
DEEM: Enabling Microservices via
DEvice Edge Markets

Argyrios G. Tasiopoulos, Onur Ascigil, Sergi Rene, Michał Król, Ioannis Psaras, and George Pavlou
Department of Electronic and Electrical Engineering, University College London, UK.
Email: {argyrios.tasiopoulos, o.ascigil, s.rene, m.krol, i.psaras, g.pavlou}@ucl.ac.uk

Abstract—Native applications running over handheld devices
have an irreplaceable role in users’ daily activities. That said,
recent studies show that users download on average zero new
applications on monthly basis, which suggests that new apps can
face discoverability issues. In this work, we aim for a web-based,
download/installation-free access to native application features
through microservices (µServices) that are shared between user
devices in a peer-to-peer (P2P) manner. Such a P2P approach is
self-scalable and requires no investment for µService deployment,
unlike mobile edge computing or Data Centre.

We introduce DEEM, a DEvice Edge Market design that en-
ables device-hosted µServices to end-users. In DEEM, µService-
based markets act as rendezvous points between available
µService instances and clients. DEEM ensures the i) assignment
of instances to the users that value them the most, in terms of QoS
gain, and ii) devices’ income maximisation. Our evaluation on
synthetic settings demonstrates DEEM’s capability in exploiting
the pool of device instances for improving the application QoS
in terms of latency.

I. INTRODUCTION

The growth of native mobile applications has been un-
precedented with millions currently offered at app-stores [2].
According to recent studies, the number of annual application
download is expected to exceed 260 billion in the years
to come, following hardware upgrades that enable new app
features [3]. That said, new applications face discoverability
challenges when competing against a plethora of existing
options in the app-stores: users typically interact with 10 apps
per day (or 30 apps per month) while downloading on average
zero new apps per-month [1].

The discoverability challenge of the new apps has lead to
joint efforts of developers and mobile operating systems to
focus on technologies that enable effortless access of appli-
cations, i.e., by skipping the download and installation steps,
as in the case of Progressive Web Apps (PWAs) [28]. PWAs
are web-based apps designed to provide the functionality of
native (i.e., locally running) applications through a distributed
“client-server” model: browsers and service workers (a virtual
proxy that enables caching and offline access to app features)
running at the client’s end interact through the network with
microservices (µServices) [15] specialised in providing a sub-
set of app features using a Function-as-a-Service model at
the server-side [20]. Major applications who have successfully
jumped on the PWA bandwagon include Twitter, Expedia, and
Alibaba, to name a few.

Fig. 1: µService-specific Markets

However, the success of PWAs relies on the “smooth” (i.e.,
low-latency and reliable) interaction between service workers
at the client and microservices (µServices) [15] running at the
server side [33]. This makes distant Data Centres unfit for
the purpose of µService deployment due to the long round-
trip times (RTTs) [22] and single point-of-failure [32]. On
the other hand, Mobile edge computing (MEC) [30] promises
low-latency access to computing resources deployed nearby
the users at cellular base stations or other edge nodes such
as routers or cloudlets. However, MEC requires vast capital
investment to provide over-provisioned resources capable of
dealing with the peak user demand.

Instead, we consider a self-scaling, peer-to-peer (P2P)
µService sharing (i.e., leasing) approach, whereby a pool
of mobile devices that have installed µService instances act
as servers that provide services to other client devices. As
opposed to a MEC deployment with costly in-network re-
sources, our approach exploits virtualisation techniques, such
as containers [18] and unikernels [23]), which enable the
deployment of µServices directly on user mobile devices.
That said, µService sharing occupy computation and storage
resources while depleting the energy of server devices. Hence,
in this work we argue for the need of a market-based solution
that incentivises devices to lease their µServices, similar to
other emerging commercial projects that aim to provide a P2P
computing infrastructure [7], [8], [13]. The vision is to create
a decentralised system, where server devices are incentivised
to perform application specific work and automatically receive
rewards upon tasks completion.

We introduce DEEM: a DEvice Edge Market framework978-1-7281-0270-2/19/$31.00 c�2019 IEEE

that enables the delivery of µServices, hosted in mobile
devices, to end users at an improved QoS expressed as a
decreasing function of the derived RTT. DEEM is a platform
consisting of µService-specific markets deployed over the
edge of the network, which act as rendezvous points for user
requests and µService device instances, as shown in Fig. 1.

In DEEM, user requests are forwarded to the corresponding
µService market, while devices lease their resources by par-
ticipating simultaneously in multiple µService markets given
their installed instances. DEEM assigns user requests to device
µService instances via Vickrey-English-Dutch (VED) multi-
item unit demand auctions [12] that assure that each device
instance is assigned to the user that values it the most at the
minimum possible price. At the same time, DEEM orchestrates
the µService-specific markets by exchanging achievable price
of device instances between different markets and iteratively
updating their reservation price, i.e., the minimum price at
which an instance is offered, to maximise the device income
subject to its service capabilities.

The main technical contributions of this paper are as fol-
lows:

1) We study the problem of enabling µService instances to
end users from an economic perspective.

2) We propose a µService-specific market approach, de-
ployed over the edge of the network, which acts as a
rendezvous point between offered device instances and
user requests.

3) We introduce DEEM mechanism, a P2P framework for
assigning instances to the users that value them the
most, while maximising the compensation of devices’
participation over different markets.

The rest of the paper is organised as follows. In Section II
we describe the system model and VED auctions preliminaries.
In Section III we detail the DEEM mechanism. Section IV pro-
vides the performance evaluation results. Finally, we present
the related work in Section V before concluding in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we consider the state of a market before the
execution of the assignment (reassignment) mechanism that
will define the users served by each device, presented is details
in Section III.

