
Getting the Most Out of Your VNFs:
Flexible Assignment of Service Priorities in 5G

Francesco Malandrino∗,†, Carla-Fabiana Chiasserini†,∗
∗: CNR-IEIIT, Torino, Italy †: Politecnico di Torino, Torino, Italy

Abstract—Through their computational and forwarding ca-
pabilities, 5G networks can support multiple vertical services.
Such services may include several common virtual (network)
functions (VNFs), which could be shared to increase resource
efficiency. In this paper, we focus on the seldom studied VNF-
sharing problem, and decide (i) whether sharing a VNF instance
is possible/beneficial or not, (ii) how to scale virtual machines
hosting the VNFs to share, and (iii) the priorities of the different
services sharing the same VNF. These decisions are made with
the aim to minimize the mobile operator’s costs while meeting the
verticals’ performance requirements. Importantly, we show that
the aforementioned priorities should not be determined a priori
on a per-service basis, rather they should change across VNFs
since such additional flexibility allows for more efficient solutions.
We then present an effective methodology called FlexShare,
enabling near-optimal VNF-sharing decisions in polynomial time.
Our performance evaluation, using real-world VNF graphs,
confirms the effectiveness of our approach, which consistently
outperforms baseline solutions using per-service priorities.

I. INTRODUCTION

5G networks differ from their previous counterparts in
several key features. Among them, two especially relevant
aspects are the computational capabilities with which networks
are endowed, and the relationship between network operators
and vertical industries (e.g., multimedia content providers,
automotive industries, smart factories).

Thanks to software-defined networking (SDN) and network
function virtualization (NFV), cellular networks have now the
ability to process data, as well as to forward them. A set of
hosts, be them physical servers or virtual machines, run virtual
network functions (VNFs), performing network-related (e.g.,
firewalls), or service-specific (e.g., video transcoding) tasks.
Such an arrangement is beneficial for both mobile network
operators (MNOs), who can fully utilize their infrastructure,
and verticals, who can use it to deploy their services and enjoy
lower delays.

The relationship between MNOs and verticals is evolving
accordingly. Verticals can enter business relations with MNOs,
using their network infrastructure to provide services with
the required quality-of-service level. Indeed, vertical services
are specified as a set of interconnected VNFs, along with
per-service target key performance indicators (KPIs), e.g.,
throughput, delay, or reliability. Supporting services of mul-
tiple verticals, with different target KPIs, through the same
MNO infrastructure, is possible thanks to network slicing.
This is a powerful concept enabling multiple logical networks
as independent business operations, on a common physical
infrastructure [1]. Notably, network slicing also accounts for

composed services, i.e., service VNF graphs including sub-
graphs, each representing a child service [2]. Indeed, differ-
ent network slices may contain one or more common sub-
slices [3], [4], a typical example being the evolved packet
core (EPC) of cellular networks [2].

When creating a network slice, the MNO is in charge of
assigning to it the needed resources (e.g., virtual machines and
links connecting them), and of deciding which VNFs each host
should run. This problem, known as VNF placement, pursues
the twofold objectives of (i) ensuring that the target KPIs are
met, and (ii) minimizing the cost for the MNO. Importantly,
the latter can be achieved by sharing individual VNFs or sub-
slices, among multiple services whenever possible.

The vast majority of studies on VNF placement [5]–[7]
implicitly assume that (i) all placement decisions are made
by one entity, typically the NFV Orchestrator (NFVO) of
the Management and Network Orchestration (MANO) frame-
work [4], [8], and (ii) such entity makes fine-grained decisions
about how individual hosts and links are used. However,
such a behavior is not the only one included in standards,
and is not typical of real-world 5G implementations. Indeed,
ETSI IFA 007 specifies four possible granularity levels for
placement decisions, namely, Point of Presence (PoP) – e.g.,
a data center –, zone1 group, zone, and individual host, with
real-world 5G implementation efforts envisioning the NFVO
to make PoP-level decisions [9], [10].

Fine-grained decisions on sharing VNF instances within
individual PoPs are made by other, non-MANO entities, as
envisioned by IETF [4, Sec. 3], the NGMN alliance [11,
Sec. 8.9], and 5G-PPP [3, Sec. 2.2.2]. For sake of concreteness,
we take as a reference the latter architecture, which includes an
entity called Software-Defined Mobile Network Coordinator
(SDM-X). As summarized in Fig. 1, the SDM-X works at
a lower abstraction level than the MANO entities, and is in
charge of solving the VNF-sharing problem, managing the
VNFs that are common to multiple services.

This is the problem that, differently from traditional VNF
placement studies, we address in this paper. Specifically, we
solve the VNF-sharing problem within a PoP, by deciding, for
each newly requested service,
• whether it is possible and convenient to re-use the existing

VNF instances2;
• which priority to give to services sharing the same VNF, in

order to meet the target KPIs;

1Zone refers to a subset of hosts within a PoP.
2For simplicity, and without loss of generality, we will refer to common

VNFs only, instead of common VNFs and sub-slices.

ar
X

iv
:1

90
4.

00
70

4v
1 

 [
cs

.N
I]

  1
 A

pr
 2

01
9



Fig. 1. Architectural view of 5G networks according to 5G-PPP. Source: [2].

• whether and to which extent to scale up the computational
capability of virtual machines (VMs) within the PoP.

A simple instance of the VNF-sharing problem we address
is presented in Fig. 2. For each VNF of the newly-requested
service s2, we have to decide which VM shall run it (this
decision is trivial for v4, for which no instance exists yet) and
the priority to assign to requests, e.g., REST queries, of each
service in each shared VNF.

