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Abstract—As mobile traffic is dominated by content services
(e.g., video), which typically use recommendation systems, the
paradigm of network-friendly recommendations (NFR) has been
proposed recently to boost the network performance by promot-
ing content that can be efficiently delivered (e.g., cached at the
edge). NFR increase the network performance, however, at the
cost of being unfair towards certain contents when compared to
the standard recommendations. This unfairness is a side effect
of NFR that has not been studied in literature. Nevertheless,
retaining fairness among contents is a key operational require-
ment for content providers. This paper is the first to study the
fairness in NFR, and design fair-NFR. Specifically, we use a set of
metrics that capture different notions of fairness, and study the
unfairness created by existing NFR schemes. Our analysis reveals
that NFR can be significantly unfair. We identify an inherent
trade-off between the network gains achieved by NFR and the
resulting unfairness, and derive bounds for this trade-off. We
show that existing NFR schemes frequently operate far from
the bounds, i.e., there is room for improvement. To this end,
we formulate the design of Fair-NFR (i.e., NFR with fairness
guarantees compared to the baseline recommendations) as a
linear optimization problem. Our results show that the Fair-NFR
can achieve high network gains (similar to non-fair-NFR) with
little unfairness.

I. INTRODUCTION

Background. The paradigm of network-friendly recommenda-

tions (NFR) has been very recently proposed as a promising

solution for improving the quality and/or the cost of content

delivery [1]–[21]. NFR is based on the fact that content traffic

dominates the mobile traffic today [22], [23] and the majority

of content services (online video, radio, social networks, etc.)

employ recommendation systems (RS), which heavily affect

the user choices and shape the content demand [24], [25].

The main idea behind NFR is to nudge the recommendations

of the RS of the content provider towards content that can

be delivered in a “network-friendly” way (e.g., cached in the
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mobile edge [2]–[10], or coded broadcast transmissions [15]–

[17]), thus shaping the user demand in favor of this content.

The NFR paradigm involves three main parties: the network,

the users, and the content provider. Existing works design NFR

schemes that explicitly aim to benefit the network. Indeed, the

envisioned network gains (lower load, congestion, resources,

or costs) have been shown to be very promising [1]–[18].

Moreover, the user experience can improve as well due to

the higher satisfaction from high quality content delivery [19].

Finally, there can be benefits for the content provider (e.g.,

higher user engagement); however, those have only been

envisioned as a consequence of the higher user satisfaction,

but have not been explicitly studied.

The problem: Fairness in NFR. To enable network benefits

through NFR, the “cost” to be paid by the RS is that NFR

(a) nudge the optimal recommendations list provided to users,

which may lead to worse user satisfaction, and (b) bias the

demand for different contents (by making some contents more

and others less popular), which may lead to displeasure from

the content owners/producers (e.g., YouTubers). The former

(user perspective) has been explicitly taken into account in

NFR schemes, by considering the quality of recommendations

(QoR) in the nudged recommendations, e.g., by imposing a

minimum threshold in the content similarity [4] or a window

of user preferences [2]. However, the latter (content provider

perspective) has been overlooked in related literature. In fact,

the shaping of the content demand relates to the fairness of

a RS towards the content producers/owners, which is a key

requirement for content providers and has attracted a lot of

attention recently in the design of RS [26]–[35].

On one hand, some unfairness due to NFR may be accept-

able by the content providers under some conditions (during

periods of network congestion, peak hours, etc.), in order to

better satisfy the users or increase their engagement by avoid-

ing serving them content in poor quality. However, previous

works have not studied how much unfairness is created by the

NFR schemes, and whether this is acceptable by the content

provider. On the other hand, a content provider may need to

satisfy some explicit fairness requirements for the contents (or,

the content producers/owners), e.g., not allow a change in the

demand larger than 5%. Up to now, this is not an option in

the existing NFR schemes, since fairness requirements have

not been considered as a design aspect in NFR.
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Contributions. Motivated by this gap in literature, this paper

is the first to study the aspect of fairness in NFR:

• Fairness characterization. We use metrics that capture

different notions of fairness in RS (Section II), and then

quantify the unfairness created in a wide range of repre-

sentative scenarios and NFR algorithms, and investigate the

role of different system parameters (Section III).

• The fairness vs. network gain trade-off. We identify an

inherent trade-off between the network gains achieved by a

NFR scheme and the resulting unfairness. We analytically

study this trade-off and derive bounds. We show that existing

NFR schemes, frequently operate far from the optimal

operating point that is given by the bound (Section IV).

• Optimal Fair-NFR. We formulate the problem of design-

ing NFR that maximize the network gain, under fairness

guarantees compared to the baseline RS. Through a series

of transformations, we show that the problem of optimal

fair-NFR can be expressed as a linear program (Section V).

• The price of fairness. Studying the performance of the

Fair-NFR scheme shows that by allowing a little unfairness,

high network gains can be achieved, which is a promising

message for the NFR paradigm. A comparison with (non-

fair) NFR schemes demonstrates that the Fair-NFR scheme

achieves equal gains with much less unfairness (Section VI).

II. PRELIMINARIES

A. Network-friendly Recommendations

We consider a content service that has integrated in its

(web/mobile) platform a recommendation system (RS). When

a user is in the platform and consumes (e.g., watches, listens

to, reads, buys) a content, a list of recommendations is

presented by the RS suggesting to her to consume another

content next. This is a typical scenario for the majority of

online video/radio services (e.g., YouTube, Netflix, Spotify),

news sites, e-shops and online marketplaces (e.g., Amazon),

online social networks (e.g., Facebook, Instagram), etc. In the

following, we describe the generic setup considered in NFR;

the main notation is summarized in Table I.

Content service. Assume that the service has a content

catalog K (|K| = K). Users request contents in two ways:

(i) directly, e.g., by following an external link or typing the

content through a search bar, or (ii) by following one of the

recommendations provided by the RS of the service (users

typically consume several contents when visiting the service).

These are the main types of demand in most content services.

We define the demand pi for a content i as the fraction of

all requests (i.e., direct and through recommendations) that are

for this content; we denote as p = [p1, ..., pK ] the vector with

the distribution of total demand for all contents.

