

providing a dependable infrastructure for the billions of ex-

pected IoT devices is an important challenge [3], [4]. For

an IoT system to be dependable, it must deliver service

that can justifiably be trusted, encompassing attributes such

as availability, reliability, safety, and maintainability, where

reliability is a high-priority goal to address for IoT solutions
concerned with quality of service (QoS) [5].

Dependability is threatened by faults and errors that con-

tribute to the occurrence of service failures, where a system

can no longer provide its service as intended [6]. Mitigating

faults can be accomplished by three approaches, namely [7]:

• Fault avoidance: avoiding error introduction at the de-
sign and programming stage to minimize the number of

faults introduced into the system.

• Fault detection and correction: using verification and
validation to remove faults before deployment.

• Fault tolerance: designing the system to detect and

recover from faults during runtime to prevent failures.

While these approaches are necessary for developing re-

silient systems, fault tolerance (FT) is especially challenging
in the IoT domain for several reasons.

Firstly, as IoT systems are distributed, they suffer from

failures similar to other distributed systems, namely: (1) crash
failures, where the server halts and requires a restart; (2)

omission failures, where the server stops sending and receiving
messages; (3) timing failures, where a server’s response is
too early or too late; (4) response failures, where the server’s
response value or state transition that takes place is incorrect;

and (5) arbitrary failures, where the root cause is unclear [8].
Secondly, the above failures are exacerbated because IoT de-

vices are typically constrained (in terms of energy, computing

power, and resources) and rely upon wireless communication.

This limits their ability to survive ‘in the wild’ or perform

complex recovery strategies when faults manifest, meaning

that FT is typically delegated to some external and more

reliable entities, such as the fog or cloud [9].

Thirdly, IoT systems are expected to continuously evolve

in order to handle new services, features, and devices that

had not been anticipated when the system was first designed.

A monolithic service-oriented architecture (SOA), where all
software is within a single application, would limit an IoT

system’s ability to scale and evolve as changes would require

a complete restart of the system [10]. However, a microser-
vices architecture breaks down the monolithic structure into
small applications with individual responsibilities that can be

deployed, scaled, and tested independently [11]. They act

as stand-alone subunits that interconnect through message-

passing, making them lightweight and easy to update in

scenarios where one can not fully anticipate functionalities

in advance [12].

As IoT systems are heavily dependent upon their location

and context, FT support should react to faults that occur in
real time to isolate faults as quickly as possible. With sufficient

analysis of the system’s state, data, and historical faults over

time, there is the potential to predict faults that often occur
under specific patterns of system usage.

A. Contribution

We propose an FT framework based on a microservices

architecture to provide a scalable means of applying real-time

and predictive FT support to IoT systems. Our framework is978-1-5386-4725-7/18/$31.00 ©2018 Crown



Fig. 1. The interfaces between IoT devices and the four microservices defined in Section III-A.

designed to provide a live and continuous ‘health check’ [13],

whereby our FT microservices constantly assess system state,

data, and errors to detect and mitigate faults.

The data extracted from system monitoring will help to

provide fault patterning, whereby faults are assessed w.r.t.
the system context so that the system can learn to identify

when fault activations are likely to occur due to similar prior

experiences. By identifying correlations between faults, the

system can proactively handle them before they are activated.

Concisely, our contributions are as follows:

1) To proprose a microservices architecture where FT is

plugged in as a service, exploring its design, interfaces,

and potential to scale.

2) To consider a fault scenario that might occur and how

reactive and proactive FT can handle it.

The rest of the paper is organized as follows. Section

II discusses previous work about FT and microservices in

IoT. Section III describes our proposed framework and its

architecture. Section IV demonstrates our framework with a

real-world scenario. Section V summarizes our work.