Contributions. To effectively tackle the VNF-sharing prob-
lem, we make the following main contributions:
• we observe that allowing flexible priorities for each VNF and

service, makes it possible to meet KPI targets at a lower cost
for the MNO;

• based on the above key observation, we present a system
model capturing all the relevant aspects of the VNF-sharing
problem and the entities it involves, including the capacity-
scaling and priority-setting decisions it requires;

• leveraging convex optimization, we devise an efficient,
integrated solution methodology called FlexShare, able to
make swift, high-quality decisions concerning VM usage,
priority assignment, and capability scaling;

• we evaluate the computational complexity of FlexShare and
study its performance against real-world VNF graphs.
In the rest of the paper, we begin by presenting an exam-

ple motivating the need for flexible priorities across VNFs
(Sec. II). Then, Sec. III introduces our system model and
problem formulation, while Sec. IV describes the FlexShare
solution strategy. Our reference scenarios and numerical re-
sults are discussed in Sec. V. Finally, after reviewing related
work in Sec. VI, Sec. VII concludes the paper.

II. THE ROLE OF PRIORITIES

Before addressing the problem of whether it is convenient to
share a VNF among multiple services or not, let us highlight
the role of priorities while sharing a VNF instance. Three main
approaches can be adopted for VNF sharing:
• per-service priority, associated with each service and con-

stant across different VNFs;
• per-VNF priority, associated with each service and VNF,

thus, given a service, it may vary across different VNFs;
• per-request priority, associated with individual service re-

quests, e.g., REST queries, it may vary across the different
VNFs on a per-request basis.

service s1

service s2

VM m1 VM m2 VM m3 VM m4 VM m5

v1 v2 v3

v3 v4

Fig. 2. Example of the VNF-sharing problem. A PoP is serving service s1,
with VNFs v1–v3 deployed at VMs m1–m3. It is then requested to deploy s2,
using VNFs v3 and v4. No isolation is requested, so services can share VNFs
if convenient. For v4, the only option is devoting an unused VM to it, m5 in
the example (pink line). For v3, instead, there are three options: re-using the
instance of v3 at m3, giving s2 a lower priority than s1 (dashed line); doing
the same but giving s2 a higher priority (dotted line); devoting m4 – currently
unused – to v3 (dash-dotted line), thus having two VMs running v3.

In the following example, we focus on the first two steps of
the above flexibility ladder and show how higher flexibility in
priority assignment is associated with a higher efficiency in
handling service traffic.

Example 1 (The importance of flexible priorities). Consider
the two services, s1 and s2, depicted in Fig. 3, requested by a
vertical specialized in video surveillance systems. s2 includes
two VNFs executing transcoding and motion detection, respec-
tively, while s1 is composed of s2 and a VNF performing face
recognition. Each VNF should run in its own VM, and network
transfer times between VMs are neglected. Adopting a well-
established and convenient approach [6], [7], let us model
VNFs as M/M/1 traffic queues processing service requests,
and the services as queuing chains, with arrival rates λ1 =
2 requests/ms and λ2 = 1 requests/ms, respectively. Also,
consider service delay as the main performance metric and let
the target average delay be Dmax

1 = Dmax
2 = 1.1 ms for both

services. Then assume that, given the allocated computation
resources, the service rate of the transcoding and motion
detection is µtc = µmd = µ = 5 requests/ms, while that of
face recognition is µfr = 9.15 requests/ms.

To meet the delay targets, s2 requests must traverse the
transcoding and motion detection with a combined sojourn
time of 1.1 ms, while s1 requests must do the same in at most
0.96 ms (i.e., the target average delay Dmax

1 minus the sojourn
time at the face recognition VNF of 1

µfr−λ1
= 0.14 ms). We

now show that there is no way of setting per-service priorities
that allow this.
Case 1: Higher priority to s1. This choice would make intuitive
sense since s1 requests have to go through more processing
stages than s2 requests, within the same deadline. In this case,
s1 requests incur a sojourn time of 1

µ−λ1
= 1

5−2 = 0.33 ms
for each of the common VNFs, resulting in a total delay D1 =
0.8 ms, well within the target. However, the sojourn time of
s2 requests at each of the shared VNFs becomes [12, Sec. 3.2]:

1/µ

(1−λ1µ )(1−λ1+λ2
µ )

= 1/5

(1− 2
5 )(1− 1+2

5 )
≈ 0.83 ms, which results

in a total delay of D2 ≈ 1.66 ms > Dmax
2 .

Case 2: Higher priority to s2. It is easy to verify that giving

2



s1

s2

transcoding motion
detection

face
recognition

Fig. 3. Example 1: two video surveillance services, s1 and s2, with
s2 including performing transcoding and motion detection VNFs, and s1
composed of s2 and an additional face recognition stage.

higher priority to s2 implies that s1 misses its target delay.

Case 3: Equal priority. Giving the same priority to both
services results in a sojourn time of 1

µ−λ1−λ2
= 1

5−1−2 =
0.5 ms for each of the common VNFs, and in a total delay
of D2 = 1 ms < Dmax

2 and D1 = 1 ms + 0.14 ms > Dmax
1 .

Flexible priorities. Assume that s1 and s2 have priority
in the transcoding and in the motion detection VNF,
respectively. Then, D1= 1

µ−λ1
+ 1/µ

(1−λ2µ )(1−λ1+λ2
µ )

+0.14=

0.33+0.625+0.14=1.095 ms < Dmax
1 , and D2=

1/µ

(1−λ1µ )(1−λ1+λ2
µ )

+ 1
µ−λ2

=0.83+0.25 = 1.08 ms < Dmax
2 .

In conclusion, the above example shows that no combination
of per-service priorities results in both s1 and s2 meeting their
target delays. Instead moving one step up the flexibility ladder,
i.e., assigning different priorities to service traffic flows across
VNFs, allows the MNO to meet the vertical’s requirements
while increasing efficiency in resource usage, hence lowering
the costs. As we will see later, even better performance can
be obtained through per-request priorities.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As mentioned earlier, the SDM-X has to use the VMs under
its control to provide the newly-requested services with the
required KPIs and at the minimum cost. Specifically, it has to
make decisions on (i) whether existing VNF instances should
to be shared; (ii) if so, how to assign the priorities to different
services sharing the same VNF instance; (iii) scaling up the
computational capabilities of the VMs if needed and possible.