Network. We assume that a subset of the content catalog

C ⊂ K can be delivered with low cost for the network

(and/or in high quality). For instance, in the context of mobile

edge caching considered by the majority of related work in

NFR [1]–[4], [7]–[9], the contents in C are cached in the

mobile edge. In this context, and w.l.o.g., we set the cost for

delivering contents in C to zero and the cost for the other

contents to 1. Hence, the cache hit ratio, CHR =
∑

i∈C pi,

captures the total benefit for the network (i.e., the decrease in

the cost by using a cache).

Recommendations. We assume a “recommendation score”

uij for every pair of contents i, j ∈ K, which indicates

how good a recommendation for content j after content i is.

The score uij may correspond to the similarity between two

contents, or more generally to the relevance of recommending

j after i (e.g., capturing from item-item collaborative filter-

ing [36] to black-box deep learning architectures [37]), and can

be the output of any state-of-the-art RS. W.l.o.g, we assume

uij ∈ [0, 1] and higher values denote better recommendations.

Baseline RS (BS-RS) is the standard RS (i.e., non network-

friendly) that generates the recommendation scores uij and

is used in production by the content/service provider. After a

user has consumed content i, the BS-RS recommends to the

user a list RBS
i that contains the N contents with the highest

recommendation score values uij .

Network-friendly RS (NF-RS) is a RS that takes into account

the network conditions (e.g., delivery cost [4], [19], cached

contents [3], [8], wireless channel [16], [17]) and provides

a list of recommendations RNF
i to the user. In general, the

lists RNF
i can be the same as those of the BS-RS RBS

i ,

partially overlap with them, or be totally disjoint sets. Typ-

ically, the recommendations of NF-RS tend to (i) include

more recommendations to contents that can be delivered in

a network-friendly way (e.g., cached contents), while (ii)

trying to maintain the quality of recommendations (QoR)

by recommending contents with relatively high scores uij .

In a simple example, with one user, three contents a, b, c

with scores ua = 1, ub = 0.8, uc = 0.5, and a BS-RS

recommending only one content RBS = [a]. Let only b, c ∈ C
be cached; then the NF-RS would recommend RNF = [b],
because this would bring network gains, and would have

QoR= ub

ua
= 0.8, which is higher than if c was recommended

instead of b (QoR=0.5).

Finally, the resulting demand p depends on the underlying

RS: a RS that selects more frequently a content i in the

recommendation lists, will lead to an increase in the demand

pi. In the remainder, we denote with a superscript the RS

that corresponds to the content demand, e.g., pBS for the

BS-RS and pNF for a NF-RS. The differences between the

vectors pBS and pNF capture the notion of fairness, which

we formally define below.

B. Fairness Definition

Content providers aim to satisfy two parties, their users

(consumers) and the content owners (producers) [26]–[28],

[32], [38], while at the same time maximizing their own utility

(e.g., revenue) [26]. In general, the goal of a fair RS is to

strike a balance between utility and satisfaction of the involved

parties [32], [38].

In the context of NFR, user satisfaction is taken into account

with the concept of quality of recommendations (QoR). How-

ever, the content owner/producer satisfaction, which is identi-
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TABLE I: Important notation.

K content catalog (|K| = K)

pi demand for content i; p = [p1, ..., pK ] and
∑

i∈K pi=1

C set of cached contents (|C| = C)

CHR cache hit rate, CHR =
∑

i∈C pi
uij recommendation score, uij ∈ [0, 1]
Ri list of recommendations after content i

N number of recommendations.

α probability a user to follow a recommendation

p
(d)
i probability that a “direct request” is for content i ∈ K;

p(d) =
[

p
(d)
1 , ..., p

(d)
K

]

and
∑

i∈K p
(d)
i = 1

G network gain, G = CHRNF − CHRBS

fied as a key component in the design of fair RS, especially

in multistakeholder settings [26], [27], has been neglected in

previous works in NFR. Hence, we focus on the need of

the content provider to satisfy content owners/producers, by

providing recommendations that are fair with respect to them

(which in literature is referred to also as p-fairness [26], [27]).

Fairness in RS can be defined in several ways [26]–[34],

depending on the system, the involved parties, the needs of the

content provider, etc. The fairness of a RS can be measured

with respect to the recommendations of a fair RS. In our

setting, where the goal is to quantify the (un)fairness of NFR,

this fair RS is by convention the BS-RS (i.e., any standard RS)

and the fairness captures the deviation in the total demand p

created by the NF-RS. Thus, a generic measure F can be used:

F = f(pBS,pNF) (1)

In general, the function f can be defined at will according to

the use case or requirements of the content provider. For ex-

ample, [32] suggests that f can be any probability divergence

measure. Different measures f can capture different notions of

fairness. In this paper, we consider the three fairness measures

that are most commonly used in literature and practice1:

F-max Fmax = maxi∈K |pNF
i −pBS

i | relates to the individual

fairness [31] and accounts for the “worst case”, i.e., no

content will have a demand difference larger than Fmax.

F-tv Ftv = 1
2 ·

∑

i∈K |pNF
i − pBS

i | is the total variation

distance between the two distributions, i.e., the average

(absolute) change in the content demand [30]. It allows

more flexibility than Fmax in shaping the demand, since

it does not impose a constraint for every single content;

e.g., a large difference in a content demand can be com-

pensated by small demand differences in other contents.

F-kl Fkl =
∑

i∈K pBS
i · log

(

pBS
i

pNF
i

)

is the Kullback–Leibler

(KL) divergence, a widely used measure for the difference

between distributions, and commonly used to quantify

fairness in RSs [32]–[34]. Fkl is more sensitive to

changes in contents with lower demand, e.g., an increase

∆p in the demand pBS
i leads to a higher increase in Fkl

when pBS
i is small [33].

1Note that, since we aim to capture the fairness in recommendations, we
use metrics from the RS field. Other fairness measures from other fields, e.g.,
resource allocation [39], would be less relevant.