II. RELATED WORK

A. Fault Tolerance in IoT

Choubey et al. [14] present a smart home architecture where

sensors are first analyzed for correlations so that, if some

sensor data can be predicted by others, a neural network can be

trained to predict the data. This provides redundancy for failed

devices as data can be predicted on lost data until repairs are

made. Tests show predicted temperatures deviate from actual

values by ±2°C. Zhou et al. [15] consider using sensors of
different modalities (i.e. that are not directly compatible) to
provide hardware redundancy for failed sensors. They identify

compatibility between sensors via regression analysis and

combine the data. Their experiment shows that light sensors

distant from a failed sensor perform badly by themselves but

achieve great results when combined. Karthikeya et al. [16]

propose the NewIoTGateway-Select algorithm for smart cities

to determine the minimum number of necessary gateways,

to reduce deployment costs and provide redundancy. The

algorithm considers gateway and link failures by ensuring at

least k routes exist between them. Simulations show that the
total number of gateways is much lower than what would be

used without the algorithm. Su et al. [17] prefer a decentralized

solution where devices are in a ring topology and services

are delegated to devices, where the failure of a device shifts

responsibility to a redundant device to provide the lost service.

B. Microservices in IoT

Sun et al. [18] propose an IoT framework based on mi-

croservices that decomposes the system into nine units that

communicate over a REST interface. A core microservice
coordinates the eight others which provide security, storage,

big data analytics, etc. They use microservices as it allows the

framework to easily extend, evolve, and integrate third-party
applications to support interoperability and scalability, with a
greater ability to deploy FT at scale. Celesti et al. [19] consider

a watchdog service for containerized microservices deployed

as middleware on IoT devices. Microservice failure prompts

a repair or replacement with a replica. Their solution shows

acceptable overhead during recovery. Krylovskiy et al. [20]

present the DIMMER platform for smart cities to enable stake-

holders to increase the energy efficienty of a city at the district

level. They use microservices for its decentralized governance,

meaning microservices can use their own technologies, free of

standards and platform homogeneity.

III. FRAMEWORK ARCHITECTURE

A. System Design

Our proposed framework is the integration of four microser-

vices, where two provide FT support in complementary ways:

the first provides real-time data stream analysis using complex
event processing (CEP) for reactive FT, and the second uses
machine learning (ML) to provide proactive FT.

Reactive FT is where the system initiates an error recovery
strategy after an error has been detected. This requires fast de-
tection and decision making with a low-latency connection to

the hardware/software at fault. The fog can provide cloud-like

services to the network edge for low-latency data analytics,

making it an ideal candidate for analyzing stream data [21].

Proactive FT is where the system initiates an error recovery
strategy before an error has been detected. The concept is
designed to prevent failures from impacting an application by

preemptively migrating parts of a system away from any soon-

to-fail hardware/software [22].



Fig. 2. The architecture of the Real-Time FT microservice. Purple arrows
indicate the flow of properties data, yellow for detected errors, blue for error
assessments, red for error recovery actions, and black for internal data.

As with many microservice architectures, communication

between our services is conducted via a RESTful architecture

style where data is exchanged using the JSON format. Other

protocols suitable for IoT include CoAP, MQTT, and XMPP,

however the advantage of REST is that almost all cloud

platforms support it [23], making it the ideal choice for

encouraging interoperability across IoT systems.

The Web Thing API [24] provides a standard approach for
describing physical devices and is designed to allow access

to device properties, request the execution of actions and

subscribe to events that occur within the device. As shown in

Figure 1, we base the interface on three overarching categories

defined in the API, as follows:

• /properties: describes attributes of an IoT ‘thing’ (e.g.
sensory information, such as temperature) as well as inter-

nal information about system devices and microservices.

• /events: describes events that occur within the system
and on IoT devices. The /events/errors/detect interface
is where devices can POST errors that they detect or

receive. The /events/errors/assessment interface enables
microservices to annunciate that they have provided some

form of recovery to handle an error. Errors are further

discussed in Section III-B.

• /actions: describes system functionality to be performed
by a microservice. The /actions/control/... interface en-
ables a microservice to control the functionality of an-

other. Actions are further discussed in Section III-C.