A. System Model
Let S , {1, 2, ..., S} be a set of µServices, where each

s 2 S is provided by a set of mobile devices Ds. We denote
with D = {1, ..., D} the set of devices participating over
the application specific markets, willing to serve µServices
requests, where each device d 2 D is equipped with a set of
Sd ✓ S µServices. At the same time, we consider the existence
of M = {1, 2, ...,M} unit-demand users requesting exactly
one µService for the next period of allocation. Specifically, we
denote with Ms the set of users requesting µService s 2 S ,
which for unit-demand users means that Ms \Ms0 = ; for
any s, s

0 2 S where s 6= s

0.
We assume that in each market, there is an Application

Service Provider (AppSP) for a µService s, aware of the

latency between each user m 2 Ms and device d 2 Ds for
the duration of their engagement. That is, based on the latency
information, the AppSP derives the QoS umd produced by
assigning user m to device d. Furthermore, for each µService
s there is an always available service computing infrastructure,
i.e., back-end Data Centre, providing a default QoS to a user
m 2 Ms, um;, that given an expected latency the AppSP can
estimate in a similar way.

B. Multi-item Unit-Demand Auctions Preliminaries

Users requesting µService s 2 S are interested in achieving
the highest possible QoS improvement, compared to the QoS
provided by the back-end Data Centre, from their service by
a device d 2 Ds. On the other hand, devices are interested
in being compensated while maximising their revenue given
their installed µServices. Clearly, the objectives of users and
devices are conflicting with each other; that is, there would
be difficulties in reaching an agreement regarding the requests
served by each device, and the service price, if both parties
were left alone to decide. Therefore, there is a need for a
market mechanism that will ensure, as an independent entity,
the effective assignment of user requests to µService instances
hosted by individual devices, i.e., xs : Ms ! Ds [{;}
8s 2 S where {;} corresponds to the default execution
location of each µService. Note that the back-end Data Centre
is considered having sufficient capacity for serving the existing
set of request as opposed to each device that has limited
computing capabilities. In fact, for presentation purposes due
to simplified notation, we assume that each device can serve
up to a single user at each allocation period; that said, we show
in Section III-C that the generalisation of the mechanism is
straightforward.

In the context of a market, the assignment of requests to
devices is determined by an auction mechanism. The corre-
sponding auction falls into the category of multi-item, since
there are multiple offered instances for a specific µService,
unit-demand auctions. In detail, the expected QoS improve-
ment by each unit-demand user m 2 Ms when served by a
device d 2 Ds corresponds to a monetary valuation:

vmd = f(umd, um;) (1)

where f(·, um;) is an increasing function known by the AppSP
that converts each user’s QoS improvement to monetary val-
ues.1

Then given the available µService s 2 S instances, i.e.,
supply, at a given price vector ps = (psd : 8d 2 Ds), where
psd 8d 2 Ds is the price of instance s at device d, each user
is aiming to maximise her net valuation, i.e., valuation after
price reduction vmd � psd. That is, user m 2 Ms expresses

1Ideally, the f(·, um;) function can capture the potential handovers of
either the devices or the users, during the time-slot of interest, along with their
impact on the µService’s QoS. However, we consider the network conditions
between a user and a device stable at each time-slot since the prediction of
mobility patterns is beyond the scope of this work.

her interest for those instances by her demand correspondence
set:

Dm(ps, rs) = {d 2 Ds : vmd � psd � vmd0 � psd0

^ psd � rsd, 8d0 2 Ds} (2)

where rs = (rsd : 8d 2 Ds) is the reservation price vector
of offered µService s 2 S device instances. Specifically, we
denote by rsd the reservation price at which device d 2 Ds

offers its instance s, meaning that the device will not serve any
user requesting µService s for a lower price, i.e., psd < rsd

8d 2 Ds.
Given the demand correspondence set of each user, the

market aims to derive an assignment xs : Ms ! Ds [{;}
8s 2 S with the following attributes:

• A1) each user is assigned uniquely to an instance from
her demand correspondence or a default instance at the
back-end Data Centre, i.e., instance allocation xm 2
Dm(ps, rs) for each m 2 Ms where xsm 6= xsm0 for
any m

0 2 M\{m} or xsm = ;.
• A2) each device is either serving a single user for a price

that is higher than its minimum possible (reservation)
price, or up to a single user when its price is exactly
equal to the minimum possible one, i.e., if xsm = d for a
user m 2 Ms, then xsm 6= xsm0 for any m

0 2 M\{m}
and psd � rsd. Otherwise, if device’s price is less than
the minimum one then it does not serve any user, i.e., if
psd < rsd then xsm 6= d for any user m 2 Ms.

Under conditions A1) and A2) the market is reaching an
equilibrium state that is characterised by an equilibrium as-
signment x

⇤
s , where users are satisfied with their assigned

instance, and an equilibrium price vector p

⇤
s 8s 2 S . In

fact, it has been shown by Shapley [31] that the set of
equilibrium vectors is non-empty while forming a complete
lattice that guarantees the existence of a unique minimal equi-
librium vector, given the reservation price of each instance.
In literature, this unique vector is referred as Vickrey-Clarke-
Groves (VCG) equilibrium assignment, xVCG, associated with
the VCG equilibrium price vector, p

VCG [38]. An auction
mechanism that achieves the VCG equilibrium guarantees to
each user that her assigned instance is offered to the minimum
possible price over all possible equilibrium price vectors, i.e.,
the user has no incentives in acquiring the instance in any
other equilibrium price, which is a highly desirable property.
The reason is that in a market where instances are assigned
according to the VCG equilibrium, end users are truthful with
respect to their valuations about a µService instance, i.e., each
user m 2 Ms is not incentivised to submit an untruthful
valuation, i.e., < vmd, about an instance at device d 2 Ds.

III. DEEM MECHANISM

In this section we present DEEM’s components, namely:
1) DEEM Market Operation: That is the auction mecha-

nism applied to each application specific market.
2) DEEM Orchestrator: That allocates each device to the

request that values it the most, by updating the reserva-
tion price of each device to a market iteratively.

