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Abstract—Forecasting is a task of ever increasing importance
for the operation of mobile networks, where it supports anticipa-
tory decisions by network intelligence and enables emerging zero-
touch service and network management models. While current
trends in forecasting for anticipatory networking lean towards
the systematic adoption of models that are purely based on deep
learning approaches, we pave the way for a different strategy
to the design of predictors for mobile network environments.
Specifically, following recent advances in time series prediction,
we consider a hybrid approach that blends statistical modelling
and machine learning by means of a joint training process of
the two methods. By tailoring this mixed forecasting engine
to the specific requirements of network traffic demands, we
develop a Thresholded Exponential Smoothing and Recurrent
Neural Network (TES-RNN) model. We experiment with TES-
RNN in two practical network management use cases, i.e., (i)
anticipatory allocation of network resources, and (ii) mobile
traffic anomaly prediction. Results obtained with extensive traffic
workloads collected in an operational mobile network show that
TES-RNN can yield substantial performance gains over current
state-of-the-art predictors in both applications considered.

I. INTRODUCTION

The vision for Beyond 5G (B5G) systems sets an extraor-
dinarily high bar for mobile networks, which are expected to
become general-purpose platforms providing smart connectiv-
ity to a plethora of extremely heterogeneous terminals. As
such, B5G shall support diverse classes of services, and do
so with outstanding performance: near-zero latency, apparent
infinite capacity, and 100% reliability and availability will
make the communication infrastructure fully transparent to
applications [1]. Meeting this ambitious goal requires fur-
ther increasing the already substantial complexity of mobile
network architectures, enabling the instant orchestration of
physical resources and Virtual Network Functions (VNFs)
across different network domains, in concertation with time-
varying user demands and multi-tenancy requirements.
Network Intelligence for zero-touch management. Handling
the escalating complexity of B5G networks with traditional
human-in-the-loop approaches will not be possible anymore.
Instead, it is expected that current management models will
be replaced by zero-touch network and service management
technologies, which fully automate the network operation
and are presently being standardized [2]. As a result of this
transition, the success of B5G will vastly depend on the quality
of the Network Intelligence (NI) that will run at schedulers,

controllers, and orchestrators across network domains, de-facto
managing the zero-touch infrastructure.

Following a popular trend in many research and engineering
domains, Artificial Intelligence (AI) models relying on deep
neural network (DNN) architectures are regarded as a promis-
ing approach for the design of NI solutions. Indeed, AI models
have proven remarkably effective at solving complex network
operation tasks, and they thrive on the large amount of control
and traffic data available within network architectures [3].
Forecasting for anticipatory networking. Many NI solu-
tions abide by anticipatory networking principles, and aim at
proactively optimizing network configurations with respect to
upcoming traffic conditions rather than to the current state [4].
The prominence of anticipatory NI makes predicting future
network states a fundamental task for the effective operation
of B5G systems. Forecasting is in fact a manifold problem in
networking environments, where different applications require
accurate projections of diverse metrics, including computa-
tional resources [5], capacity requirements [6], or sheer traffic
volumes [7], possibly separately across mobile services [8].

Similarly to what happens for other aspects of NI design,
DNN models have lately established as the prevailing approach
to develop the predictors that will support proactive decisions
by NI solutions. In recent years, a fairly large body of works
have explored varied DNN architectures for diverse forecasting
objectives, improving the accuracy of legacy statistical models.
Joint statistical modelling and DNN. Owing to the success
of DNN models for prediction tasks, current state-of-the-art
predictors in the networking domain invariably rely on deep
learning, as extensively discussed in Section II. However, very
recent results from the machine learning community suggest
that hybrid engines integrating statistical modelling and DNN
can in fact substantially outperform pure DNN approaches in
time series forecasting tasks [9]. The first model of this kind
combines a classical Exponential Smoothing (ES) statistical
model with a Recurrent Neural Network (RNN) architecture,
hence is named ES-RNN [10]. It is a true hybrid predictor,
since the parameters of the ES model are optimized concur-
rently with the RNN weights using a unified gradient descent.
Thanks to this joint training, the ES-RNN model represents
a leap forward with respect to previous attempts at mixing
different statistical and/or machine learning methods: unlike
simple combination [11] or ensemble [12] strategies used to



date, this technique takes full advantage of the strengths of
statistical and machine learning methods, while mitigating
their respective limitations.
Contributions. In this paper, we pioneer the adoption in the
context of anticipatory NI solutions of a hybrid statistical
modelling and machine learning approach Our work yields
the following four main contributions.