Remark: Note that Fmax, Ftv ∈ [0, 1], whereas Fkl ∈ [0,∞]
(Fkl → ∞ when pNF

i = 0 and pBS
i 6= 0). For the sake of

presentation, in the results we normalize the values of Fkl so

that it takes values in [0, 1] and is comparable with the other

metrics. In particular, we use the smoothed version of [32],

[33], where we substitute pNF
i → (1 − w) · pNF

i + w · pBS
i ,

with w = 0.01 and normalize with its upper bound log 1
w

; i.e.,

Fkl =
1

log 1

w

·
∑

i∈K pBS
i · log

(

pBS
i

(1−w)·pNF
i +w·pBS

i

)

The above metrics reflect different notions of fairness and

requirements of the content provider. In general, it is not

possible to satisfy all notions of fairness at the same time [31].

In this paper, we consider all these metrics, and study their

characteristics in relation to NFR (Sections III and IV) and

take them into account in the design of fair NF-RS (Section V).

QoR vs. fairness. As a remark, we stress that the notions

of QoR (considered in previous works) and fairness (not

considered before) describe different quantities in NFR; the

former relates to the satisfaction of the users/consumers, and

the latter to the satisfaction of the content owners/producers.

The following example demonstrates this distinction: Let two

users and three contents a, b, c with scores ua = 1, ub = 0.8,

uc = 0.8 (same for both users), and b, c ∈ C, i.e., are cached.

The BS-RS recommends content a, with the highest score

u, to both users. Let’s assume two NF-RS that nudge the

BS-RS recommendations towards cached contents: A NF-RS

recommends b to both users, and another NF-RS recommends

b to the first user and c to the second user. Since, ub = uc the

QoR in both NF-RS is the same. However, the former NF-RS

is less fair, e.g., in terms of F-max, since it increases twice

the demand for content b compared to the latter NF-RS.

III. CHARACTERIZATION OF UNFAIRNESS IN NFR

In this section, we aim to understand the (un)fairness F in

NFR. To this end, we employ an empirical approach where

we (i) consider a wide range of scenarios, (ii) apply the BS-

RS and different NF-RS algorithms that have been proposed

in previous works, and (iii) calculate the resulting content de-

mand and its unfairness (Section III-A). We analyze the results

to investigate whether existing NFR schemes create unfairness,

and what are the key factors that cause it (Section III-B).

A. Simulation Setup

Content catalogs. We consider content catalogs and matrices

U = {uij} extracted from two datasets of real services:

Last.fm. We use a dataset from the Last.fm database [40],

where we applied the “getSimilar” method to the content IDs’

and populate the matrix U. As the resulting U matrix is quite

sparse, for the purpose of demonstration, we keep the largest

component of the underlying graph, and round to uij = 1 the

values above a threshold of 0.1.

MovieLens. We use the Movielens movies-rating dataset [41],

containing 69162 ratings (0 to 5 stars) of 671 users for 9066
movies. We apply an item-to-item collaborative filtering (using

10 most similar items) to extract the missing user ratings, and

3



TABLE II: Parameters of the simulation scenarios (in total, all

their combinations give 1296 scenarios)

U: last.fm (K = 757), Movielens (K = 1060) N ∈ {2, 5, 10}
p(d) ∼ {Zipf(s = 1), uniform} C ∈ {5, 10, 20}
α ∈ {0.5, 0.8, 0.99} q ∈ {0.5, 0.8, 0.9}
WBFS ∈ {N, 2N} DBFS ∈ {1, 2}

then use the cosine distance to calculate the similarity for each

pair of contents. We set uij = 1 for contents with cosine

distance larger than 0.6, and 0 otherwise.

Caching. We consider cache sizes C ∈ {5, 10, 20}, with a

popularity-based caching policy, i.e., the cache contains the C

contents with the highest demand under the BS-RS (pBS).

Content demand. Similarly to previous works [4], [7], [8],

[12], [15], [17], we assume that a user follows a recom-

mendation with probability α, or directly requests a content

with probability 1 − α. We set α ∈ {0.5, 0.8, 0.99}, to

capture the behavior reported for YouTube (α=0.5) [24] and

Netflix (α=0.8) [25] and an extreme value where users follow

almost always recommendations (α=0.99), e.g. as in YouTube

autoplay or online radio services like Last.fm, Jango, etc..

We assume that direct requests for different contents follow

a Zipf distribution with exponent s, where we used a typical

scenario with s = 1 [24] and an extreme scenario with s = 0
(i.e., uniform distribution). We denote the distribution of direct

requests as p(d).

NF-RS algorithms. Several NFR variants have been proposed.

To avoid restricting our study to a single algorithm or setup,

we consider three representative NF-RS algorithms.

Greedy NF-RS includes in each recommendation list Ri as

many cached contents as possible, without violating a min-

imum QoR threshold q. It aims to maximize the CHR by

considering every request independently (without taking into

account the long term performance). It can be seen as a

simplified version of only the recommendation part of the

CawR algorithm [8] (with the cache assumed already filled)2,

or the “Myopic” version of CARS [4].

Multi-step NF-RS [12] is an algorithm that includes in each

recommendation list Ri a set of contents that satisfy a QoR

constraint (similarly to the Greedy NF-RS) and maximizes the

network gains in the long term, i.e., by taking into account

requests made directly and through recommendations, and the

probability α. It returns the optimal solution in our model

setup under no fairness requirements.

CABaRet [5] follows a different approach, by leveraging the

BS-RS and assuming no explicit knowledge on the scores uij .

For each content i, it does a breadth-first search (BFS) starting

from the list RBS
i (depth 1), and then to the lists RBS

j , ∀j ∈
RBS

i , (depth 2), and so on. It returns a recommendation list

2We note that CawR [8] optimizes at the same time the caching and
recommendation policies. Since the scope of this paper is on the fairness of
the recommendations in NF-RS, we focus on the resulting recommendations
of NF-RS algorithms, given a pre-filled cache; we discuss implications of
joint NF-RS and caching policy optimization algorithms in Section VIII.
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Fig. 1: (a) CDF of unfairness created by the NF-RS algorithms

in all scenarios (Table II). (b) Unfairness vs. QoR, in Movie-

lens scenarios with α=0.8, N=5, C=10, uniform p(d), Greedy

(continuous lines) and Multi-step (dashed lines) NF-RS.

that contains the cached contents found in the BFS and, if

needed, fills the list with the initial recommendations RBS
i .