As these decisions are made with reference to a single
PoP, processing times are the dominant contribution with
respect to network latency, and we therefore neglect the latter.
This assumption is also justified by the ongoing work in the
datacenter networking community (see, e.g., [13]), where (i)
switching is highly optimized, hence network delays tend to
be very small, and (ii) network topologies tend to be highly
regular, hence network delays between any two VMs tend to
be very similar across pairs of VMs. It follows that network
delays are often, within a single PoP, often negligible with
respect to processing times.

Next, Sec. III-A describes how all the entities that are
involved in the VNF-sharing problem can be described, while
Sec. III-B defines the problem objective and constraints.

A. System model

The system model includes VMs m ∈ M, and VNFs v ∈
V 3. Each VM runs (at most) one VNF, modeled as an
M/M/1 queue with FIFO queuing and preemption, as widely
assumed in recent works [6], [7], [14]. Also, let C(m) be
the maximum computation capability to which VM m can be
scaled up. We underline that, although in this work we focus
on computational capability, memory and storage could be
easily accommodated as well. We refer to a VM as active if it
hosts a VNF, and we express through binary variables y(v,m)
whether VM m runs VNF v.

Different VNFs have different computational requirements,
which are modeled through parameter l(v), expressing how
many units of computational capability are needed to process
one request in one second. A VNF with requirement l(v) = 1
running on a VM with capability µ = 1 takes l(v)/µ = 1 time
unit to process a service request. Using the same VM for a
VNF with requirement l(v) = 2 yields a processing time of
l(v)/µ = 2 time units. Notice how l(v) values do not depend
on the service using VNF v.

Services s ∈ S include one or more VNFs, and service s
requests arrive at VNF v with rate λ(s, v); VNFs that are
not used by a certain service have λ-values equal to 0.
Through the λ(s, v) parameters, we can account for arbitrarily
complex service (VNF) graphs where the number of requests
can change between VNFs, and some requests may visit
the same VNF more than once. We focus on the maximum
average delay Dmax(s) of service s as target KPI, although
our model can be seamlessly extended to account for different
(or additional) KPIs, e.g., service request drop probability.

Each VM uses a quantity µ(m) of computational capability,
which can be scaled up till C(m). Then the rate at which a
VNF v deployed at VM m processes service requests results to
be µ(m)

l(v) . Finally, binary variables x(s, v,m) express whether
service s uses the instance of VNF v at VM m; this allows
us to account for the fact that multiple instances of the same
VNF can be deployed at different VMs. For clarity, the above
parameters and variables are summarized in Tab. I.

B. Problem formulation

We now discuss the objective of the VNF-sharing problem
and the constraints we need to honor.

Objective. The high-level goal of the MNO is to mini-
mize the cost, which consists of two components: a fixed
cost κf (m) paid if VM m is activated, and a proportional
cost κp(m) paid for each unit of computational capability used
therein. The objective is then given by:

min
y,µ

∑
m∈M

(
κf (m)

∑
v∈V

y(v,m) + κp(m)µ(m)

)
. (1)

3VNFs can, in general, include multiple virtual deployment units (VDUs);
without loss of generality, we consider that each VNF includes only one VDU.
Also, we assume that no VNF requires isolation.

3



TABLE I
NOTATION († DENOTES VARIABLES OF THE MODIFIED PROBLEM

DESCRIBED IN SEC. IV-B)

Symbol Type Meaning
C(m) Parameter Maximum capability to which VM m can be

scaled up
Dmax(s) Parameter Target delay for service s
j Parameter Jitter applied when assigning per-request priorities
l(v) Parameter Computational capability needed to process one

request at VNF v
M = {m} Set Set of VMs
π(s, v) Random var. Describes the priority assigned to requests of ser-

vice s upon entering VNF v
p(s, v) Parameter Per-VNF priority of service s at VNF v
S(s, v) Aux. var. Sojourn time of requests of service s at VNF v
S = {s} Set Set of services
V = {v} Set Set of VNFs
x(s, v,m) Binary var. Whether requests of service s use the instance of

VNF v running at VM m
y(v,m) Binary var. Whether VM m runs VNF v
κf (m) Parameter Fixed cost incurred when activating VM m
κp(m) Parameter Proportional cost incurred when using one unit of

computational capability for VM m
Λ(s, v) Aux. var. Arrival rate at VNF v of requests that are given

priority over requests of service s
Λ̃(s, v) Real var.† Arrival rate at VNF v of requests that are given

priority over requests of service s
λ(s, v) Parameter Rate at which requests of service s enter VNF v
µ(m) Real var. Computational capability to use for VM m

Capability and instance limits. We must account for the
maximum value C(m) to which the capability µ(m) of each
VM m can be scaled up:

µ(m) ≤ C(m) ∀m ∈M. (2)

Also, we can have at most one VNF per VM:∑
v∈V

y(v,m) ≤ 1, ∀m ∈M, (3)

and only active VMs can be used, i.e.,

y(v,m) ≥ x(s, v,m), ∀s ∈ S, v ∈ V,m ∈M.

Service times. Each service s has a maximum average ser-
vice time Dmax(s) that must be honored. Since, as discussed
earlier, processing time is the dominant component of service
time, this is equivalent to imposing:∑

v∈V
S(s, v) ≤ Dmax(s), ∀s ∈ S, (4)

where S(s, v) is the sojourn time (i.e., the time spent waiting
or being served) experienced by requests of service s at
VNF v. By convention, we set S(s, v) = 0 if service s does
not include VNF v.

As detailed below, sojourn times, in turn, depend on:
• the computational capability l(v) requested by the VNFs;
• the service request arrival rate at the VNFs λ(s, v);
• the priority of the service requests at the traversed VNFs;
• the computational capability µ(m) assigned to the VM

hosting the VNF instance processing the requests.
Using [12, Sec. 3.2] and [15], we can generalize the expression
used in Example 1 and write the sojourn time of requests of
service s at VNF v, as:

S(s, v)=
l(v)

µ(m̄)

1

1− l(v)Λ(s,v)
µ(m̄)

1

1− l(v)Λ(s,v)+λ(s,v)
µ(m̄)

, (5)

where m̄ is the VM hosting the instance of VNF v used by
service s, i.e., m̄ = m ∈M : x(s, v,m) = 1.