• We employ, for the first time, a joint ES and RNN training
in the context of forecasting for network management.

• We update the operation of the ES-RNN architecture so
as to cope with unique features of time series of mobile
traffic demands; the result is an original Thresholded ES-
RNN (TES-RNN) model, i.e., a general-purpose network
traffic forecasting technique that can be tailored to per-
form predictions for different NI functions.

• We apply the proposed TES-RNN model to two practical
anticipatory NI use cases, i.e., (i) anticipatory allocation
of network resources, and (ii) prediction of anomalies in
the mobile traffic, by training the model with appropriate
loss functions for each application.

• We evaluate the performance of TES-RNN against multi-
ple benchmarks that include the original ES-RNN model,
a pure RNN architecture, and DNN-based dedicated
predictors from the literature, demonstrating the superior
performance of our model in both use cases above.

The rest of the paper is structured as follows. In Section II
we provide a primer on recent forecasting models in mobile
networks. The original ES-RNN engine, and its TES-RNN
evolution are presented in Section III. The two target NI
use cases are described in Section IV, and the associated
comparative evaluation results are discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. FORECASTING IN MOBILE NETWORKS

Standard Developing Organizations (SDOs) are currently
delineating the road for the automated management of future-
generation mobile network architectures. Dedicated modules
are being defined to collect the data and infer the necessary
knowledge to support NI functionalities. For instance, 3GPP
has already standardized for that purpose a Management Data
Analytics Function (MDAF) [13] in the Management and
Orchestration (MANO) domain, and a Network Data Analytics
Function (NWDAF) [14] in the control plane. Forecasting
models implemented in orchestrators and controllers will feed
on information made available by functions like MDAF and
NWDAF to enable anticipatory zero-touch networking.
Forecasting models for plain traffic volumes. While SDOs
are creating the place for prediction tools in NI-managed
B5G mobile network architectures, the question of which
forecasting techniques shall be implemented within those
architectures remains open. There exists a vast literature about
prediction in networks [15], where the vast majority of works
focus on foretelling future demands expressed in terms of plain
traffic volumes. A variety of approaches have been proposed
to solve the problem of mobile traffic forecasting, spanning

exponential smoothing [16], autoregressive modelling [17]–
[19], information theory [20], or Markovian processes [21].

In recent years, deep learning models have rapidly estab-
lished themselves as the conventional tool for forecasting mo-
bile network traffic. A plethora of diverse DNN architectures
have been proposed to date, which leverage, among others,
Long Short-Term Memory (LSTM) [7], [8], [22], Stacked Au-
toEncoder (SAE) [7], and MultiLayer Perceptron (MLP) [23]
layers. Convolutional layers have been also extensively tested,
in their vanilla [8], [22], three-dimensional [23], or graph [24]
versions. These solutions have been used to predict traffic in
different settings, including over short [7] and long [23] time
horizons, or on aggregates [7], [23] and on a per-application
basis [8]. For a comprehensive review, we refer the reader
to surveys on applications of deep learning in networking,
for forecasting and beyond [25]. We highlight, however, that
comparative evaluations carried in the studies above have
repeatedly proved that DNN models improve the quality of
the prediction with respect to other approaches in general,
and to statistical models in particular. This conclusion is
also confirmed by dedicated performance analyses juxtaposing
heterogeneous models [26], [27].
Forecasting models for network functionalities. Several
studies have proposed predictors tailored to specific tasks in
anticipatory networking, rather than generic traffic forecasting.
These works have targeted forecasting for resource alloca-
tion [6], reconfiguration [28] and overbooking [5] in sliced
networks, reservation of Physical Resource Blocks (PRB) at
the radio access [29], or assignment of baseband processing
resources in Cloud Radio Access Network (C-RAN) [30].
Predictors have been also devised for physical layer indicators,
such as bandwidth [31], transmission inactivity periods [32],
or signal strength [33]. All such efforts are very recent, and
exclusively rely on DNN architectures. Among others, they
employ MLP [28], 3D convolutional [6], or regular [29] and
multivariate [30] LSTM layers.
Positioning of our work. All forecasting models proposed so
far in the context of anticipatory networking consider design
strategies based on a single approach, most often relying on
deep learning. Instead, we introduce the concept of a hybrid
prediction for network management that integrates and jointly
optimizes statistical modelling and machine learning models.
The sizeable performance improvement that this design attains
over state-of-the-art DNN architectures in two practical NI use
cases indicates that hybrid approaches may set a new standard
for forecasting in mobile network environments.