In all cases recommendation lists are of size N ∈ {2, 5, 10}.

Quality of Recommendations (QoR). In the Greedy and

Multi-step NF-RS, the QoR constraint is explicitly defined as

a fraction of the recommendation quality of the BS-RS by a

parameter q ∈ [0, 1], i.e.,
∑

j∈RNF
i

uij ≥ q ·
∑

j∈RBS
i

uij [4],

[12]. In CABaRet, the QoR is implicitly determined by the

width WBFS and depth DBFS parameters of the BFS [5]. In

our simulations, we consider values q ∈ {0.5, 0.8, 0.9}, and

WBFS ∈ {N, 2N} and DBFS = {1, 2}.

Table II summarizes the parameters of the considered sce-

narios. In total, we simulated 1296 scenarios, accounting for

all the combinations of the parameters.

B. Unfairness in NFR

In the scenarios we simulate, we calculate the content

demand under the BS-RS (pBS) and the different NF-RS

algorithms (pNF), and then the resulting unfairness captured

with the metrics F (pNF,pBS) defined in Section II-B.

Unfairness in existing NF-RS algorithms. We first quantify

the unfairness created by existing NF-RS algorithms. Fig-

ure 1(a) presents the CDF of the values of the fairness metrics

F among all the scenarios we tested; large values of the

fairness metric F denote more unfair systems (e.g., the system

is fair for F=0 and very unfair for F=1). We see that the NF-

RS algorithms create unfairness, which is very high in several

cases (we remind that the presented F metrics take values in

[0, 1]). Moreover, comparing the curves of the different metrics

(or, notions) of fairness, we can see that Fmax that captures

the individual fairness takes lower values, whereas Ftv that is

averaged over all contents takes the highest values (even up

to 1). The CDF of Fkl, which considers all contents while

also giving emphasis on individual contents whose demand

deviates a lot from pBS, lies between the other two metrics.

The role of the QoR. Figure 1(b) presents the resulting

unfairness (y-axis) by applying the Greedy NF-RS (continuous

lines) and the Multi-step NF-RS (dashed lines) in scenarios

with different QoR constraints q (x-axis). It is clearly seen that

as the QoR constraint becomes looser (lower values in x-axis)
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Fig. 2: (a),(b),(c): Network gain G (y-axis) vs. fairness metric F (x-axis) in all scenarios of Table II with C = 10, and under the

Greedy (circles), Multi-step (crosses), CABaRet (triangles) NF-RS. The bounds are denoted with dashed lines. (d): CDF of the

relative distance F−minF
minF

of the operating points (F,G) of the NF-RS algorithms from the corresponding bounds (minF,G).

the unfairness of the system increases (higher values in y-axis).

This is due to the fact that by relaxing the required QoR, the

NF-RS has more flexibility in changing the recommendation

lists, and consequently this nudges the content demand pNF

farther from pBS. However, it is interesting to note the change

in unfairness is not linear to the QoR, but is rather a concave

function that decreases more steeply for higher values of QoR.

In fact, a key observation in Fig. 1(b) is that even a small

decrease in QoR from the maximum value that corresponds to

the BS-RS (q = 1), can already lead to significant unfairness

(e.g., see the F values for q = 0.9). This finding (similar

behavior holds in all the scenarios we tested) highlights the

following insight, which is a main motivation for this paper:

“The QoR constraint commonly used in NF-RS to satisfy the

users, may not suffice to (implicitly) impose fairness for the

content provider as well. To account for fairness, one needs

to explicitly take it into account when designing a NF-RS.”

The role of the NF-RS algorithm and the system param-

eters. Comparing the curves of the two NF-RS algorithms

in Fig. 1(b), we see that the unfairness introduced by the

Multi-step NF-RS is higher than the Greedy NF-RS, under

any fairness metric F . This finding holds in all (for Ftv , Fkl)

and in 95% (for Fmax) of the scenarios we tested, and is due

to the fact that the Multi-step NF-RS, by accounting the long

term behavior, can shape in a larger degree than the Greedy

NF-RS (or other heuristics) the content demand under the same

QoR constraint. Hence, on the one hand the Multi-step NF-RS

achieves higher network gains, but on the other hand it leads

to less fairness (e.g., 10% higher CHR and 45% higher Fkl

than Greedy among all scenarios).

We observed the same relation between fairness and net-

work gains, when varying the other system parameters as

TABLE III: Relation between system parameters, fairness F

and network gain G: monotonicity and correlation (ρ).

Fmax Ftv Fkl G

q ր ց (ρ=-0.40) ց (ρ=-0.38) ց (ρ=-0.30) ց (ρ=-0.42)

α ր ր (ρ=0.46) ր (ρ=0.81) ր (ρ=0.75) ր (ρ=0.69)

N ր ց (ρ=-0.47) ց (ρ=-0.13) ց (ρ=-0.16) ց (ρ=-0.20)

C ր ց (ρ=-0.13) − (ρ=0.06) − (ρ=0.03) ր (ρ=0.18)

well; see Table III. Specifically, increasing the α means that

the users choices are affected more by the RS, and the same

happens for small N since there are less choices (recommen-

dations); this makes the shaping of the demand caused by a

NF-RS more intense, and leads to higher network gains, and

as we present in Table III, less fairness as well. The cache size

C does not significantly affect the fairness, but it also had a

small effect on the network gains in the scenarios we tested.

The above observations raise the following question, on

which we focus in the next section:

“Does great network gain come with great unfairness?”

IV. THE FAIRNESS VS. NETWORK GAINS TRADE-OFF

In this section we proceed to study the trade-off between

the network gains that can be achieved by a NF-RS algorithm

and the unfairness it creates. We first analyze the simulation

results to verify that such a trade-off exists, and then study it

analytically and derive analytic bounds (closed form expres-

sions) for the minimum possible unfairness as a function of

the network gains under any NFR scheme.

Let us first formally define the network gain G as the

increase in the cache hit rate (CHR) achieved by a NF-RS:

G = CHRNF − CHRBS =
∑

i∈C(p
NF
i − pBS

i ) (2)

where C ⊂ K is the set of cached contents. In other words, the

network gain is the extra content demand that can be served

by the cache when applying a NF-RS.