In (5), Λ(s, v) represents the arrival rate of requests (of
any service) arriving at VNF v that are given a priority
higher than a generic request of service s. Let π(s, v) be the
random variable describing the priority assigned to requests
of service s at VNF v, then we have:

Λ(s, v) =
∑
t∈S

P (π(t, v) > π(s, v))λ(t, v). (6)

The intuitive meaning of (6) is that Λ(s, v) grows as it
becomes more likely that requests of other services t 6= s
are given higher priority over requests of service s.

Problem complexity. The actual expression of Λ(s, v) de-
pends on the type of the π(s, v) variables and is not guaranteed
to be linear, convex, or even continuous. It follows that, in
the general case, the problem of setting the priorities in such
a way to optimize (1) has NP-hard complexity and is thus
impractical for realistically-sized problem instances. Indeed,
as will be more clear from Sec. III-B1 and Sec. III-B2, finding
the optimum in the per-request priority case, would require to
search over all possible distributions of π(s, v).

Below, we compute Λ(s, v) for the relevant cases of per-
VNF priorities and uniformly-distributed, per-request priori-
ties.

1) Per-VNF priorities: We recall that, if per-VNF priorities
are supported as in Sec. II, then all requests of each service s
entering VNF v are given the same, deterministic priority. It
follows that, denoted such a priority with p(s, v), in the per-
VNF case π(s, v) is always distributed according to a Dirac
delta function centered in p(s, v), i.e., δ (π(s, v)− p(s, v)).
Hence, Λ(s, v) is discontinuous and given by:

Λ(s, v) =
∑
t∈S

H (p(t, v)− p(s, v))λ(t, v),

where H(·) is the Heaviside step function. Indeed, intuitively
a request of service s will be queued after all requests of
services t with higher priority than s (since H(p(t, v) −
p(s, v)) = 1 if p(t, v) > p(s, v)), after half of the requests
of services with the same priority as s (since H(p(t, v) −
p(s, v)) = 0.5 if p(t, v) = p(s, v)), and before all other
requests (since H(p(t, v)− p(s, v)) = 0 if p(t, v) < p(s, v)).

2) Per-request priorities: This case corresponds to higher
flexibility and implies that priorities could follow any dis-
tribution. Below, we focus on the simple, yet relevant, case
where priorities are distributed uniformly between r(s, v) −
j and r(s, v) + j. In this case, let us define the quan-
tity q(s, t, v) = P(π(t, v) > π(s, v)), whose value can be
computed through the convolution of the pdfs of π(s, v)
and π(t, v). Following the steps in [16], we get:

q(s, t, v) = P(π(t, v) > π(s, v))

= P (π(t, v)− π(s, v) > 0)

=


1 if r(t, v)−r(s, v) > 2j
1
2+ r(t,v)−r(s,v)

4j if − 2j≤r(t, v)−r(s, v)≤2j

0 if r(t, v)−r(s, v) < −2j .

(7)

4



(1) Create
bipartite graph

(2) Hungarian alg.
(x, y variables)

(3) Scaling, priority
(µ, Λ̃ variables)

(4) Prune
graph

if infeasible

solution

Fig. 4. The FlexShare strategy. Step 1 builds a bipartite graph showing which
VMs could run each VNF. Step 2 runs the Hungarian algorithm on such a
graph, obtaining the optimal values for the x- and y-variables. Step 3 solves
a convex variant of the original problem in Sec. III-B. If feasible, its variables
(µ, Λ̃) are used to determine the scaling and the service priorities; otherwise,
the bipartite graph is pruned (step 4) and the procedure restarts from step 2.

Once the q(s, t, v) are known, the Λ(s, v) values can be
computed by replacing (7) in (6), obtaining:

Λ(s, v) =
∑
t∈S

q(s, t, v)λ(t, v). (8)

In this case, it is also possible to prove that the choice of
parameter j has no impact on the solution space, hence, on
the decisions that are made.

IV. THE FLEXSHARE SOLUTION STRATEGY

In light of the problem complexity, we propose a fast, yet
highly effective, solution strategy, named FlexShare, which
runs iteratively and consists of four main steps, as outlined
in Fig. 4. The first step, detailed in Sec. IV-A, consists in
building a bipartite graph including the VNFs to deploy, and
the VMs that are active or can be activated. The edges of
the graph express the possibility of using a VM to provide a
VNF, either by sharing an existing instance or by deploying
a new one. Edges are labeled with the cost associated with
each decision, i.e., the κp and/or κf terms contributing to the
objective (1). In step 2, the Hungarian algorithm [17] is run on
the generated bipartite graph, yielding the optimal, minimum-
cost assignment of VNFs to VMs, i.e., the x- and y-variables
of the problem.

Given these decisions, step 3 aims at assigning the priorities
and finding the amount of computational capability to use in
every VM. To this end, a simpler (namely, convex) variant of
the problem defined in Sec. III-B is formulated and solved, as
detailed in Sec. IV-B.

If step 3 results in an infeasible problem, we prune the
bipartite graph (step 4). The underlying intuition is that a cause
for infeasibility is overly aggressive sharing of existing VNF
instances. Therefore, as detailed in Sec. IV-C, edges that result
in an overload of VMs are removed from the bipartite graph.
After pruning, the algorithm starts a new iteration with step 2.
Moving from one iteration to the next means reducing the
likelihood that VNF instances are shared between services,
and thus increasing the cost incurred by the MNO, due to
the κf fixed cost terms. The procedure stops as soon as one
feasible solution is found.

A. Steps 1–2: Bipartite graph and Hungarian algorithm

The bipartite graph. The purpose of the bipartite graph is
to represent (i) the possible VNF assignment decisions, i.e.,
which VNFs can be provided at which VMs and which VNFs

can be shared among services, and (ii) the associated cost
incurred by the MNO.

More formally, the bipartite graph is created according to
the following rules:
1) a vertex is created for each VNF and for each VM;
2) an edge is drawn from every VNF to every unused VM;
3) an edge is drawn from every VNF to every VM currently

running the same VNF, provided that the maximum com-
putational capability of the VM is sufficient to guarantee
stability.