When a microservice registers itself with the service broker,

it defines which categories (i.e. properties, events, actions) it

wishes to subscribe to. Other microservices, after registration,

emit data to the subscribers. Our proposed architecture centers

around four microservices, discussed next.

1) Edge: This microservice provides an entry point for IoT
devices to pass its properties (Table I) to the wider system and

for microservices to interact with devices. It provides REST

interfaces for devices to submit their properties and errors

and to receive commands for controlling IoT device actuators.

Fig. 3. The architecture of the Predictive FT microservice. Arrow colors are
the same as in Figure 2.

Edge relays all of its received data to other microservices that

are subscribed to it, and any actions that are sent to Edge are

either executed internally or relayed to an IoT device.

2) Real-Time FT: As shown in Figure 1, this microservice
is situated between Edge and DB (Section III-A3). It acts

as a ‘firewall’ that only permits reasonable properties from
reaching DB once it has been passed through the Real-Time

FT Engine (Figure 2), whereby the stream of properties and

detected errors are fed into a CEP system. This analyzes

streams of ‘primitive events’ (i.e. properties, errors) then

combines them to define and detect a number high-level,

complex situations (i.e. new errors) [25].

CEP provides an intelligent way to handle errors because

it can enable one to define recovery strategies based on many

errors rather than just one. For example, if five IoT devices

fail within three seconds, the CEP system might consider that

the gateway to the devices has failed, rather than the devices

themselves. Errors can also be produced based upon properties

alone. For example, if a property’s value spikes and deviates

from the average by some margin, the system can tell the

Edge to isolate the device producing the property. Additionally,

errors can be produced by combining properties and errors for

more intelligent error analysis and recovery.

The benefit of microservices is that, if one crashes, it does

not bring down the entire application. However, other failure

types (Section I) have the potential to cascade into other areas

of the system because of data (or a lack of it). Error detection

relies upon constant system checks that can be placed into

the following classifications [26]: replication, timing, reversal,

coding, reasonableness, structural, and diagnostic checks.

Checking data reasonableness is a challenge in IoT because
what constitutes ‘reasonable’ data is highly context dependent.

For example, high temperatures in an office might be reason-

able at 1pm, but not at 1am. An example of our framework

approaching data reasonableness is provided in Section IV.

3) DB: This microservice is a back-end database service
that receives data to store for (authorized) services to subscribe



TABLE I
THE DATA TRANSMITTED WHEN SENDING A PROPERTY USING THE

/PROPERTIES INTERFACE.

Field Description Example

sourceAddr
The IP address of the property

source.
192.168.1.2

entryAddr
The IP address of the microservice
that first received the property.

192.168.1.3

name The name of the property. Temperature

type The type of the property. Number

unit The unit for the type. Celsius

value The value of the property. 20.5

timestamp
When the property was created, in

epoch milliseconds.
1520168977817

to. Predictive FT (Section III-A4) subscribes to DB to consume

its properties and error assessments.
4) Predictive FT: In IoT, data is constantly flowing from

source(s) to sink(s), capturing the latest state of the system and

its physical environment(s). To pre-empt faults, predictions

must be made using this live continuous data. For this, we

consider an online learning (OL) approach. In OL, a sequence
of hypotheses f = (f1, ..., fm+1) are produced over time,
where f1 is an arbitrary initial hypothesis and fi for i > 1
is the hypothesis of the (i− 1)th example [27].
Unlike with batch learning (BL), where a single predictor

is generated based upon an entire dataset, OL is trained

incrementally with data that arrives in a continuous stream

and the algorithm updates and adapts on the fly [28], making

it ideal for IoT systems. BL systems can adapt to change if the

training and launching of each new algorithm is automated.

However, continually training a BL algorithm from scratch

on all current and prior data is a computationally expensive
process that requires far more storage space for this ever-

expanding dataset; OL can discard data once it has used it.