In Fig. 2 we present scatter plots, where each marker

corresponds to a simulation scenario and its (x, y)-coordinates

correspond to the resulting fairness metric F and network

gain G values, respectively. The results verify our previous

observations: as the achieved network gain increases, the

unfairness of the system increases as well. This positive

correlation holds for all fairness metrics. However, the exact

behavior differs among the different F metrics (note that all

subplots of Fig. 2 present the same simulation scenarios, i.e.,

with the same network gains); for instance, Fmax sees a lower

increase and with values up to 0.3, while Ftv has a larger

increase with values up to 1.

In the following theorem we analytically study the observed

behavior, and derive theoretical bounds for the trade-off.
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Theorem 1. Under any NF-RS and any system parameters,

for the fairness F vs. network gain G trade-off it holds that

Fmax ≥
1

C
·G (3)

Ftv ≥ G (4)

Fkl ≥ −H · log(1 +
G

H
)− (1−H) · log(1 −

G

1−H
) (5)

where C = |C| is the number of cached contents, and H =
CHRBS =

∑

i∈C p
BS
i .

Proof. The proof is given in the Appendix.

The expressions in Theorem 1 state that the maximum

network gain that can be achieved by any NF-RS (i) cannot

be larger than the desired Ftv value, and (ii) increases with

the cache size C in the Fmax case. This indicates that

larger caches can allow network gains without compensating

in individual fairness (Fmax), while this is not the case in

aggregate fairness (Ftv). In the case of Fkl, the bound is given

by a non-linear function (convex in G), which depends on the

cache size and the distribution of the demand under the BS-RS

(captured by the parameter H = CHRBS).

Comparing the results in Fig. 2 with the bounds, we can see

that in some scenarios the achieved network gains are close

to (or, coincide with) the bound, i.e., the bounds are tight3.

However, in the majority of scenarios, the operating point

of the considered NF-RS algorithms is far from the bound. For

instance, in Fig 2(d) that gives the CDF of the distance (along

the x-axis) between the operating points and the bound, we

can see that in half of the cases (i.e., for 0.5 in the y-axis)

the resulting unfairness (x-axis) is at least 50% larger than

the value of the bound for Fmax and Fkl and 20% larger for

Ftv . The fact that NF-RS algorithms do not operate on the

bound can be due to (i) the system parameters (e.g., the QoR

constraint) that restrict an algorithm from shaping arbitrarily

the content demand, and in this case the bound may not be

achievable, or (ii) the NF-RS algorithms themselves, which

were designed to optimize the network gain without taking the

fairness into account. Thus, a question that follows naturally is:

“Can a NF-RS be designed to operate closer to the bound,

and achieve the optimal fairness vs. network gain trade-off?”

In Section V we address the above question and design an

optimal NF-RS algorithm that achieves the maximum network

gain under a fairness constraint, and in Section VI we study

how the introduced constraint affects the network gains.

V. OPTIMAL FAIR NFR

In this section we formulate the problem of designing the

optimal NF-RS that takes fairness into account. We first model

and describe the problem, and then prove that it can be

3Note that some of the scenarios/markers in Fig. 2(c) (Fkl case) correspond
to different values CHRBS (e.g., due to different pBS distributions), and
thus different bounds. In favor of readability, we avoid depicting several
bounds and show only the worst-case bound among those scenarios; i.e., for
some scenarios/markers the bound is tighter than the depicted bound.

expressed as a linear program (LP) whose solution is the

optimal fair NF-RS.

Objective. The objective in NFR is to maximize the network

gains (or, equivalently minimize the network cost), which in

our framework is captured by the CHR, i.e.,
∑

i∈C p
NF
i .

Decision variables. An NF-RS algorithm selects which con-

tents to recommend, i.e., the recommendation lists Ri
4. We

model the recommendation decisions with a set of variables

rij , which denote the probability (or frequency) that a content

j appears in the recommendation list of i, i.e., rij = Prob{j ∈
Ri}. We denote as R the K ×K matrix that contains all the

variables rij ∀i, j ∈ K. We follow a probabilistic approach,

i.e., rij ∈ [0, 1] (instead of the deterministic rij ∈ {0, 1}), to

capture variations of recommendations among different users,

or even for the same user (e.g., to not show always the same

recommendations for a given content).

Constraints. First, we require that the decision variables are

probabilities (rij ∈ [0, 1]) and the recommendation lists con-

tain N recommendations (
∑

j∈K rij=N ) [12], [18]. Second,

we use a threshold q ∈ [0, 1] for the QoR constraint similarly

to previous works, i.e.,
∑

j∈K rij · uij ≥ q · qBS
i , where qBS

i

the maximum QoR achieved by the BS-RS. Finally, we intro-

duce the fairness constraint, by using a threshold cf for the

maximum allowed unfairness, i.e., F (pBS,pNF) ≤ cf , where

F is any of the metrics Fmax, Ftv , or Fkl. Both thresholds

q and cf , and the fairness metric F , can be selected by the

content provider according to its operational requirements.

In the following theorem we express the above problem as a

LP. To do this, we need to introduce a set of auxiliary variables

and transform the non-linear expressions in the objective and

constraints; the remainder of this section gives the proof,

which includes all the needed details.

Theorem 2. The optimal fair NF-RS is given by the solution
of the following linear optimization problem:

maximize
z,pNF,W

∑

i∈C

p
NF
i (6a)

subject to p
NF
j −

α

N
·
∑

i∈K

wij = p
d(j), ∀j ∈ K (6b)

∑

j∈K

wij · uij − p
NF
i · q · q

BS
i ≥ 0, ∀ i ∈ K, (6c)

∑

j∈K

wij −N · p
NF
i = 0, wii = 0, ∀ i ∈ K (6d)

wij − p
NF
i ≤ 0, wij ≥ 0, ∀ i, j ∈ K (6e)

S(z,pNF) (6f)

where z ∈ R
K , W ∈ R

K×K , and S(z,pNF) a set of linear

constraints given in Table IV for each fairness metric.

Proof. The objective (and the fairness constraint) involves

terms of the content demand pNF, which depends on the rec-

ommendations R. In the considered framework, and similarly

to previous works (e.g., [4], [7], [8], [12], [17]), the content

4There are NF-RS algorithms that select also the network policy, e.g.,
caching [3], [7]–[9]. While our framework can be generalized in this direction,
this is out of the scope of this paper (see also discussion in Section VIII).