For the simplicity of the mechanism presentation we assume
that each application provider operates a single market, while
each device serves at most a single user; however, the mecha-
nism can be easily generalised as we discuss in Section III-C.

A. DEEM Market Operation

We describe DEEM market operation component by focus-
ing on a single µService market s 2 S . The presented com-
ponent relies on Vickrey-English-Dutch (VED) auctions that
have the attribute of deriving the VCG equilibrium assignment
along with the corresponding price vector. This component
for a µService s considers as given the set of Ds devices,
devices’ price vector ps, reservation price vector rs, and users
Ms valuations. Then each device of the market is categorised
in one of the following sets:

• Universally allocated devices, ˜Ds(ps, rs), defined as the
set of devices that satisfy at their current price at least 2
users, i.e., 9m,m

0 2 Ms : d 2 Dm(ps, rs)\Dm0
(ps, rs)

such that m 6= m

0 8d 2 ˜Ds(ps, rs), while even by
removing a user the set of allocated items is not de-
pleted, i.e., after excluding randomly a user all devices
in ˜Ds(ps, rs) can still be assigned. The set of universally
allocated devices can be identified in polynomial time by
the FindUnivAllocItems procedure presented in [29].

• Withheld devices, WDs(ps, rs), including the devices
whose price is less than their reservation price or equal to
their reservation price without being universally allocated,
i.e., WDs(ps, rs) = {d 2 Ds\{ ˜Ds(ps, rs) : psd  rsd}.
These devices are not assigned to any user. Note that the
derivation of WDs(ps, rs) set of devices is trivial given
the current vector price ps and set ˜Ds(ps, rs).

• Devices in excess supply, ESs(ps, rs), that consists of
the devices that neither belong to the universally al-
located nor the withheld devices, i.e., ESs(ps, rs) =

{Ds}\{ ˜Ds(ps, rs) [WDs(ps, rs)}. That is, ESs(ps, rs)

can be also identified in polynomial time since the main
overhead is the identification of ˜Ds(ps, rs) set which is
polynomial.

• Devices in excess demand, EDs(ps, rs), which is a sub-
set of the universally allocated devices, EDs(ps, rs) ✓
˜Ds(ps, rs), where i) the number of devices in each proper
subset T ⇢ EDs(ps, rs), is strictly smaller than the
number of users that demand a device in T , and ii) the
users that demand at least a single device in EDs(ps, rs)

they do not request devices outside the EDs(ps, rs) set.
Authors in [11] prove that for a given price vector
there exists a unique set in excess demand with max-
imal cardinality, ED⇤

s(ps, rs), that can be identified in
polynomial time by applying the “Ford and Fulkerson”
algorithm [19].

It is easy to see that the aforementioned sets cover all the
potential states that a device instance can belong, given the
price and reservation price vectors, ps and rs respectively. In
particular, following the depicted devices in Fig. 2 we see
that if the price of a device d is lower than its reservation
price, psd < rsd, or exactly equal to its reservation price

Fig. 2: Edge µService-Specific Market, µService A instance

without being universally allocated then the device belongs
to the set of withheld devices, d 2 WDs(ps, rs), like device
7. Otherwise, if device’s price is higher that its reservation one
and it is requested by at most a single user it belongs to devices
in excess supply, d 2 ESs(ps, rs), such as devices 5 and 6.
In case that each device is requested by at least 2 users and
any device can continue being allocated even by excluding a
user from the auction, then it belongs to the set of universally
allocated devices, d 2 ˜Ds(ps, rs), as the devices 1, 2, 3, and
4. The excess demand devices is a subset of the universally
allocated ones that cannot satisfy the demand correspondence
of their involved users, like devices 1 and 2 that are requested
by 3 users. Note that even if we exclude a single user out
of the participating ones, the universally allocated devices 1
to 4 would still be able to be assigned to a user. Lastly, we
consider an always available µService Data Centre that serves
all the requests that fail to be assigned to a device’s instance.

DEEM’s market operation component derives the VCG
equilibrium of the market, given the reservation prices vector,
by applying a VED auction mechanism. In VED auctions, the
price is adjusted in a way that eliminates the devices in excess
supply, ESs(ps, rs), as well as in excess demand, EDs(ps, rs),
since both sets are associated to the VCG equilibrium state by:

Theorem 1: A price vector is the VCG equilibrium price
vector of the market if and only if the sets of devices in
excess demand and supply are empty, i.e., ps = p

VCG
s iff

ESs(ps, rs) = EDs(ps, rs) = {;}.
The theorem is proved in [25], leading us to the following

straightforward corollary:
Corollary 1: Given the reservation price of device d at

market s 2 Sd, rsd, if the market is at a VCG equilibrium state
then d will either belongs to the set of universally allocated
devices, d 2 ˜Ds(p

VCG
s , rs), at a price p

VCG
sd � rsd, or at the set

of withheld devices, d 2 WDs(p
VCG
s , rs), at a price p

VCG
sd 

rsd.
That is, VED auctions iteratively attempt to eliminate the

sets of excess demand and supply by adjusting the price of a
device d 2 Ds at the k-iteration, pksd, according to:

p

k
sd =

8
><

>:

p

k�1

sd +�p, if d 2 ED⇤
s(p

k�1

s , rs),

p

k�1

sd ��p, if d 2 ESs(p
k�1

s , rs),

p

k�1

sd otherwise.

where if d 2 ED⇤
s(p

k�1

s , rs) the price is increased by �p, i.e.,
eliminating the excess demand set upon iteration k � 1; on

the other hand, if d 2 ESs(p
k�1

s , rs) the price is decreased
by �p, i.e., eliminating the excess supply set upon iteration
k�1. Note that the value of �p, is considered small enough to
capture the differences between users’ valuations, i.e., �p 
|umd � um0d0 | for any m,m

0 2 Ms and d, d

0 2 Ds where
m 6= m

0 or d 6= d

0. We refer to the policy of increasing the
prices of each VM in EDs(ps, rs) as ED-increase and to the
policy of decreasing the prices in ESs(ps, rs) as ES-decrease.
The next lemmas indicate that VED auctions can derive the
VCG equilibrium of a µService specific market in polynomial
time, i.e., the excess demand and supply sets are eliminated
in polynomial time as proved in [35].