III. TES-RNN HYBRID FORECASTING MODEL

The TES-RNN model proposed in this paper builds upon the
innovative design principles first introduced by the very recent
ES-RNN engine [10], which is presented in Section III-A. The
considered ES-RNN predictor has limitations when confronted
to real-world mobile traffic dynamics, as discussed in Sec-
tion III-B. Our proposed TES-RNN model solves such issues
by enhancing the original engine with an automatically learned
threshold parameter, as detailed in Section III-C.



A. ES-RNN and joint SGD optimization

ES-RNN is a truly hybrid forecasting model for time series
that mixes statistical modelling, i.e., Exponential Smoothing
(ES), and machine learning, i.e., Recurrent Neural Networks
(RNN). We consider the GPU implementation of ES-RNN [34]
as the basis for our study: this variant presents a first pre-
processing layer for adaptive and local normalization of input
time series by means of ES formulas, followed by a neural
network architecture that processes the normalized data and
provides forecasts over a customizable time horizon.

The original ES-RNN may adopt a variety of ES expres-
sions, depending on the temporal features of the target data.
In networking settings, 24-hour circadian rhythms are known
to dominate the fluctuations of mobile data traffic [35], hence
we opted for a Holt linear non-seasonal ES formula [36],
which is the recommended expression for time series with
daily periodicity [10]. At each time step t, the non-seasonal
ES updates a normalization coefficient lt (called level) as

lt = ωyt + (1− ω)lt−1, (1)

where ω ∈ [0, 1] is the exponential smoothing parameter, and
yt represents the value of the input time series at time step t.

The level lt is used for data normalization. At a given time
step t, all values in the input window [t-tI , t] of size I and
in the output interval [t+1, t+tO] of size O are divided by
lt. During training, the normalized input window is fed to
the RNN, whose (normalized) forecast is compared with the
normalized output window by means of a loss function. In
testing, or when running the model in production systems,
de-normalization is performed by multiplying the normalized
values forecasted in the prediction horizon O by the level lt.

The major novelty of the ES-RNN model is that the smooth-
ing parameter ω is a treated as a system variable that is learned
together with the weights of the subsequent RNN architecture.
In other words, the stochastic gradient descent (SGD) process,
normally used to fit the RNN weights, backpropagates in
this case before the neural network input layer, and into the
preceding ES model, where it updates ω. In this way, a single
SGD allows jointly optimizing the parameters of the statistical
model and of the neural network, adapting them all to the
characteristics of the target time series.

The SGD optimization of ω operated by ES-RNN results
in a level lt that is dynamically adapted to the input data. In
turn, this enables a so-called local and adaptive normalization,
which (i) ensures that all portions of the time series are
equally important to the ensuing neural network training
process, and (ii) suitably smooths the machine learning input
so that the neural network can concentrate on predicting actual
trends, without overfitting on spurious patterns [10]. Thus,
this normalization helps forecasting time series with severe
fluctuations, like those observed in mobile networks. This is
not the case with traditional global normalization of all values
to a same [0, 1] interval, which does not yield input smoothing,
and makes it hard for the RNN to learn to predict small values.
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Fig. 1. Example of problematic prediction of real-world mobile traffic by
ES-RNN. (a) Instagram demand at one BS. (b) The same demand compared
to the prediction generated by ES-RNN trained with a MSE loss function,
using an input window of size I = 6 and an output window of size O = 1.

B. Limitations of ES-RNN with network traffic

The ES-RNN model is intended to operate on time series
with strictly positive values of comparable magnitude. How-
ever, this assumption is often violated in the mobile network-
ing context, where traffic observed at the radio access and edge
network elements is highly irregular and bursty, with continued
inactivity periods that lead to a possibly significant presence
of zero or near-zero values and severe underutilization of the
network. This consideration holds for both voice [37] and
data [35] traffic, especially when predictions target demands
generated by individual users or at single base stations.