Denoted by s̄ is the service now being deployed, VNF v can
be provided at VM m while (still) ensuring stability if:

l(v)
∑
s∈S

[(x(s, v,m) + 1s=s̄)λ(s, v)] < C(m). (9)

The first member of (9) is the total load imposed on VM m by
services that are already being served therein, if any, and the
new one s̄ (for which the indicator function is one). Through
(9), we can then check that this quantity is lower than the
maximum VM capability C(m).

Note that (9) does not imply that s̄, or existing services,
can be served in time, i.e., within their deadlines; indeed,
this depends on the priority and computational capability
assignment decisions, and cannot be checked at the graph
generation time. The purpose of step 1 is just to generate a
graph accounting for all possible assignment options.

The cost of each edge connecting VM m with VNF v is
given by the following expression:(

1−
∑
v

y(v,m)

)
κf (m) + κp(m) (l(v)λ(s̄, v) + ε) . (10)

In (10), the first term is the fixed cost associated with activating
VM m, which is incurred only if m is not already active (the
summation can be at most 1, as per (3)). The second term is the
proportional cost associated with the additional computation
capability needed at VM m to guarantee stability, with ε being
a positive, arbitrarily small value.

Hungarian algorithm and assignment decisions. The
Hungarian algorithm [17] is a combinatorial optimization
algorithm with polynomial (cubic) time complexity in the
number of edges in the graph. When applied to the bipartite
graph we generate, it selects a subset of edges such that (i)
each VNF is connected to exactly one VM, and (ii) the total
cost of the selected edges is minimized.

Selected edges map to assignment decisions. Specifically,
for each selected edge connecting VNF v and VM m, we
set y(v,m) ← 1 and x(s̄, v,m) ← 1, i.e., we activate m
(if not already active) deploying therein an instance of v,
and use it to serve service s̄. The obtained values for the x
and y-variables are used in step 3 to decide priorities and
computational capability assignment, as set out next.

B. Step 3: Priority and scaling decisions

The purpose of step 3 of the FlexShare procedure is to
decide the priorities to assign to each VNF and service, as well

5



as any needed scaling of VM computation capability. Since the
complexity of the problem stated in Sec. III-B depends on the
presence of the π(s, v) variables, we proceed as follows:
1) we formulate a simplified problem, which contains no

random variables and is guaranteed to be convex;
2) we use the variables of the simplified problem to set

the µ(q) variables of the original problem, as well as the
parameters of the distribution of the π(s, v) variables.

Convex formulation. To avoid dealing with probability
distributions, we replace the Λ(s, v) auxiliary variables of
the original problem with independent variables Λ̃(s, v), thus
dispensing with (6). Given x and y, the decision variables
of the modified problem are Λ̃(s, v) and µ(m), while the
objective is still given by (1). Having Λ̃(s, v) as a variable
means deciding (intuitively) how many higher-priority service
requests each incoming request will find. Such values are later
mapped to the parameters of the distributions of π(s, v).

If we solve the modified problem with no further changes,
the optimal solution would always yield Λ̃(s, v) = 0,∀s, v,
i.e., no request ever encounters higher-priority ones, which is
clearly not realistic. To avoid that, we mandate that the average
behavior, i.e., the average number of higher-priority requests
met, is the same as in the original problem:∑

s∈S
Λ̃(s, v) =

|S|
2

∑
s∈S

λ(s, v), ∀v ∈ V. (11)

The intuition behind (11) is that each Λ(s, v)-value (in the
original problem) is the sum of several λ-values, i.e., the
services arrival rates. The λ-value associated with the highest-
priority service will contribute to |S| − 1 Λ(s, v)-values, the
one associated with the second-highest-priority service will
contribute to |S| − 2 Λ(s, v)-values, and so on. On average,
each λ-value contributes to |S|2 Λ(s, v)-values.

It can be proved that the modified problem is convex and,
thus, solvable in polynomial time (in the problem size, which
depends on the number of VNFs and VMs) through off-the-
self, commercial solvers:

Property 1. The problem of minimizing (1) subject to con-
straints (2)–(4) and (11), is convex.

See [18] for the proof.
Setting the variables of the original problem. After

solving the convex problem described above, we can use the
optimal solution thereof to make scaling decisions, i.e., to set
the µ(m) variables in the original problem, as well as priority
decisions, i.e., the parameters of the distribution of π(s, v).
For µ(m), we can simply use the corresponding variables in
the simplified problem, which have the same meaning and are
subject to the same constraints. As for priorities, the procedure
to follow depends on the type of priority adopted in the system
at hand, hence, on the type of the variables π(s, v).

Specifically, if per-VNF priorities are supported (as in
Sec. III-B1), we set the p(s, v) values in such a way that
services associated with a higher Λ(s, v) have lower priority,
e.g., by imposing that p(s, v) ← −Λ̃(s, v). If, on the other

hand, we are in the case of Sec. III-B2, i.e., per-requests
priorities are uniformly distributed, then we can solve a system
of linear equations where the Λ̃(s, v) from the solution of the
simplified problem are known terms, the q(s, t, v) quantities
are the unknowns, and equations have the form (7) and (8).

Regardless the way priorities are assigned, it is important
to stress that our approach has general validity and can be
combined with any type of priority distribution.

C. Step 4: graph pruning

If the problem we solve in step 3 (priority and scaling
decisions) is infeasible, a possible cause lies in the decisions
made in step 2 (the Hungarian algorithm), i.e., the x and
y variables. Therefore, we restart from step 2 considering a
different bipartite graph, more likely to result in a feasible
problem.

To this end, we consider the irreducible infeasible set (IIS)
of the problem instance solved in step 3, i.e., the set of
constraints therein that, if removed, would yield a feasible
problem. Given the IIS, we proceed as follows:
1) we identify constraints in the IIS of type (2), thus, a set of

VMs that would need more capability;
2) among such VMs, we select those that are used by the

newly-deployed service s̄;
3) among them, we identify the one that is the closest

to instability, i.e., the VM m? minimizing the quan-
tity C(m) −

∑
s∈S x(s, v?,m)l(v?)λ(s, v?), where v? is

the VNF deployed at m;
4) we prune from the bipartite graph the edge between v?

and m?.
The intuitive reason for this procedure is that a cause for delay
constraints violations is that the newly-deployed service s̄
is causing one of the VMs it uses to operate too close
to instability, and thus with high delays. By removing the
corresponding edge from the bipartite graph, we ensure that
VM m? is not used by service s̄.