Current OL techniques exist as extensions of established

algorithms (e.g. Support Vector Machines, Bayes), ensemble

learning variants (e.g. Online Random Forests), and algorithms

that are online by design (e.g. K-Nearest Neighbor) [29], [30].

Predictive FT receives error assessments and properties

(Figure 3) which are then fed into Learner to train the

algorithm to: (1) identify errors and the system state(s) that

led to them; (2) learn how the system attempts to recover

from errors; and (3) evaluate the effectiveness of the recovery
strategies, so that only effective strategies are learned from.

Using this knowledge, fault patterns can be generated and,
using subsequent system data, help to probabilistically infer

whether errors are likely to happen in the future.

B. Errors

1) Error Detection: The Eight-Ingredient (8I) framework
was developed as a systematic way of conducting vulnerability

analysis on both internal and external aspects of a system. It

identifies reliability and security as being vital for continuous

system operation and the key infrastructure upon which all

other critical infrastructures depend [31].

It defines eight ingredients that identify different vulnerabil-
ity types that can manifest, namely: (1) human, (un)intentional

TABLE II
THE DATA TRANSMITTED WHEN SENDING AN ERROR DETECTION EVENT

USING THE /EVENTS/ERRORS/DETECT INTERFACE.

Field Description Example
sourceAddr The IP address of the error source. 192.168.1.2

scope
Whether the error occurred due to
internal or external factors.

Internal

ingredient
The ingredient that applies to the

error (Section III-B1).
Hardware

category
The error category w.r.t. the

ingredient.
FRU

scenario
The type of failure w.r.t. the

category.
Sensor Failure

fault The (believed) cause of the error. PIR Sensor

persistence
Whether it is a transient,

intermittent, or permanent fault.
Permanent

description
A human-readable description of

the error.
”Cannot activate
PIR sensor.”

timestamp
When the error was detected, in

epoch milliseconds.
1520168977817

TABLE III
THE DATA TRANSMITTED WHEN SENDING AN ERROR ASSESSMENT EVENT

USING THE /EVENTS/ERRORS/ASSESSMENT INTERFACE.

Field Description Example

pattern
The properties and errors that
caused the detected error.

Table I & II

error The detected error. Table II

actions
The actions taken to recover from

the detected error.
Section III-C

approach
Whether a reactive or proactive
recovery approach was used.

Reactive

timestamp
When the assessment was created,

in epoch milliseconds.
1520168977817

behaviors, physical limitations, etc; (2) policy, agreements,
standards, policies, etc; (3) hardware, electronic and physical
components; (4) software, creating, maintaining, and protect-
ing code; (5) networks, node configuration, synchronization,
redundancy; (6) payload, information transported across the
infrastructure; (7) environment, harsh conditions where hard-
ware is exposed to weather conditions, etc; and (8) power,
internal power infrastructure, batteries, cabling, etc.

As shown in Table II, we begin building error detection

events with the error source, followed by many categories

that make a top-down analysis of the error, down to affected

hardware/software that triggered it (i.e. the fault). The format
is based upon the approach by Bauer [32], where ingredients

are mapped to error categories and scenarios to achieve a

systematic approach of defining test cases. Bauer [32] also pro-

vides error categories, namely: field-replaceable units (FRUs),

programming, data inconsistency, redundancy, system power,

network, application protocol, and procedural errors.

2) Error Assessment: The error assessment event is the

product of the Real-Time FT microservice (Section III-A2)

handling error events and inferring errors based upon prior

data. Shown in Table III, it comprises a list of errors and

properties that are used to detect a new error, as well as actions

taken to try to recover from the new error.

The chosen actions are based upon the assumed fault that

potentially caused the error. It is assumed because FT support



Fig. 4. Device1 and Device2 from our early evaluation (Section IV).

can only infer the root cause of errors through probabilistic

methods, which CEP and ML aim to do. The fault classifi-

cations can be those introduced in Section I, namely: crash,

omission, timing, response, and arbitrary [8].