6



TABLE IV: Set of linear fairness constraints S(z,pNF).

Fmax:
pBS
i − pNF

i ≤ cf
pNF
i − pBS

i ≤ cf
∀ i ∈ K

Ftv:

∑

i∈K zi ≤ cf
pBS
i − pNF

i ≤ zi ∀ i ∈ K
pNF
i − pBS

i ≤ zi ∀ i ∈ K

Fkl:

∑

i∈K pBS
i · zi ≥ −

(

cf −
∑

i∈K pBS
i log(pBS

i )
)

zi ≤ e(m−1)·s · pNF
i − (m − 1)s− 1, ∀i ∈ K,m ∈ {1, ...,M}

demand can be modeled with a Markov Chain, with transition

probabilities that depend on the recommendations R, the direct

requests p(d) and the probability α. Hence, using the result

of [42] (the detailed proof is omitted due to space limitations),

we prove the following lemma.

Lemma 1. The content demand pNF is given by

pNF = (1− α) · p(d) ·
(

I−
α

N
·R

)−1

(7)

for α ∈ (0, 1) and p(d) > 0; I is the K ×K identity matrix.

Lemma 1 gives pNF as a function of an inverse matrix

of R, which in general is non-convex on the variable R. To

overcome this non-linearity, we explicitly introduce pNF as an

auxiliary optimization variable. The only constraint we need

for the variable pNF is Eq. (7). To express this constraint as

a linear equation, we first multiply both sides with the term
(

I− α
N

·R
)

and write:

pNF −
α

N
· pNF ·R = (1 − α) · p(d) (8)

Since Eq. (8) involves products of the variables pNF · R
(i.e., a quadratic term), we substitute the optimization variables

rij with the new auxiliary variables wij , where rij =
wij

pNF
i

.

This substitution is possible because pNF
i > 0 for the cases

of interest, as stated in the following corollary (whose proof

follows by observing Eq. (8)) .

Corollary 1. pNF
i > 0, ∀i ∈ K, for α ∈ (0, 1) and p(d) > 0.

Having introduced the new auxiliary variables, it is easy to

show how the constraints of Eq. (6) are derived, by substituting

rij =
wij

pNF
i

, as follows:

Eq. (6b) ⇔ pNF
j −

α

N
·
∑

i∈K

pNF
i · rij = (1− α) · pdi (9a)

Eq. (6c) ⇔
∑

j∈K

rij · uij ≥ q · qBS
i (9b)

Eq. (6d) ⇔
∑

j∈K

rij = N, rii = 0 (9c)

Eq. (6e) ⇔ rij ≤ 1, rij ≥ 0 (9d)

where Eq. (9a) is equivalent to Eq. (8) (and guarantees that

pNF is a stationary distribution for R), Eq. (9b) is the QoR

constraint, and Eq. (9c) and Eq. (9d) are constraints on the

recommendation variables.

Up to now, we have transformed all the constraints, apart

from the fairness constraint F (pBS,pNF) ≤ cf . In the

following, we transform the fairness constraint in a set of linear

constraints S(z,pNF) for each fairness metric of Section II-B.

F-max. In the case of Fmax the fairness constraint is

Fmax(p
NF,pBS) = max

i∈K
{|pNF

i − pBS
i |} ≤ cf (10)

Eq. (10) is not a linear inequality. However, it can be expressed

as the intersection of the following 2 ·K linear inequalities

pBS
i − pNF

i ≤ cf
pNF
i − pBS

i ≤ cf
∀ i ∈ K (11)

where we first set |pNF
i − pBS

i | ≤ cf ∀i ∈ K as equivalent to

constraining the max, and then substituted each absolute term

|x| ≤ cf with two constraints x ≤ cf and −x ≤ cf .

F-tv. A similar approach could be applied for the constraint

Ftv(p
NF,pBS) = 1

2 ·
∑

i∈K |pNF
i − pBS

i | ≤ cf (12)

However, it would lead to 2K linear inequalities, which is im-

practical for large catalogs. Hence, we introduce an auxiliary

set of variables z ∈ R
K (a K-sized vector) and substitute

Eq. (12) with the following constraints

∑

i∈K zi ≤ cf
|pBS

i − pNF
i | ≤ zi, ∀ i ∈ K

(13)

The first constraint is a linear inequality, and the remaining K

inequalities of Eq. (13) can be substituted with 2 · K linear

inequalities similarly to Eq. (11).

F-kl. In the Fkl case, the constraint can be written as

Fkl =
∑

i∈K pBS
i ·

(

log(pBS
i )− log(pNF

i )
)

≤ cf (14)

Eq. (14) involves a logarithmic function, thus, we cannot

proceed as in Fmax or Ftv . We first rewrite Eq. (14) as

∑

i∈K pBS
i log(pNF

i ) ≥ −
(

cf −
∑

i∈K pBS
i log(pBS

i )
)

(15)

where we remind that pNF
i are optimization variables and pBS

i

are given constants. Then, we introduce an auxiliary set of

K variables z ∈ R
K , and we demand the following K + 1

inequalities which are equivalent to Eq. (15)

∑

i∈K pBS
i · zi ≥ −

(

cf −
∑

i∈K pBS
i log(pBS

i )
)

log(pNF
i ) ≥ zi, ∀ i ∈ K

(16)

The first inequality of Eq. (16) is linear. The remaining K

inequalities are nonlinear due to the presence of the logarithm.

To transform them to linear constraints, we approximate the

logarithm with a general family of linear cuts. Specifically, we

define M lines for every i, as f(pNF
i ) = am,i ·p

NF
i +bm,i, that

are tangent to the log(pNF
i ) function in the interval pNF

i ∈
[0, 1]. Essentially we sample the logarithm at the points

{e−(m−1)·s , log e−(m−1)·s}

where m = 1, . . . ,M and s < 1. The M slopes am,i

and the corresponding constants bm,i, which are the same

for every dimension i ∈ K, of these tangent lines can be
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straightforwardly calculated. Thus, instead of using the K non-

linear inequalities of Eq. (16), we use the following M · K
inequalities that are linear on the variables zi and pNF

i

zi ≤ e(m−1)·s · pNF
i − (m− 1)s− 1, ∀i ∈ K,m ∈ {1, ...,M}

Remark: The sampling step s and the number of linear cuts M ,

play a major role in the optimization process. s that is small

enough for dense sampling, and an M according to the size

of the catalog. In our scenarios, we found that s = 0.05 and

M = 160 suffices for a catalog of K ≈ 1000 contents.