Lemma 1: Consecutive applications of ED-increase (ES-
decrease) policy eliminate the excess demand EDs(ps, rs)

(excess supply ESs(ps, rs)) set of a µService specific s market
in polynomial time.

However, applying both ED-increase and ES-decrease poli-
cies at the same iteration might trap the process into a
cycle, i.e., the set of excess supply and demand return to
their previous state after a number of iterations as it is
shown in [24]. Therefore, the ED-increase (ES-decrease)
policy has to be applied in isolation in each iteration un-
til completely eliminating EDs(ps, rs) (ESs(ps, rs)) before
changing to policy ES-decrease (ED-increase) targeting the
set ESs(ps, rs) (EDs(ps, rs)). The convergence to a price
vector where both sets of excess supply and excess demand
are empty, EDs(ps, rs) = ESs(ps, rs) = {;}, is guaranteed
by the following monotonicity lemma proved in [12]:

Lemma 2: For any price vector p

k
s � 0 and reserva-

tion price vector rs, i) If ESs(p
k
s , rs) = {;} and an ED-

increase price adjustment policy is applied at iteration k, then
ESs(p

k+1

s , rs) = {;}; similarly, ii) if EDs(p
k
s , rs) = {;} and

an ES-decrease price adjustment policy is applied at iteration
k, then EDs(p

k+1

s , rs) = {;}.

B. DEEM Orchestrator
DEEM’s orchestrator component, is responsible for associ-

ating uniquely a device to the µService market that maximises
its profit2. Clearly, each device has a preference in serving
the µService request that is willing to pay the most. DEEM
controls devices’ participation into each market by adjusting
their reservation prices iteratively. The operation of DEEM’s
orchestrator follows the VCG equilibrium state derivation at
each market, that provides information related to µService
prices that a device can be assigned to.

In detail, consider that DEEM’s market operation compo-
nents has derived the VCG equilibrium state of each market for
the j-th reservation price update time. Let rjd = (r

j
sd : s 2 Sd)

and p

VCG,j
d = (p

VCG,j
sd : s 2 Sd) be the reservation price

and the VCG equilibrium price vector of device d over its
participating markets. From Corollary 1 we know that if a
universally allocated device d 2 ˜Ds(p

VCG,j
s , r

j
s) increases its

reservation price by r

j+1

sd > p

VCG,j
sd , it will either remain

universally allocated at a higher price in the next iteration
j + 1, i.e., pVCG,j+1

sd � r

j+1

sd > p

VCG,j
sd , or it will move to the

2Under the assumption that each device can serve up to a single user.

set of withheld devices. Although the assignment of device d

at the increased reservation price is uncertain, such an action
certainly increases the price of other devices in an µService
s market under the conditions expressed next:

Lemma 3: Let d 2 ˜Ds(p
VCG,j
s , r

j
s) at price p

VCG,j
sd after

iteration j and r

j+1

sd > p

VCG,j
sd be its updated reservation price

for iteration j + 1. Then if the demand correspondence of its
assigned user m 2 Ms, Dm(p

VCG,j
s , r

j
s), its not a singleton,

and 8d0 2 Ds\{d} r

j+1

sd0 = r

j
sd0 , in iteration j + 1 the VCG

price of at least another device in the market will increase.

Proof. Let market s to initiate its next iteration execution from
its previously found equilibrium prices, i.e., p1,j+1

s = p

VCG,j
s ,

and device d be the only one with an updated reservation
price r

j+1

sd > p

VCG,j
sd . Then in the beginning of iteration

j + 1, device d will move immediately to the set of withheld
devices, since p

1,j+1

sd = p

VCG,j
sd < r

j+1

sd , and will be also
excluded from the demand correspondence of user m, i.e.,
Dm(p

1,j+1

s , r

j+1

s) = Dm(p

VCG,j
s , r

j
s)\{d}, as indicated by

Eq. (2). Since Dm(p

VCG,j
s , r

j
s) is not a singleton, there is at

least a single device d

0 2 Dm(p

1,j+1

s , r

j+1

s) that is previously
assigned, in iteration j, to a user m

0 2 Ms\{m}. Hence, d0

is requested by an additional user, m, meaning that the excess
demand set is not empty anymore, d0 2 ED⇤

s(p
1,j+1

s , r

j+1

s) 6=
{;}. Therefore the ED-increase policy will be called to in-
crease the price of device d

0. Lastly, the excess supply set will
remain empty due to monotonicity Lemma 2, and therefore
there will be no price reductions.

Note that even if the demand correspondence of the assigned
user was a singleton, the price of another device might be
increased again but there is no guarantee about it. Furthermore,
if the reservation prices in each iteration can only increase, we
have that:

Lemma 4: Let d 2 ˜Ds(p
VCG,j
s , r

j
s) at price p

VCG,j
sd after

iteration j and r

j+1

sd = r

j
sd while r

j+1

sd0 > r

j
sd0 8d0 2 Ds\{d}.

Then d 2 ˜Ds(p
VCG,j+1

s , r

j+1

s) at a price p

VCG,j+1

sd � p

VCG,j
sd in

iteration j + 1.

Proof. Let market s to initiate its next iteration execution from
its previously found equilibrium prices, i.e., p1,j+1

s = p

VCG,j
s ,

with a reservation price for device d r

j+1

sd = r

j
sd while for

the rest of devices 8d0 2 Ds r

j+1

sd0 > r

j
sd0 . Then in the

beginning of iteration j + 1, device d will remain to the set
of universally allocated devices at price p

VCG,j+1

sd = p

VCG,j
sd

since d is still included in the demand correspondence of the
users that requested it. However, a reservation price increase
to the rest of devices, as we see from Lemma 3, can move d

to the set of excess demand devices which price will increase
by the ED-increase policy, resulting in a p

VCG,j+1

sd > p

VCG,j
sd .