Note that we are guaranteed that the IIS contains at least
one constraint of type (2) thanks to the following result, proved
in [18]:

Theorem 1. Every infeasible instance of the modified problem
presented in Sec. IV-B includes at least one constraint of type
(2) in its IIS.

FlexShare then restarts with step 2, where the Hungarian
algorithm takes as an input the pruned bipartite graph.

D. Computational complexity

The FlexShare strategy has polynomial worst-case compu-
tational complexity. Specifically:
• step 1 involves a simple check over at most |V||M|

VNF/VM pairs;
• step 2, the Hungarian algorithm, has cubic complexity in

the number of nodes in the graph [17];
• step 3 requires solving a convex problem, as proven in

Property 1, and the resulting complexity is also cubic;

6



v1

v2

v3

v4

v5

s1
s2

s3

Fig. 5. VNF graphs in the synthetic scenario.

• step 4 iterates over at most |M| constraints of type (2), and
thus it has linear complexity;

• the whole procedure is repeated for (at most) as many times
as there are edges in the original bipartite graph.

V. NUMERICAL RESULTS

In this section, we describe the reference scenarios and
benchmark solutions we consider, in Sec. V-A; then we present
numerical results obtained under the synthetic and realistic
scenarios in, respectively, Sec. V-B and Sec. V-C.

A. Reference scenarios and benchmarks

Synthetic scenario. It includes three services s1 . . . s3,
sharing five VNFs v1 . . . v5, as depicted in Fig. 5. All VNFs
have coefficient l(v) = 10−3 units/request, while the ar-
rival rates associated with each service vary between 1 and
2 requests/ms. Target delays range between 20 ms for s1

and 5 ms for s3. The scenario includes 10 VMs, whose fixed
and proportional costs are κf = 8 and κp = 0.5 units,
respectively, and whose capability is randomly distributed
between 5 and 10 units. Such a scenario is small enough to
allow a comparison against optimal priority assignments found
by brute-force. At the same time, it contains many interesting
features, including different combinations of services sharing
different VNFs and different cost/capability trade-offs at VMs.

Realistic scenario. We consider three services, all con-
nected to the smart-city domain:
• intersection collision avoidance (ICA): vehicles periodically

broadcast a message (e.g., CAM) including their position
and speed; a collision detector checks if any pair of them
are on a collision course and, if so, it issues an alert;

• vehicular see-through (CT): cars display on their on-board
screen the video captured by the preceding vehicle, e.g., a
large truck obstructing the view;

• urban sensing based on the Internet-of-Things (IoT).
Tab. II, based on [19], [20], reports the VNFs used by each
service and the associated arrival rates. All services share the
EPC child service, which is itself composed of five VNFs.
Furthermore, the car information management (CIM) database
can be shared between the ICA and the CT services.

We leverage the real-world mobility trace [21], to assign
user density and request rates. Focusing on a downtown
intersection, we consider that (i) all vehicles within 50 m from
the intersection are users of the ICA service, and send a CAM
every 0.1 s; (ii) all vehicles within 100 m from the intersection
are users of the CT service, and send a request (i.e., refresh
their video) every 200 ms; (iii) a total of 200 sensors are
deployed in the area, each generating, according to the traffic
model described in the 3GPP standard [22], one request

TABLE II
REALISTIC SCENARIO: REQUEST RATE AND COMPUTATIONAL LOAD

ASSOCIATED WITH EVERY VNF

VNF Rate λ(s) Requirement l(v)

Intersection collision avoidance (ICA)
eNB 117.69 10−4

EPC PGW 117.69 10−4

EPC SGW 117.69 10−4

EPC HSS 11.77 10−4

EPC MME 11.77 10−3

Car information management (CIM) 117.69 10−3

Collision detector 117.69 10−3

Car manufacturer database 117.69 10−4

Alarm generator 11.77 10−4

See through (CT)
eNB 179.82 10−4

EPC PGW 179.82 10−4

EPC SGW 179.82 10−4

EPC HSS 17.98 10−4

EPC MME 17.98 10−3

Car information management (CIM) 179.82 10−3

CT server 179.82 5 10−3

CT database 17.98 10−4

Sensing (IoT)
eNB 50 10−4

EPC PGW 50 10−4

EPC SGW 50 10−4

EPC HSS 5 10−4

EPC MME 5 10−3

IoT authentication 20 10−4

IoT application server 20 10−3

every 0.1 s. Tab. II reports the resulting request rates and the
requirement l(v) associated with each VNF. As discussed in
Sec. III, the λ(s, v) values also incorporate the fact that not
all requests visit all VNFs of a service, e.g., all ICA requests
visit the collision detector but only one in ten needs the alarm
generator.

Finally, we assume that the PoP contains 10 VMs, each
of which can be scaled up to at most C(m) = 1000 units,
and each associated with fixed and proportional costs of κf =
1000 units and κp = 1 unit, respectively.

Benchmark solutions. We study the performance of the
following strategies, in increasing order of flexibility:
• service: per-service priorities, with lowest-delay services

having the highest priority;
• VNF/FS: per-VNF priorities, assigned with FlexShare;
• VNF/brute: optimal per-VNF priorities (with brute-force);
• req/FS: per-request, uniformly distributed priorities, as-

signed with FlexShare.

B. Results: synthetic scenario

We start by considering the synthetic scenario and, in order
to study different traffic conditions, multiply the arrival rates
by a factor n ranging between 1 and 2.