VI. THE PRICE OF FAIRNESS

In this section, we employ the Fair NF-RS of Section V to

the simulation setup of Section III-A. We consider different

values for the fairness constraints cf , and in Fig. 3 we present

the performance, i.e., the achieved CHR (y-axis) of the Fair

NF-RS (continuous lines) vs. the resulting unfairness (x-axis).

We present two indicative scenarios for the LastFM/Movielens

datasets (red/blue color). Also, we present the bound for each

scenario (dash lines), the operating points {unfairness, CHR}
of the BS-RS (star markers) and the NF-RS schemes that do

not consider fairness (star, cross, and hexagonal markers for

the Greedy, Multi-step, and CABaRet NF-RS, respectively).

Below we discuss the main findings stemming from Fig. 3,

which provide useful insights for the effect of imposing

fairness in NFR and the price we have to pay for this.

Key finding 1: “The Fair NF-RS always achieves a better

performance trade-off than other NF-RS algorithms”

The first observation that verifies the correctness of the

proposed approach is that the Fair NF-RS performs better than

other NF-RS (both in fairness and network gains), i.e., the

curve of the Fair NF-RS is above (higher CHR) and/or on the

left (less unfairness) of the markers that indicate the operation

points of the other NF-RS algorithms. Extending the Fair NF-

RS curve towards (i) small values of F (x-axis) leads to the

operating point of the BS-RS (F = 0), and (ii) large values of

F leads to the operating point of the Multi-step NF-RS, which

is equivalent to the Fair NF-RS without fairness constraint.

Key finding 2: “By allowing a little unfairness, high network

gains can be achieved”

Comparing the Fair NF-RS performance with this of the

BS-RS, we see that the increase in the network gains is steep

for a small relaxation in the unfairness (i.e., for small values

in the x-axis). In fact, we can see that the curve of the

Fair NF-RS coincides with the bound, which means that the

optimal fairness-gains trade-off is achievable by the Fair NF-

RS for small values of fairness constraints. This is a promising

message for the practical feasibility of the NFR framework:

significant network gains are possible even when a level of

fairness is required by the content provider.

Key finding 3: “The price (wrt. the network gain) of

imposing fairness is small”

Moving our attention on the other side of the Fair NF-RS

curve (i.e., for higher values of F ), two interesting observa-

tions can be made: (i) the curve of the Fair NF-RS is concave,

and (ii) the gains in CHR diminish for large values of F . These

findings show that similar network gains to the Multi-step NF-

RS (which achieves the best performance under no fairness

constraints) can be achieved with much less unfairness. In

particular in the case of Fmax that captures the individual

fairness, this behavior is clearer: a CHR very close to the

highest possible can be achieved by the Fair NF-RS even with

3 times lower Fmax compared to the Multi-step NF-RS .

Moreover, we can see that while the bounds are linear in the

case of Fmax and Ftv , the curve of the Fair NF-RS is concave:

this is a positive finding indicating that the Fair NF-RS stays

close to the bound and deviates for it only when large values

of unfairness are allowed. Even in the case of Fkl where the

bound is also concave, the Fair NF-RS curve approaches the

highest possible CHR with a faster rate.

VII. RELATED WORK

NFR. The paradigm of network-friendly (or, network-aware)

recommendations has been recently proposed and studied

under different network setups and content services [1]–

[5], [7]–[17], [19]–[21]. The proposed NFR schemes aim

to increase the network gains (and/or improve the quality

of content delivery) by selecting recommendations [4], [5],

[12], [20] or by jointly designing the recommendation and

network policy (e.g., caching) [2], [3], [7]–[11], [13]–[17].

The majority of related works considers cache-friendly rec-

ommendations in mobile networks [1]–[4], [7]–[9]. However,

the same principles apply to generic network setups [12],

such as coded caching [7], broadcast communications [15]–

[17], user association to base stations [13], or swarming

systems [21]. While some of the proposed schemes take into

account the user perspective by accounting the QoR, none of

them has considered the fairness in recommendations from

the perspective of the content provider. In this context, our

work studies the dimension of fairness, thus providing a more

complete view of the NFR paradigm. The proposed Fair

NF-RS retains the efficiency of previous NFR schemes for

achieving high network gains, while reduces the unfairness.

Fairness in RS. A variety of fairness metrics are used by

the RS community [26]–[35] to capture different notions and

needs of the content providers. Moreover, the fairness in RS

can be defined with respect to the consumer (c-fairness) or

the provider (p-fairness) [26], [27]. The former is typically

used to design recommendation algorithms whose output is

independent of sensitive user traits, e.g., race or gender [27],

[29]. In other words, c-fairness aims to capture discrimination

between users. Hence, it is orthogonal to our study, e.g., it

could be considered as a part of the BS-RS and depends

on the recommendation scores uij for which we consider a

generic definition. The notion of p-fairness, which we use

in this paper, aims to capture potential discrimination of the

content provider towards different content producers/owners

(or, individual contents). The proposed Fair NF-RS provides

recommendations that achieve a balance between the user

satisfaction (QoR), the content provider (fairness), and the
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Fig. 3: The price of fairness: Comparison of the performance (fairness at x-axis vs. CHR at y-axis) of the Fair NF-RS (continuous

lines) with other RS (markers) and the bounds (dashed lines). Red colors correspond to the LastFM dataset scenario and blue

colors to the Movielens dataset scenario, with parameters α=0.99, N=2, q=0.9, C=5 (LastFM) and C=10 (Movielens).

network gains. A similar issue is addressed in [35], from a

multi-stakeholders perspective.