Note that again the excess supply set will remain empty due
to monotonicity Lemma 2, and therefore there will be no price
reductions.

In summary, from Lemma 4 we have that a universally
allocated device can either retain its reservation price that
guarantees a VCG equilibrium price at least equal to the
current one, while from Lemma 3 we see that by increasing

the reservation price to a market the device either achieves a
higher price or it is not assigned to a user. DEEM orchestrator
component leverages these facts to identify the most profitable
market for each device by i) retaining the reservation price to
the market that achieves the highest price, while ii) increasing
the reservation price to the rest of markets in an effort to either
achieve an even higher price or exclude this market.

Therefore for a device d, DEEM’s orchestrator component
identifies the most profitable market at iteration j:

s

max,j
d = argmax

s2Sd

{pVCG,j
sd : d 2 ˜Ds(p

VCG,j
s , r

j
s)}. (3)

at price

p

max.,j
d = argmax

s2Sd

{pVCG,j
sd : d 2 ˜Ds(p

VCG,j
s , r

j
s)}. (4)

and updates the reservation prices of d for the next iteration
j + 1 according to the reservation-price-update policy:

r

j+1

sd =

(
r

j
sd, if s == s

max,j
d ,

p

max.,j
d +�p, otherwise.

Note that in case than more than a single market achieves the
maximum price, DEEM orchestrator selects one out of them
randomly.

Theorem 2 DEEM mechanism assigns uniquely a device
to its most profitable market in polynomial time.

Proof. Clearly, in each orchestrated iteration j + 1 the
reservation-price-update policy will either increase the maxi-
mum price for device d, pmax.,j+1

d > p

max.,j
d , or it will retain

price p

max.,j+1

d = p

max.,j
d in market s

max,j
d while moving the

device to the set of withheld devices in any other market
s

0 2 Sd\{smax,j
d }. Therefore the device will be considered

associated uniquely to its most profitable market. The min-
imum price increase is �p, and therefore the price cannot
continue increasing for more than dp̄/�pe times, where p̄

is the maximum possible valuation in any auction defined as
p̄ = max8m2Ms,d2Ds{vmd}. Since DEEM’s market operation
component is executed in polynomial time, as we know from
Lemma 1, multiplying its time with the maximum number
of price increase from the reservation-price-update policy,
dp̄/�pe, will retain DEEM’s execution time polynomial.
Therefore, DEEM mechanism assigns uniquely a device to
its most profitable market in polynomial time.

C. DEEM Extensions

1) Multiple Users Service Capabilities Devices: Our model
and mechanism description has considered so far the scenario
where each device can serve up to a single user request.
However, this is not the general case where more powerful
computing equipment, like the one deployed over electric cars,
can support multiple user requests at the same time. DEEM
can be adapted to this setting by decomposing each computing
equipment to identical devices that can handle up to a single
user request.

2) Multiple Markets per Application Service Provider:
Up to this point, we assumed that each application provider
operates a single market. However, the presented mechanism
can scale in any number of application specific markets. In
detail, devices can participate, when it is required, in these
markets simultaneously as they do in the case of multiple
applications. On the other hand, user requests have again to
choose a single application specific market to participate. The
user to market association problem is considered orthogonal
to this work.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of DEEM
for various system parameters and compare it with different
approaches. At first, we describe the evaluation setting of our
experiments before presenting the corresponding results.

A. Evaluation Setting

1) Mobility Traces and Cellular infrastructure: We evaluate
DEEM in an urban setting by leveraging the mobility dataset 3

generated in the context of TAPASCologne project [37] using
a custom-built, Python-based simulator. The dataset consists
of 700,000 individual vehicle journeys that take place over
24 hours in an area of 400 square kilometres. We consider
each vehicle as a mobile user, associated with a mobile
device, while focusing on an off-peak hour of the dataset
that presents a good ratio of average vehicle speed, i.e., 30
km/h, and number of available vehicles at each second, i.e.,
5200 vehicles. The number of vehicles remains approximately
constant throughout the duration of the simulation, with on
average 13 vehicles leaving/arriving at every second. The
simulation area is divided into 864 hexagon cells of 1 km
radius. Vehicles are connected to a single cell at each time,
while their in-between communication is taking place via their
corresponding base station. We consider a tree-like backhaul
topology [26] with an inter-cell latency equal to 10 ms; that
is, the latency between cells increases linearly as a function of
the number of cells that separate them. Lastly, we assume that
a vehicle on average requires approximately 5 ms to access the
base station that it is currently connected to 4, e.g., the latency
between 2 vehicles that are connected on different cells that
are located 3 cells away is 40 ms decomposed into the 30 ms
of backhaul latency and the latency of 10 ms required by both
vehicles to access their base station.

2) QoS of Engagement with µServices: Naturally, the QoS
for an end user engaging with a µService is a decreasing
function of user’s perceived latency to the device hosting the
µService in terms of RTT [17]. In particular, we make the
assumption that the QoS decreases linearly with increasing
RTT latencies as depicted in Fig. 3. In this figure, the constant
u

max

(u
min

) represents the maximum (minimum) QoS that
the µService user can achieve at the minimum (maximum)

3Available at http://kolntrace.project.citi-lab.fr
4With recent advances in LTE technology, mobile operators reported

handset-to-base-station latencies around 2 ms (RTT of 4 ms), see:
http://news.itu.int/with-5g-looming-sk-telecom-reduces-lte-latency-to-just-
2ms