Fig. 6(left) focuses on the main metric we consider, namely,
the total cost incurred by the MNO. We can observe that,
as one might expect, higher traffic translates into higher
cost. More importantly, more flexibility in priority assignment
results in substantial cost savings. As for per-VNF priorities,
they exhibit an intermediate behavior between per-service
and per-request ones, with virtually no difference between
the case where FlexShare is used to determine the priorities

7



Fig. 6. Synthetic scenario: total cost (left); average number of services sharing a VNF instance (center); used and maximum VM capability (right).

Fig. 7. Synthetic scenario, n = 1.8: priorities assigned to each service with per-service (left), per-VNF (center), and per-request priorities (right).

(“VNF/FS”) and that where all possible options are tried
out in a brute-force fashion (“VNF/brute”). This highlights
the effectiveness of the FlexShare strategy, which can make
optimal decisions in almost all cases with low complexity.

Fig. 6(center) shows the average number of services sharing
a VNF instance. It is clear that a higher flexibility in pri-
ority assignment results in more sharing, hence fewer VNF
instances deployed. As n increases, the number of services per
instance decreases: scaling up (i.e., increasing the capability
of VMs) is insufficient, and scaling out (i.e., increasing the
number of instances) becomes necessary.

This is confirmed by Fig. 6(right), depicting the total used
VM capability (i.e.,

∑
m∈M µ(m)) as well as the sum of the

maximum values to which the capability of active VMs can
be scaled up (i.e.,

∑
m∈M C(m)y(m)), denoted by solid and

dotted lines, respectively. Both quantities grow with n and
decrease as flexibility becomes higher. This makes intuitive
sense for the maximum capability: Fig. 6(left) shows that
under higher-flexibility strategies fewer VNF instances, hence
fewer active VMs, are needed. Importantly, used capability
values, i.e., µ(m), also decrease with flexibility. Indeed, higher
flexibility makes it easier to match the computational capabil-
ity obtained by each service within each VNF, with its needs.

Fig. 7 provides a qualitative view of how priorities
are assigned to different services across different VNF in-
stances. When priorities are assigned on a per-service basis
(Fig. 7(left)), services with lower target delay invariably have
higher priority. If priorities are assigned on a per-VNF basis, as
in Fig. 7(center), the priorities of different services can change
across VNF instances, e.g., s2 has priority over s1 in the v1

instance deployed at VM m2, but the opposite happens in the
v3 instance deployed at VM m1. Fig. 7(right) shows that if
per-request priorities are possible, services can be combined
in any way at each VNF instance.

C. Results: realistic scenario

We now move to the realistic scenario, again multiplying
the arrival rates reported in Tab. II by a factor n varying
between 1 and 2. Recall that, owing to the larger scenario
size, no comparison with the brute-force strategy is possible.

Fig. 8(left) shows how the total cost yielded by the different
strategies has the same behavior as in the synthetic scenario
(Fig. 6(left)): the higher the flexibility, the lower the cost.
Furthermore, for very high values of n, all strategies yield
the same cost; in those cases, few or no VNF instances can
be shared, regardless of how priorities are assigned.

Fig. 8(center) shows that VNF instances are shared among
services; by comparing it to Fig. 6(center) we can observe
how the behavior of per-VNF priorities tends to be closer to
per-request priorities than to per-service ones. This suggests
that, even in large and/or complex scenarios, per-VNF pri-
orities can be a good compromise between performance and
implementation complexity.

Fig. 8(right) shows a much larger difference between used
and maximum capabilities compared to Fig. 6(right). This is
due to the fact that, as can be seen from Tab. II, there are
fewer VNFs that are common among different services, and
thus fewer opportunities for sharing.

VI. RELATED WORK

5G networks based on network slicing have attracted sub-
stantial attention, with several works focusing on 5G archi-
tecture [2], [23], associated decision-making issues [24], and
security [25].

As one of the most important decisions to make in 5G
environments, VNF placement has been the focus of several
studies. One popular approach is optimizing a network-centric
metric, e.g., load balancing [26] or network utilization [27].

8



Fig. 8. Realistic scenario: total cost (left); average number of services sharing a VNF instance (center); used and maximum VM capability (right).

Other papers use cost functions, e.g., [28], possibly including
energy-efficiency considerations [29].

The aforementioned works typically result in mixed-integer
linear programming (MILP) models. Other works cast VNF
placement into a generalized assignment [30] or a set cover
problem [31].

Novelty. A first novel aspect of our work is the problem
we consider, i.e., VNF-sharing within one PoP as opposed to
traditional VNF placement. From the modeling viewpoint, we
depart from existing works in three main ways: (i) priorities
are used as a decision variable rather than as an input; (ii)
different priority-assignment schemes with different flexibility
are accounted for and compared; (iii) the relationship between
the amount of computational resources assigned to VNFs and
their performance is modeled and studied; (iv) VM capacity
scaling is properly accounted for as a necessary, complemen-
tary aspect of VNF sharing.

VII. CONCLUSION

We considered the problem of sharing VNFs among 5G
services using the same PoP, and identified in service priority
management one of its key aspects. We then proposed a
solution strategy called FlexShare, able to efficiently make
high-quality priority and VM scaling decisions. Our perfor-
mance evaluation has shown that higher flexibility in priority
assignment yields lower costs, and that FlexShare is able to
provide near-optimal performance in all scenarios.

Future work will focus on formally characterizing the per-
formance gap between FlexShare and the optimal solution.
Furthermore, with reference to the per-request priority case,
we will study additional distributions and assess their impact
on the resulting performance.

REFERENCES

[1] NGMN Alliance, “Description of network slicing concept,” 2016.
[2] P. Rost et al., “Network slicing to enable scalability and flexibility in

5G mobile networks,” IEEE Comm. Mag., 2017.
[3] 5G PPP Architecture Working Group. (2017) View on 5G Architecture.
[4] IETF. (2017) Network Slicing Management and Orchestration.
[5] J. Cao et al., “VNF placement in hybrid NFV environment: Modeling

and genetic algorithms,” in IEEE ICPADS.
[6] R. Cohen et al., “Near optimal placement of virtual network functions,”

in IEEE INFOCOM, 2015.
[7] S. Agarwal et al., “Joint VNF Placement and CPU Allocation in 5G,”

in IEEE INFOCOM, 2018.
[8] ETSI. (2017) Network Functions Virtualisation (NFV); Management and

Orchestration.
[9] K. Antevski et al., “Resource orchestration of 5G transport networks for

vertical industries,” in IEEE PIMRC, 2018.