VIII. CONCLUSION

Previous works have shown that NFR can bring signifi-

cant gains for the network, however, without considering the

fairness, which is a key factor for content providers. This

work is the first to study the dimension of fairness in NFR,

and explore the trade-offs between controlling fairness and

increasing network gains. Our results show that fairness need

and can be taken into account in NFR, while the price (wrt.

network cost) that one has to pay to impose fairness is small.

We believe that the findings of this paper can motivate

further research on fairness in NFR. For example, under NFR

schemes that jointly select the recommendation and network

policies, we expect a more aggressive shaping of the demand.

Hence, it is of interest to investigate if, and how the introduced

unfairness and the trade-offs change under such schemes. In

terms of fairness notions, an extension can be towards group

fairness [32], [43], where the contents belong to classes (e.g.,

of the same genre or producer) [35], [38], and the fairness is

defined among the aggregate demand of content classes. This

more relaxed fairness metric, probably allows more flexibility

in the decisions of the NF-RS and, thus, higher network gains.
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APPENDIX: PROOF OF THEOREM 1

The bound for the network gain G vs. fairness F trade-off
is given by the solution of the optimization problem

maxpNF G s.t. F ≤ cF (17)

where G is defined in Eq. (2), F is the fairness metrics (such

as the Fmax, Ftv, Fkl of Section II-B), cF a constant, and pNF

has to be a probability distribution.

F-max. For the network gain it holds that

G ≤
∑

i∈C

|pNF
i − pBS

i | ≤ C ·max
j∈K

|pNF
j − pBS

j | = C · Fmax

where the first inequality follows by applying the property x ≤
|x| to the terms in the expression of G (Eq. (2)), the second

inequality holds because |pNF
i −pBS

i | ≤ maxj∈K |pNF
j −pBS

j |,
∀i ∈ C, since C ⊂ K, and in the last equality we simply

substituted from the definition of Fmax (Section II-B).

F-tv. Starting similarly to the Fmax case, we get

G ≤
∑

i∈C

|pNF
i − pBS

i | = 2 · Ftv −
∑

i∈K\C

|pNF
i − pBS

i | (18)

where the equality follows from the definition of Ftv . The right

hand side of Eq. (18) increases when
∑

i∈K\C |p
NF
i − pBS

i |
decreases. The min value of this term can be calculated as:
∑

i∈K

pBS
i =

∑

i∈K

pNF
i ⇒

∑

i∈K\C

(pBS
i − pNF

i ) =
∑

i∈C

(pNF
i − pBS

i )

⇒
∑

i∈K\C

|pBS
i − pNF

i | ≥ G (19)

where in the first equation both sums equal to 1 (probability

distributions), the second equation follows by moving all terms

for i ∈ K\C to the left hand side, and in the third equation

the left hand side follows from the property x ≤ |x| and the

right hand side directly from the definition of G (Eq. (2)).
Substituting Eq. (19) in Eq. (18) gives

G ≤ 2 · Ftv −G ⇒ G ≤ Ftv

F-kl. Due to the logarithm involved in the expression of Fkl,

we cannot proceed similarly to the cases of Fmax or Ftv , and

we calculate the bound by solving the optimization problem

of Eq. (17) with the method of Lagrangian multipliers. We

first formulate the Lagrangian function L as follows5

L =
∑

i∈C(p
NF
i − pBS

i )− λ · (Fkl − cf )− µ ·
(∑

i∈K pNF
i − 1

)

The derivative of L with respect to pNF
i is

∂L

∂pNF
i

=











1 + λ ·
pBS
i

pNF
i

− µ , i ∈ C

λ ·
pBS
i

pNF
i

− µ , i ∈ K\C
(20)

where we calculate ∂Fkl

∂pNF
i

= −
pBS
i

pNF
i

(see Fkl definition;

Sec. II-B). Setting ∂L
∂pNF

i

= 0 for the optimal solution, gives:

pNF
i =

{

λ
µ−1

· pBS
i , i ∈ C

λ
µ
· pBS

i , i ∈ K\C
(21)

To calculate the Lagrange multipliers, we use the definition of

G (Eq. (2)), substitute from Eq. (21), and get

G =
∑

i∈C

λ

µ− 1
pBS
i − pBS

i ⇒
λ

µ− 1
= 1 +

G
∑

i∈C

pBS
i

= 1 +
G

H
(22)

where for brevity we denoted H = CHRBS =
∑

i∈C p
BS
i .

Then we consider the constraint
∑

i∈K pNF
i = 1 and substi-

tuting from the expressions in Eq. (21) and Eq. (22) we get
∑

i∈C

(

1 +
G

H

)

· pBS
i +

∑

i∈K\C

λ

µ
· pBS

i = 1 ⇒

(

1 +
G

H

)

·
∑

i∈C

pBS
i +

λ

µ
·

∑

i∈K\C

pBS
i = 1 ⇒

(

1 +
G

H

)

·H +
λ

µ
· (1−H) = 1 ⇒

λ

µ
= 1−

G

1−H
(23)

where we used
∑

i∈K\C p
BS
i = 1−

∑

i∈C p
BS
i = 1−H .

Now, substituting from Eq. (21), Eq. (22) and Eq. (23), in

the expression for the Fkl, gives

Fkl =

∑

i∈C

pBS
i · log





pBS
i

(

1 + G
H

)

pBS
i



+
∑

i∈K\C

pBS
i · log





pBS
i

(

1− G
1−H

)

pBS
i





= −
∑

i∈C

pBS
i · log

(

1 +
G

H

)

−
∑

i∈K\C

pBS
i · log

(

1−
G

1−H

)

= −H · log

(

1 +
G

H

)

− (1 −H) · log

(

1−
G

1−H

)

(24)

The above equality holds for the optimal pNF, i.e., the

maximum network gain G; for any other pNF the gains will

be lower, which makes the above the inequality of Theorem 1.

5The problem Eq. (17) involves also the constraints 0 ≤ pNF
i ≤ 1, ∀i ∈ K,

which need to be accounted in the Lagrangian. However, if pNF
i is 0 or 1,

the Fkl diverges and thus the constraint in Eq. (17) is not satisfied. Hence, for
any feasible solution it will hold that 0 < pNF

i < 1 and the corresponding
Lagrange multipliers will be equal to zero (Karush–Kuhn–Tucker conditions).
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