Fig. 3: µServices QoS Function of Latency

latency l

min

(l
max

), i.e., u(l
min

) = u

max

and u(l

max

) = u

min

.
We set u

max

= 100, l
min

= 10 ms, and l

max

= 100 ms for
each µService type assuming that all devices have identical
latencies to their back-end Data Centre, i.e., cloud, locations5.
We set the number of µService types equal to 1000, while
each µService type in our system is assigned randomly a u

min

value in the interval of 0 to 100 at the granularity of a single
decimal digit. Therefore, the QoS gains for a µServices varies
from 0.0, for u

min

= 100.0, to 100.0 for u
min

= 0.0. Note that
the auction’s price adjustment increment is set to �p = 0.1

in order to capture the granularity of QoS gains.
3) Participation of Users and Devices: Given the statistics

of surveys [4] we assume that the set of users, actively
demanding an µService at a random moment, consists of
approximately the 20% of 5200 vehicles, i.e., on average 1000
users are actively engaged to a µService at anytime. Furthe-
more, by default 20% of the 5200 vehicles constitute devices
that participate to lease µService instances. We consider that
upon engaging to a device, users do not submit new requests;
that defines an one-to-one user-device association. Moreover,
each participating device is able to process at most a single
user request at any given time no matter how many µServices
might support (see below for device µService deployment
settings). We evaluate the impact of device participation on
the performance in Section IV-B1.

4) Deployment of µServices and Request Generation: The
engagement duration of each user to a µService follows an
exponential distribution which dictates an average engagement
duration of 1 minute. The number of µServices supported at
each device is determined according to the statistics provided
in [5] where i) the 6% has no services, ii) the 32% has
installed 1 to 10 µServices, iii) the 33% 10 to 20, iv) the
17% 21 to 30, and v) finally the remaining 12% 31 to 40
µServices. The specific set of µService types supported at each
device is determined by a Zipf distribution of exponent ↵d

that favours the most QoS sensitive µServices, i.e., the most
popular services are the ones with the highest QoS gain at a
given latency x, u(x)�u

min

. In that way, we capture devices’

5100 ms is the average latency observed for Amazon Web Services
according to CloudPing, available at http://www.cloudping.info.

(a) Avg. QoS Gain (b) Avg. Device Price

Fig. 4: Scenario 1: Uniform µService requests for varying
deployment distribution.

need to support the µService types that achieve the highest
possible QoS when served locally as opposed to being served
at a distant Data Centre. Similarly, µServices are requested by
the users according to another Zipf distribution of exponent ↵r

that favours the most QoS sensitive µServices as well. Lastly,
we execute DEEM mechanism every 5 seconds.

B. Simulation Results

We evaluate the performance of the system in terms of i)
average QoS Gain and ii) average derived prices by the auction
process. In Section IV-B1, we investigate the impact of both
µServices’ deployment and request distributions on DEEM’s
performance for different device participation levels. Then in
Section IV-B2, we compare DEEM against edge computing,
greedy and First Come First Served user-device association
approaches.

1) Impact of µService Demand and Deployment Distribu-
tions: We investigate the impact of µService deployment and
demand distribution on average QoS and prices by considering
two scenarios. In both scenarios, the µService deployment ex-
ponent, ↵d, takes values in the interval of 0 to 1.2. Then in the
first scenario, user requests follow a uniform distribution, i.e.,
↵r = 0.0, while in the second requests popularity distribution
is identical to the microservices’ deployment distribution, i.e.,
↵r = ↵d. We consider a linear association between the average
QoS gain and the price of instances, i.e., a unit of QoS gain
is estimated in X dollars.

We evaluate DEEM under different device participation per-
centages that offer their µService instances, namely 5%, 10%,
20%, and 30%. Since DEEM provides an one-to-one user-
to-device association while the users requesting a µService
account for the 20% of devices, the participation percentages
capture the settings of µService instance i) under-provisioning,
for the service device participations of 5% and 10%, ii) ideal
provisioning, for a device participation equal to users demand,
i.e., 20% participation, and iii) over-provisioning, for the case
of 30% service device participation.

Scenario 1: In Fig. 4, we present the results for the
first scenario of uniform requests, ↵r = 0. To begin with,
in Fig. 4a, we demonstrate the QoS gains of DEEM at
different participation percentages of devices, i.e., each falling
under one of the three provisioning settings, for a varying
deployment of supported µService types at devices, according

(a) Avg. QoS Gain (b) Avg. Device Price

Fig. 5: Scenario 2: Varying µService requests for varying
deployment distribution.

to the Zipf exponent ↵d. We observe that increasing ↵d

eventually leads to reduced QoS gains for all participation
percentages as a consequence of having a skewed distribution
of available µServices in devices while requesting µServices
uniformly. As expected, the highest QoS gains are achieved in
the over-provisioning scenario while the lowest in the under-
provisioning since more requests are directed to a Data Centre
having a QoS gain equal to 0.

In Fig. 4b, we demonstrate how DEEM derives prices for
the same scenario. Unlike the average QoS gain metric which
takes users that are assigned to a Data Centre into account,
the average price metric does not include those users in
the price computation. As a result, we observe the highest
average price for the under-provisioning scenario, i.e., 5%
participation, where many users compete for a limited number
of µService instances. At the same time, both the ideal- and
over-provisioned scenarios achieve lower average prices than
their QoS gains. This is due to the competition factor of
DEEM’s price derivation process. Finally, we observe that
average prices are reduced for the ideal- and under-provisioned
cases.

Scenario 2: We present the scenario for the Zipf-distributed
µService request popularity in Fig. 5, where ↵r is set to be
equal to ↵d. In this case, both the QoS gain and prices increase
function of ↵d as shown in Figs. 5a and 5b respectively. This
increase is expected since requests popularity and µService
availability are aligned. Note that as in the previous scenario,
the average price remains low at a higher instance provisioning
settings.

2) Impact of Design Choices: DEEM’s design is based
on the choices of i) µService-specific, as well as ii) VED
auction based markets. Both choices come with the advantage
of reducing the execution time of such a mechanism. Clearly,
the smaller a market is, in terms of users and participating
devices, the faster the assignment of requests to microservice
instances becomes. That is, µServices’ request and deployment
distribution is affecting DEEM’s execution time, as we see
in Table I 6. Specifically, DEEM’s execution time is prone
to the size of the largest microservice market. That is, for
the case of uniform deployment and demand, i.e., ↵r = 0.0,

6The execution times are computed by using a 2.2 GHz Intel Core i5
processor.