[10] B. Sayadi et al., “SDN for 5G Mobile Networks: NORMA perspective,”
in Springer CROWNCOM, 2016.

[11] NGMN Alliance. (2017) 5G Network and Service Management includ-
ing Orchestration.

[12] L. Kleinrock, Queueing systems: Computer applications. John Wiley
& Sons, 1976.

[13] W. Xia et al., “A survey on data center networking (DCN): Infrastructure
and operations,” IEEE Comm. surveys & tutorials, 2017.

[14] D. Bhamare et al., “Optimal virtual network function placement in multi-
cloud service function chaining architecture,” Computer Communica-
tions, 2017.

[15] Malathi Veeraraghavan. (2014) Priority queueing. http://www.ece.
virginia.edu/mv/edu/715/lectures/PQ.pdf.

[16] Dimitrios Milios. (2009) Probability Distributions as Program Variables.
http://www.inf.ed.ac.uk/publications/thesis/online/IM090722.pdf.

[17] H. W. Kuhn, “The hungarian method for the assignment problem,” Wiley
Naval Research Logistics, 1955.

[18] Proofs. https://dl.dropbox.com/s/9ylmq71iyyuqjrk/proofs.pdf.
[19] C. Casetti et al., “Arbitration among vertical services,” in IEEE PIMRC,

2018, http://arxiv.org/abs/1807.11196.
[20] T. Taleb, A. Ksentini, and A. Kobbane, “Lightweight mobile core

networks for machine type communications,” IEEE Access, 2014.
[21] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)

Scenario: 24 hours of mobility for vehicular networking research,” in
IEEE VNC, 2015.

[22] 3rd Generation Partnership Project, “3GPP specification: 37.868; RAN
improvements for machine-type communications,” Tech. Rep.

[23] H. Zhang et al., “Network slicing based 5G and future mobile networks:
mobility, resource management, and challenges,” IEEE Comm. Mag.,
2017.

[24] K. Samdanis et al., “5G Network Slicing – Part 2: Algorithms and
practice,” IEEE Comm. Mag., 2017.

[25] M. A. S. Santos et al., Security Requirements for Multi-operator
Virtualized Network and Service Orchestration for 5G. Springer, 2017.

[26] A. Hirwe and K. Kataoka, “LightChain: A lightweight optimization of
VNF placement for service chaining in NFV,” in IEEE NetSoft, 2016.

[27] T. W. Kuo et al., “Deploying chains of virtual network functions: On
the relation between link and server usage,” in IEEE INFOCOM, 2016.

[28] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for
the placement of service function chains,” IEEE Trans. on Network and
Service Management, 2016.

[29] A. Marotta and A. Kassler, “A power efficient and robust virtual network
functions placement problem,” in IEEE ITC, 2016.

[30] R. Cohen et al., “Near optimal placement of virtual network functions,”
in IEEE INFOCOM, 2015.

[31] A. Tomassilli et al., “Provably efficient algorithms for placement of
service function chains with ordering constraints,” in IEEE INFOCOM,
2018.

ACKNOWLEDGMENT

This work has been performed in the framework of the
European Union’s Horizon 2020 projects 5G-EVE and 5G-
CARMEN, co-funded by the EU under grant agreements (re-
spectively) No. 815074 and No. 825012. The views expressed
are those of the authors and do not necessarily represent the
project. The Commission is not liable for any use that may be
made of any of the information contained therein.

9

http://www.ece.virginia.edu/mv/edu/715/lectures/PQ.pdf
http://www.ece.virginia.edu/mv/edu/715/lectures/PQ.pdf
http://www.inf.ed.ac.uk/publications/thesis/online/IM090722.pdf
https://dl.dropbox.com/s/9ylmq71iyyuqjrk/proofs.pdf
http://arxiv.org/abs/1807.11196 


APPENDIX

PROOFS

Property 1. The problem of minimizing (1) subject to con-
straints (2)–(4) and (11), is convex.

Proof: For the problem to be convex, the objective and all
constraints must be so. Our expressions are linear, and thus
convex. However, (4) contains S(s, v)-terms, which have to
be proven to be convex. We do so by computing the second
derivative of the expression S(s, v) in the µ(m) and Λ(s, v)
variables. It is easy to verify that, since the quantities Λ̃(s, v),
µ(m), λ(s, v) and l(v) are all positive and the system is stable
(i.e., l(v)Λ(s, v) < µ(m) and l(v)(Λ(s, v)+λ(s, v)) < µ(m)),
both derivatives are positive, which proves the thesis.

Theorem 1. Every infeasible instance of the modified problem
presented in Sec. IV-B includes at least one constraint of type
(2) in its IIS.

Proof: The constraints of the modified problem are of
type (2)–(4) and (11). Proving that there is a constraint of
type (2) in the IIS is equivalent to proving that we can solve
a violation of the other types of constraint by violating one or
more constraints of type (2). Indeed, if a max-delay constraint
of type (4) is violated, we can make the capacity of the VNF
used by that service arbitrarily high; so doing, we can solve the
violation of (4) at the cost of violating (2). Similarly, solving
a violation of (11) requires increasing the Λ̃-values, which in
turn increases the sojourn times and results in a violation of
(4)-type constraints, thus reducing to the previous case.


	I Introduction
	II The role of priorities
	III System model and problem formulation
	III-A System model
	III-B Problem formulation
	III-B1 Per-VNF priorities
	III-B2 Per-request priorities


	IV The FlexShare solution strategy
	IV-A Steps 1–2: Bipartite graph and Hungarian algorithm
	IV-B Step 3: Priority and scaling decisions
	IV-C Step 4: graph pruning
	IV-D Computational complexity

	V Numerical results
	V-A Reference scenarios and benchmarks
	V-B Results: synthetic scenario
	V-C Results: realistic scenario

	VI Related work
	VII Conclusion
	References
	Appendix