These characteristics of mobile traffic dynamics determine
levels lt computed with (1) that are at times equal to zero,
or close to that value. In the case of zero-level values, the
ES normalization is simply not possible, as it would involve
a division by zero. In the case of values close to zero, value
discontinuities between the input and output windows yield
normalized outputs that are not numerically comparable with
(and in fact much higher than) the values predicted by the
neural network; the loss function returns then inflated costs
that hinder the quality of the learning process. Figure 1
illustrates the latter problem in a practical scenario. Plot (a)
portrays the real-world demand generated by Instagram at one
base station during several hours: the inconsistent nature of the
traffic, with a long period of very low or no activity, is evident.
Plot (b) shows how, when a traffic peak occurs after such a
sequence of low-traffic time steps, the network starts predicting
amplified values largely above the real traffic demand.

C. TES-RNN and automated level thresholding

To address the shortcomings of the original ES-RNN, we
introduce the Thresholded ES-RNN (TES-RNN) model. Our
solution employs a threshold τ to bound the minimum value
of lt, which is then updated at each time step t as

lt = max{τ, ωyt + (1− ω)lt−1}. (2)

The enhancement in (2) is simple yet effective in solving
the issues observed for ES-RNN. A representative example is
provided in Figure 1b: TES-RNN does not suffer from inflated
predictions and correctly anticipates the growing traffic.
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Fig. 2. Example of the sensitivity F (τ) of the TES-RNN validation loss to the
threshold τ (here normalized by the traffic peak), in a practical forecasting task
involving Snapchat traffic recorded at a network core datacenter. Dots denote
the exploration steps of the Golden-Section search. The inset plot zooms onto
the minimum loss, around which the final iterations of the algorithm occur.

In fact, the result in Figure 1b is not obvious to achieve.
In particular, the threshold τ is challenging to configure, as
it introduces an interesting trade-off. In general, a threshold
closer to the traffic peak ensures higher robustness to the prob-
lem of time series discontinuities highlighted above. However,
it also triggers a global normalization to level τ more often,
raising the issue of model insensitivity to low values below
the threshold that the local and adaptive normalization aims at
solving. Conversely, thresholds closer to the smallest possible
level tend to preserve the desirable properties of the fine-tuned
ES-RNN normalization, but also incur more often into the
issues related to discontinuous data.

There is no one-size-fits-all solution to the trade-off above,
and the best value of τ depends on the nature of the traffic time
series that is relevant to the target networking functionality.
Therefore, also τ needs to be adjusted to the settings of
the considered task. Notably, τ is an hyperparameter for the
TES-RNN model, i.e., an external variable that steers the
overall system behaviour. To ensure a smooth operation of
the model, it is highly desirable that the setting of τ does
not require human intervention, but is fully automated. The
setup at hand calls for an Automated Machine Learning (or
AutoML) approach, since our goal is automatizing the design
(in our case, the hyperparameter configuration) of complex
neural network models [38].

We design an AutoML approach to learn a correct τ at
training time, by leveraging on two considerations about the
forecasting model. First, we note that τ is bounded between
the value of 0 and the value of the traffic peak. Second,
these two extreme values represent the worst case scenarios
for the hyperparameter values, for opposite reasons: (i) if
τ = 0, the model degenerates into the original ES-RNN with
an unbounded normalization, and suffers from the same issues
discussed in Section III-B; (ii) when τ is set to the traffic peak,
lt = τ,∀t in (2), and the exponential smoothing is simplified to
a global normalization that, as explained in Section III-A, does
not perform well with high-variance mobile traffic time series.
These properties make it very likely that the function F (τ)
that describes the behavior of the TES-RNN loss versus the
threshold hyperparameter is convex: a representative example
with real-world traffic is portrayed in the main plot of Figure 2.