TABLE I: EXECUTION TIME, DEEM VED VS. DEEM EN-
GLISH VS. CENTRALISED VED

Setting DEEM DEEM English Centralised VED

↵r = 0.0, ↵d = 0.0 0.795s 0.955s 198.020s
↵r = 0.0, ↵d = 0.8 0.810s 0.993s 197.814s
↵r = 0.8, ↵d = 0.8 5.207s 5.706s 198.122s

↵d = 0.0, where the markets are on average of equal size,
we have the minimum possible execution time for our setting,
i.e., lower than 0.8 seconds as we see in the second column of
Table I. DEEM’s performance is deteriorated negligibly when
increasing the number of participating devices in some mar-
kets, by augmenting the deployment exponent ↵d to 0.8, with
an execution time that just exceeds the 0.8 seconds. The worst
execution time for DEEM is achieved when some microservice
markets are becoming significantly popular compared to the
others, i.e., ↵r = 0.8, ↵d = 0.8, where the execution duration
exceeds the 5 seconds.

Clearly, for the case of centralised markets where all devices
and all users are participating at a single market, the time
is not affected by the deployment and request distribution
of microservices although the execution time is bigger by
3 orders of magnitude compared to the µService-specific
execution. Lastly, DEEM by leveraging the previously found
market prices of the market, via the application of VED
auctions, achieve a reduction of 10%, as opposed to English
auctions [29] where in each execution every device has an
initial price equal to 0. The advantages of exploiting VED
initial price attributes, in a context where auctions are applied
periodically, have been also presented in [35].

3) Comparison: Here we compare DEEM under µService
requests exponent ↵r = 0.3 against the following strategies:

1) Greedy: This is a peer-to-peer (P2P) approach which
pairs the requests for µServices by prioritising the users
with the highest valuations first. Specifically, after col-
lecting all user requests for µService types and device
offers for µService instances, the greedy approach sorts
all possible user-device pairs based on their matching
µService types and then goes through the pairs assigning
users to devices, if they are both unassigned so far,
starting from the highest user-to-device valuations.

2) First Come First Served (FCFS): The FCFS is also a P2P
approach which serves µService requests in the order
that they are received. That is, users and devices are
paired according to the arrival order of the requests for
µService and µService instance offers.

3) Edge-MAP: This is an MEC approach with cloudlets
deployed at the base stations described in [35].

Edge-MAP offers the optimal baseline where cloudlets
provide their resources in the form of virtual machines capable
of instantiating any µService type in an on-demand fashion,
i.e., as requests arrive. Therefore Edge-MAP is not subject to
the availability of specific µService instances on devices as in
the case of DEEM, Greedy, and FCFS settings. In Edge-MAP
we consider a deployment of 50 edge cloudlets each capable of

Fig. 6: Edge-MAP vs. DEEM vs. Greedy vs. FCFS, 20%
devices participation, ↵r = 0.3.

supporting up to 20 virtual machines at any time. This accounts
for 1000 virtual machines that can serve 1000 user requests at-
a-time. For a fair comparison, we assigned DEEM, FCFS, and
Greedy strategies with the equivalent amount of participation
rate (i.e., 20%) that creates a pool of 1000 µService instances,
albeit tied to a specific service type unlike the cloudlet virtual
machine resources.

As shown in Fig. 6, DEEM achieves significantly higher
QoS gains than the Greedy and FCFS approaches. Further-
more, DEEM implements a truthful pricing scheme, where
users have no incentives of misrepresenting their valuations
for µService instances in order to obtain financial gains as a
consequence of VCG equilibrium assignment. On the other
hand, Greedy and FCFS approaches are prone to untruthful
valuations, which we ignore in their performance evaluation.

Edge-MAP scenario represents the MEC deployment at the
edges. We observe that DEEM achieves slightly lower QoS
gains than the Edge-MAP. However, it is important to note that
Edge-MAP is not affected by ↵d, unlike DEEM, Greedy and
FCFS strategies. This is because Edge-MAP can instantiate
on-demand any µService type in a virtual machine based on
the actual demand and is not bounded to the limitations of
µService availability installed on devices. As a result, Edge-
MAP achieves a constant QoS gain as shown in Fig. 6. Note
however, that this advantage comes at the cost of deploying
edge computing resources at base stations, while DEEM
achieves similar benefits by exploiting existing devices.

V. RELATED WORK

Several industrial platforms have been launched aiming
to realise a vision of global decentralised computing that
automatically rewards participating workers. Those platforms
allow offloading video rendering [8] and data analytic [9]
tasks, develop a cloud-like services platform based on fog
computing as backend [6], [7] or perform a broad range
of different computational tasks [10], [13]. Although all of
the above-mentioned projects move drastically towards decen-
tralisation, they neither provide mechanisms to automatically
match workers with requests nor determine a concrete service
pricing scheme. In this respect, DEEM is a significant con-

tribution to a critical system component that will make those
platforms usable in real-world scenarios.

Limited efforts in the context of Fog/Edge Computing [16]
consider the delivery of applications with low latency require-
ments by bringing application instances closer to their end
users. In [21] authors propose a service/application provision-
ing using a heavy-weight combinatorial auction mechanism
where application providers bid periodically for a number
of virtual machines located at different cloudlet locations.
More practical approaches are presented for edge computing
settings [35] and in-network on-path provisioning mecha-
nisms [14], [34], [36] where user requests allocate virtual
machines on-demand for instantiating their requested appli-
cations. That said, unlike DEEM these approaches rely on
the existence of a computing infrastructure which requires
significant capital investments. Closer to our work is a mobile
app sharing approach proposed in [27]; however, this work
only describes a high-level solution without a mechanism to
pair user requests to executing apps in other users’ devices.