C. Actions

When recovering from faults, systems can employ backward
and forward error recovery mechanisms, where the former

tries to restore a previous system state, and the latter tries

to move into a new, error-free state [33]. In IoT, data, and the

services that rely upon it, help to create virtual entities that

resemble physical entities in the real world by monitoring their

states with sensors and actuators [34]. Therefore, forward error

recovery is the ideal option to keep the system focused upon

the latest states and data.

Erroneous data from low-level IoT devices can hinder the

performance of our framework. If DB stores bad data, it can

harm other services that rely upon its data. If Predictive FT

consumes bad data, it could suffer from a concept drift, where
the input distribution with which the OL algorithm is trained

changes and the algorithm’s accuracy lowers over time [29].

To combat this, the /actions/control/block interface on

Edge is called by Real-Time FT to block data from, and

interactions with, IoT devices. If the CEP system (Figure 2)

flags a property as erroneous, then its sourceAddr and name
(Table I) are sent to the Edge at entryAddr to block it and
prevent further bad data from propagating through the system.

D. Scalability

Butzin et al. [13] identify the fog as an enabling tech-

nology for containerization in IoT, which is a key tool for

deploying microservices. In our architecture, microservices are

distributed across the fog and cloud (Figure 1). The fog is

important because it provides a network with a gateway to

(a subset of) services without long-range connections to the

cloud, enabling low latency and rapid response times for Real-

Time FT. As Predictive FT is in the cloud, it can be a shared

service for all system clients, where error assessments are

‘crowdsourced’ to improve the ML algorithm’s predictions.

IV. EARLY EVALUATION

To demonstrate how Real-Time FT and Predictive FT work

together, we generated live data using two multi-sensor boards,

Device1 and Device2 (Figure 4), that have infrared, ultraviolet
(UV), and visible light sensors, and a microphone for sound

detection. We performed two experiments where we left the

devices running for two weeks in both experiments. They were

given constant power so that we can observe errors and faults

that were not power related.

In our first experiment (Figure 5), visible light dropped

to 0 between 21:43 and 21:44 on Device1 before returning

to normal. Then, a stuck-at fault occurs on all light sensors,

where their values exceed 100 and remain constant until the

end of the experiment. This pattern occurs in both experiments
on Device1, where a drop in visible light occurs minutes before
a major stuck-at fault in all light sensors.

In this scenario, our framework can perform the following:

1) The CEP system (Figure 2) identifies Device1’s visible

light drop to 0 and flags it as erroneous data, because

the value deviates from the last ten seconds of data

by a significant margin. An error assessment targets

Device1’s visible light sensor as the cause and considers

it a transient fault. The action taken is to drop the data,

as the values return to normal immediately afterwards.

2) When the major stuck-at fault occurs, the assessment

identifies the three light sensors as the cause. Real-Time

FT contacts Edge via /actions/control/block to block the
three light properties from Device1. The sound property

is still accepted as it is not producing erroneous data.

3) Each time the last two steps occur, the two error as-

sessments are produced. Predictive FT receives these

assessments each time and identifies the fault pattern

that the first error is often followed minutes later by a

stuck-at fault on Device1.

4) When the drop to 0 occurs, Predictive FT identifies

a high probability of the stuck-at fault occurring and

notifies Edge to activate a redundant replica to produce

these properties so that, if/when Device1 has the pre-

dicted stuck-at fault, there is another sensor to take over.

Otherwise, Edge can just block the properties.

V. CONCLUSION

Providing FT support to IoT systems is an open challenge,

with many implementations providing static, tightly coupled

FT support that does not adapt and evolve as IoT systems do.

We have proposed a framework based on a microservices ar-

chitecture that provides reactive and proactive FT support with

two microservices: Real-Time FT, that uses complex event

processing to analyze stream data for rapid error recovery; and

Predictive FT, that uses machine learning to learn fault patterns

and mitigate future faults before they occur. We have presented

the necessary interfaces and evaluated the framework against

a real-world scenario.
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