The convexity of the problem makes a Golden-Section
search algorithm [39] a suitable way to identify the τ min-

imizing the validation loss F (τ): the values τ = 0 and τ = 1
are used as the initial search interval boundaries, one of which
is then updated at each iteration so as to narrow the interval
around the minimum. As an illustrative example, we depict
in Figure 2 the evolution of our proposed AutoML approach
with a target tolerance of 1%. In this case, the loss is minimum
when the normalized threshold τ is 0.1 (i.e., around 10% of
the traffic peak), and our approach correctly identifies such a
value within 11 iterations.

The final structure of the TES-RNN model, including the
threshold τ and its AutoML configuration, is depicted in
Figure 3. For the predictor part, the TES-RNN model uses the
same Dilated Recurrent Network (DRNN) employed by ES-
RNN. The DRNN architecture is composed of Dilated LSTM-
based layers [40], which, unlike vanilla LTSM, realize a RNN
attention mechanism. Indeed, dilation allows a given LSTM
layer to use as input the hidden state of layers associated to
more than one time step in the past, and allows dynamically
shifting importance from a particular single state to a group of
past states. In our implementation, we employ a computation-
ally efficient DRNN variant [34], and let the Dilated LSTM
stack be followed by a non-linear layer. A final linear adapter
performs size adaptation between the state of the last layer and
the overall output layer. The AutoML component implements
a Golden-Section search algorithm to find the best operational
τ . At each step, the validation loss F (τ) is computed for
two threshold values inside the search interval: the threshold
yielding the higher validation loss is used to update either the
left or the right extreme of the interval. The algorithm iterates
until the length of the search interval falls below a target
tolerance: then, the final τ is the mean of the last interval.

IV. FORECASTING USE CASES

As discussed in Section I, forecasting future network states
is a cornerstone task for many networking problems, including
admission control [41], resource allocation [6], handovers [30]
and power management [32], among others, which involve
different operation time scales [28]. The TES-RNN architec-
ture described in Section III is general-purpose and agnostic
to the specific networking application: it can be trained to
support different NI instances, e.g., by combining it with
a suitable loss function that allows optimizing the model
for a given prediction task. Next, we present two practical
anticipatory networking use cases where TES-RNN can be
used as the forecasting model, which also set the ground for
the experimental evaluation conducted in Section V.

A. Use case I: capacity allocation for network slicing

A first use case of interest for forecasting in anticipatory
networking is that of capacity allocation, i.e., reserving the
resources needed to meet the upcoming demand for a given
service. This functionality is especially relevant in network
slicing settings, where (sets of) services run in different slices,
and the operator needs to dedicate sufficient resources to
each slice, in agreement with the load generated by the
corresponding service(s) [41].
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TheanticipatoryNIinchargeofcapacityallocationtoslices
mustrelyonso-calledcapacityforecasting,i.e.,predictingthe
minimumcapacitysuficienttoaccommodatethefutureslice
trafic.Wehighlightthatcapacityforecastingisafairlyunique
problem,wheresheeraccuracyisnotthemostrelevantmetric.
Instead,itiscriticalthatthepredictionstaysabovetheactual
loadwithaveryhighprobability,becauseunderestimation
determinestheallocationofinsuficientcapacitytoslices,
henceservicedisruptionontheuserside.Underprovisioning
alsotriggersviolationsoftheServiceLevelAgreement(SLA)
betweentheslicetenantandthenetworkoperator,whichthus
incursintosubstantialeconomicpenalties.Clearly,thismust
beavoidedwithoutallocatingexceedinglylargeamountsof
unnecessaryresources,whichalsohaveacostfortheoperator.

Theproblemofcapacityforecastinghasrecentlyreceived
attention,withtheproposalofdedicatedpredictors[6],[28].
Thesemodelsrelyonalossfunctionthatdrivesthelearning
processsoastocapturetheactualcostofincurringSLA
violationsagainstthatofoverprovisioningtheslicecapacity.
Speciically,thefunctionhandlesnegativeandpositiveerrors
differently,soastorelectthedifferentcoststheyentailinthe
contextofvirtualizedcommunicationnetworks,asfollows.

• Aconstantpenaltyβisassociatedtoeachnegativeerror,
whichcausesaSLAviolationduringthepredictedtime
interval.βcanbecustomizedtothedesiredbehavior:
forinstance,highervaluesmaybeusedwhenreliability
isparamount(e.g.,forslicesservingultra-reliablelow-
latencycommunications,orURLLC),andlowerpenalties
canbeappliedforsliceswithmorerelaxedrequirements.