VI. CONCLUSIONS

Nowadays, it is clear that native apps can benefit from
a web-based, download/installation-free access approaches in
order to overcome discoverability challenges. Web-based ap-
proaches can leverage decentralised computational solutions
as well as microservice architectures in order to deliver native
apps at an improved Quality of Service (QoS). In this paper,
we proposed DEEM, a framework that relies on microservice-
specific markets, acting as rendezvous points between user
requests and available device microservice instances, to deliver
applications in a P2P manner. In DEEM, markets allocate
instances to the users that value them the most, in terms of
QoS gains, while maximising devices income by associating
them with the most profitable markets. Our simulation results
demonstrate DEEM’s ability in exploiting the pool of device
instances for improving the QoS of applications with low
latency requirements.

P2P sharing of computing resources is a promising research
direction, which unlike mobile edge computing (MEC), does
not require any infrastructure investment and it is self-scalable.
Our simulation results demonstrate that DEEM achieves com-
parable performance to MEC approaches at the cost of a
lightweight auction computation.

ACKNOWLEDGMENT

This work has been supported by the EC H2020 ICN2020
project (GA no. 723014) and the EPSRC INSP fellowship
(EP/M003787/1).

REFERENCES

[1] App download and usage statistics (2018): http://www.businessofapps.
com/data/app-statistics/.

[2] Number of apps available in leading app stores as of
3rd quarter 2018: https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/.

[3] Number of mobile app downloads worldwide in 2017,
2018 and 2022: https://www.statista.com/statistics/271644/
worldwide-free-and-paid-mobile-app-store-downloads/.

[4] Smart insights survey: http://www.smartinsights.com/mobile-marketing/
mobile-marketing-analytics/mobile-marketing-statistics.

[5] Statista insights applications decployment: https://www.statista.com/
statistics/267309/number-of-apps-on-mobile-phones/.

[6] Dadi documentation. https://icosbull.com/eng/ico/dadi/whitepaper, 2018.
[7] Decentralized fog computing platform. https://sonm.com/, December

2018.
[8] Golem network. https://golem.network/, December 2018.
[9] Hypernet.io. https://hypernetwork.io/HypernetWhitePaper v1.1.pdf,

2018.
[10] iexec whitepaper. https://iex.ec/whitepaper/iExec-WPv3.0-English.pdf,

2018.
[11] T. Andersson, C. Andersson, and A. Talman. Sets in excess demand

in simple ascending auctions with unit-demand bidders. In Springer
Annals of Operations Research, 2013.

[12] T. Andersson and A. Erlanson. Multi-item Vickrey–English–Dutch
auctions. Games and Economic Behavior, 81:116–129, 2013.

[13] A. Angelo, P. Thellmann, and D. Dalkilic. Rewarding the token
economy. https://bounty0x.io/whitepaper en.pdf, 2018.

[14] O. Ascigil et al. On uncoordinated service placement in edge-clouds.
In IEEE CloudCom, 2017.

[15] I. Baldini, , et al. Serverless computing: Current trends and open
problems. In Springer Research Advances in Cloud Computing, 2017.

[16] F. Bonomi et al. Fog computing and its role in the internet of things.
In ACM MCC workshop, 2012.

[17] M. Claypool and K. Claypool. Latency and player actions in online
games. ACM Communications, 2006.

[18] R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs containerization
to support paas. In IEEE IC2E, 2014.

[19] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8(3):399–404, 1956.

[20] M. Król and I. Psaras. Nfaas: named function as a service. In ACM
ICN, 2017.

[21] R. Landa et al. Self-tuning service provisioning for decentralized cloud
applications. IEEE TNSM, 2016.

[22] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing
public cloud providers. In ACM SIGCOMM conference on Internet
measurement, 2010.

[23] A. Madhavapeddy and D. J. Scott. Unikernels: Rise of the virtual library
operating system. Queue, 11(11):30, 2013.

[24] D. Mishra and D. C. Parkes. Multi-Item Vickrey-Dutch auctions. Games
and Economic Behavior, 2009.

[25] D. Mishra and D. Talman. Characterization of the walrasian equilibria
of the assignment model. Journal of Mathematical Economics, 2010.

[26] M. Peng, S. Yan, K. Zhang, and C. Wang. Fog-computing-based radio
access networks: issues and challenges. IEEE Network, 2016.

[27] I. Psaras et al. Keyword-based mobile application sharing. In ACM
Workshop on Mobility in the Evolving Internet Architecture, 2016.

[28] A. Russell. Progressive web apps: Escaping tabs without losing our
soul. Infrequently Noted, 2015.

[29] J. K. Sankaran. On a dynamic auction mechanism for a bilateral
assignment problem. Mathematical Social Sciences, 1994.

[30] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[31] L. S. Shapley and M. Shubik. The assignment game I: The core.
International Journal of Game Theory, 1971.

[32] J. Swearingen. http://nymag.com/selectall/2018/03/when-amazon-web-
services-goes-down-so-does-a-lot-of-the-web.html, 2018.

[33] A. Tasiopoulos. On the Deployment of Low Latency Network Applica-
tions over Third-Party In-Network Computing Resources. PhD thesis,
UCL (University College London), 2018.

[34] A. Tasiopoulos et al. Fogspot: Spot pricing for application provisioning
in edge/fog computing. IEEE Transactions on Services Computing,
2019.

[35] A. G. Tasiopoulos et al. Edge-MAP: Auction markets for edge resource
provisioning. In IEEE WoWMoM, 2018.

[36] A. G. Tasiopoulos et al. On-path cloudlet pricing for low latency
application provisioning. In IEEE LANMAN, 2018.

[37] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas.
Generation and analysis of a large-scale urban vehicular mobility dataset.
IEEE Transactions on Mobile Computing, 2014.

[38] H. R. Varian and C. Harris. The VCG auction in theory and practice.
American Economic Review, 2014.