• Amonotonicallyincreasingcostisattributedtopositive
errors,whichimplytheallocationofexcessresources.
Therefore,thecostisproportionaltotheamountof(un-
necessarily)provisionedcapacity.Typically,theexpendi-
tureisassumedtogrowlinearlywiththeoverprovisioned
capacity,withaixedrateγofcostpersurpluscapacity.

Theconigurationofthetwocostscanbeinfactcontrolled
byasingleparameterα=β/γ,whichrepresentstheamount
ofoverprovisionedcapacitythattheoperatoriswillingto

deploytoavoidcommittinganSLAviolation.Formally,fora
givenpredictionerrorx,thelossfunctionthatabidesbythe
speciicationsaboveisexpressedas

L(x)=






α−ϵ·x ifx≤0

α−1ϵx if0<x≤ϵα

x−ϵα ifx>ϵα,

(3)

wheresteepslopes(implementedwithasmallpositiveϵ)
ensuredifferentiabilityoverthewholexdomain[6].

Theparameterαservesasaknobtosteertheoperational
pointofthesystemtowardshigherexpensesindeployed
resourcebutreducedchancesofSLAviolations,orvice-versa.
Asaresult,thelossfunctionin(3)canbeparametrizedto
thespeciicationsofdifferentnetworkinfrastructurelocations
(e.g.,relectingthehighercostofdeployingresourcesatthe
networkedgethanatthecore),resourcetypes(e.g.,capturing
thefactthatradioresourcesaresensibly moreexpensive
thanCPUresources),andSLAstrategies(e.g.,expressingthe
higherfeesforviolationsaffectingslicesofcriticalservices).

B.UsecaseII:anomalydetectioninmobileservicetrafic

Thesecondusecasewestudyisananticipatoryanomaly
detectionframework,wheretheNImusttriggeranalarmwhen
anabnormalfuturetraficloadisexpectedforaspeciicmobile
service.Theanomalydetectionproblemissummarizedin
Figure4a.Thepredictormoduleisinchargeofproducinga
probabilitydistributionofthetraficdemandthatthetarget
servicewillgenerateinthenexttimeslot.Suchaproba-
bilisticpredictioniscomparedagainstareferenceinterval
thatencompassestheexpectedrangeofnormaltraficvalues
inthefollowingtimeslot.Then,iftheprobabilityofthe
anticipatedtrafictobeoutsidethereferenceintervalisbeyond
athreshold,analarmisraised.ThisallowstheassociatedNI
toperformsomepreventiveactions,suchasthosedetailedin
the3GPPTS23.288[14]technicalspeciicationunderthe
“AbnormalUEbehavior”analytics,whichcaptureanomalies
suchasunexpectedlargeratelowsgeneratedbyterminals.
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Fig. 4. Anomaly forecasting use case. (a) Representation of the anomaly
forecasting problem. (b) Explanation of the operation of anomaly detection.

We consider a simple yet practical implementation1 of the
approach above that is commonly adopted in many fields also
outside networking [42]. First, it is worth noting that the
output of the forecasting algorithm shall not be a scalar but a
probability distribution of the future traffic load. This type of
output is implicit in certain types of models like Bayesian Neu-
ral Networks, which are however computationally expensive
and not suited for resource-constrained network environments.
In order to generate a probabilistic forecast with a generic
neural network, we resort to recent findings in uncertainty
modelling [43]: specifically, by activating dropout layers in the
predictor during the inference phase and performing a Monte
Carlo testing, the neural network returns a set of values that has
been shown to closely approximate the probabilistic result of a
deep Gaussian process implemented with a Bayesian network.

The anomaly detection algorithm then operates on the
empirical PDF fp of the predicted traffic values for each
decision interval, as illustrated in Figure 4b. First, the upper
and lower limits that mark the boundaries between regular and
anomalous values are computed as xl,h = R±∆A, where R
is a configurable reference value. From these two values, the
probability of a future anomaly is empirically calculated as
PA = 1 − (Fp(xh) − Fp(xl)), where Fp(x) =

∑
k<x fp(k)

is the CDF of the anticipated traffic. Finally, an alarm is
triggered if PA > τA. The parameters R, ∆A and τA
control the sensitivity of the algorithm. In our experiments,
we set the reference values for the estimated load in the next
prediction step R as the average of the last three load values,
∆A = 0.9 · R, and τA = 0.9. In other words, we trigger
an alert when the model forecasts a future traffic with a 90%
probability to fall outside a range ±90% of the reference value.

The correctness of the anticipatory anomaly detection can
be determined by checking whether the actual traffic falls into
the xl,h interval or not, and computing precision and recall
scores. Clearly, a higher accuracy in the probabilistic traffic
forecast, denoted by a lower variance around a value closer to
the true one, yields better performance: a Mean Square Error
(MSE) loss function is thus a sensible choice for this use case.

1Our goal is not to propose a novel anomaly detection algorithm, but to
compare the effectiveness of different forecasting models in supporting such
a task. Therefore, we are not interested in developing a complex algorithm for
anomaly detection, and using a baseline solution is sufficient for our purpose.

V. PERFORMANCE EVALUATION

We assess the performance of TES-RNN in the two use
cases set out in Section IV, hinging on real-world mobile
traffic measurement data collected in an operational net-
work. Specifically, we consider mobile data traffic time series
recorded at more than 400 4G/LTE base stations that provide
coverage to millions of subscribers in a metropolitan area.2

The data was collected in the production infrastructure of a
major operator during 8 continuous weeks, by passive probes
tapping at interfaces of the relevant Gateway GPRS Support
Node (GGSN) and Packet Data Network Gateway (P-GW).

The measurement probes leverage Deep Packet Inspection
(DPI) to extract protocol information from packets in the
GPRS Tunneling Protocol user plane (GTP-U). Such infor-
mation is then fed to proprietary classifiers developed by the
operator in order to determine the service associated to each
session. As a result, the time series we use in our evaluation
describe the traffic generated by individual popular services.

All time series have a set temporal granularity of 5 minutes.
This temporal granularity is compatible with the requirements
of the two target use cases, since: (i) the reconfiguration
periodicity of slice resources allowed by modern Virtual
Infrastructure Managers (VIM) is in the order of minutes [44],
and (ii) anticipating anomalies by several minutes is largely
sufficient to plan and enact countermeasures. Therefore, a
prediction of the traffic in the next 5-minute time step (i.e.,
a point forecast of the time series) is aligned with both use
cases, and we consider an output window size O = 1 in all
our experiments. Also, and unless stated otherwise, we use
an input window size of I = 6 time steps to feed the model
(corresponding to a past history of 30 minutes), and we employ
8, 2 and 1 different weeks of traffic for training, validation and
testing, respectively.

As a final remark, we highlight that our study observes
high privacy and ethical standards: (i) the network operator
conducted the data collection abiding by applicable regulations
at national and international levels; (ii) the competent national
privacy agency and the data protection officer of the operator
authorized the data processing; and, (iii) the time series we
accessed for the purpose of this work solely describe traffic
aggregated at individual base stations over large sets of users,
and do not contain personal subscriber information.

A. Forecasting for capacity allocation

We set the capacity allocation use case presented in Sec-
tion IV-A in a network core Cloud scenario, where a datacenter
runs VNFs for the traffic generated in the whole target
region by four mobile applications, i.e., Facebook, Instagram,
Snapchat and YouTube. Each such service is assigned a
dedicated network slice, and the NI responsible for capacity
allocation at the datacenter must reserve in advance enough
resources to accommodate the future demand of single slices.

2Due to confidentiality reasons, we cannot disclose the identity of the
operator, the target geographical region, or the absolute volumes of traffic
captured in the data. We thus either normalize the traffic values, or report
them without the scaling factor that would reveal their order of magnitude.
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Fig. 5. Additional capacity allocation cost caused by INFOCOM19, RNN,
ES-RNN, and TES-RNN prediction errors. Results refer to four slices assigned
to specific services at a network core datacenter, with parameter α = 3.

To address this problem, we train TES-RNN with the ap-
propriate loss function in (3) and compare our hybrid solution
against the following three relevant benchmarks:

• INFOCOM19 [6] is the predictor designed by the study
that first introduced the problem of capacity forecasting
and proposed the loss function in (3). It relies on a DNN
architecture fed with a 3D tensor of the spatiotemporal
mobile data traffic, and uses convolutional layers to cap-
ture geographical correlations in the demands. This is the
state-of-the-art forecasting model for capacity allocation.

• ES-RNN [10] is the GPU implementation of the original
ES-RNN approach presented in Section III-A. For the
sake of fairness, ES-RNN is trained with the loss in (3).

• RNN uses the same RNN architecture of ES-RNN, but
relies on a global normalization for the input data, thus
without any of the optimizations proposed in this work
and in [10]. This benchmark is useful to understand how
statistical modelling favors the prediction accuracy. We
train also this benchmark with the loss function in (3).

1) Overall capacity forecasting performance: We start by
comparing the total costs incurred by the operator when
supporting capacity allocation with the different forecasting
models, in Figure 5. In order to make these values inter-
pretable, all costs are normalized to the (unavoidable) cost
of the minimum resources needed to accommodate the exact
demand for each service. In other words, costs are expressed
as the percent excess over a baseline given by an oracle that
makes a perfect prediction. In each case, the figure also tells
apart the fraction of the cost resulting from the two sources of
penalty, i.e., resource overprovisioning and SLA violations.

The key observation is that TES-RNN consistently out-
performs the benchmarks, with gains over the second best
solution that range between 8% and 25%. Moreover, our solu-
tion steadily guarantees very low SLA violation probabilities,
which is a clearly desirable feature for the operator. And, it
does so by causing an overprovisioning that is lower than or
comparable to that produced by the other predictors. These
are very encouraging findings, as one of the benchmarks is
the state-of-the-art model designed for capacity forecasting.

Interestingly, ES-RNN yields an allocation of unnecessary
resources close to that of TES-RNN, but incurs into much

more frequent SLA violations. INFOCOM19 and RNN, when
compared to TES-RNN, induce a substantial higher overpro-
visioning that often helps limiting SLA violations.

2) In-depth analysis of one prediction instance: To gain
additional understanding on the behaviors of the forecasting
models presented above, we detail a representative case of
capacity prediction in Figure 6. The plots show the time
series of the real traffic in the Facebook slice, as well as the
corresponding capacity allocation foreseen by each predictor.

Plot (a) portrays the traffic dynamics over a full week, and
underscores how all models follow well the long-timescale
fluctuations of the demands, such as low overnight traffic
or different activity peaks during daylight. Plots (b) and (c)
present a close-in view of two specific 3-hour periods, which
are evidenced by vertical shades in plot (a). The zoom magni-
fies how TES-RNN and ES-RNN help dimensioning a capacity
that is closer to the real demand than that anticipated by
INFOCOM19 and RNN, especially in low traffic conditions.

Plot (b) also exemplifies the reason for the poor performance
of ES-RNN in terms of high SLA violations: when used
in combination with the loss function in (3), the model has
issues in anticipating small variances in the traffic fluctuations,
which causes the capacity forecast to come too close to the
future demand. The result is a frequent underprovisioning:
for instance, ES-RNN assigns insufficient resources to the
Facebook slice in multiple periods in the considered example,
highlighted by the red intervals on the abscissa in the figure.
Instead, TES-RNN forecasts a smoother capacity curve that
stays above minor fluctuations, and hence yields a resource
provisioning similar to ES-RNN but avoids SLA violations.

3) Control of SLA violations: The results presented before
are for one specific value of the parameter α that controls the
equilibrium of overprovisioning and SLA violation risk in the
loss function in (3). By varying the parameter, the operator
shall be able to steer the capacity forecast so as to favor one
source of cost over the other, as explained in Section IV-A.

Figure 7 illustrates the capability of each model to enforce
the desired control above. The plot shows, for the case of
the Facebook slice, the normalized cost determined by each
predictor, as α sweeps values one order of magnitude apart. We
observe that TES-RNN yields again the best performance in
all settings. More importantly, it keeps the overall cost low by
progressively decreasing the occurrence of SLA violations as
α grows, which is exactly the desired behavior. INFOCOM19
and RNN can also achieve this result, however at a cost in
terms of overprovisioning that is almost twice that of our
hybrid model. ES-RNN is instead unable to modulate the SLA
violation cost, which in fact surprisingly grows with α.

The reason for the counter-intuitive ES-RNN performance
can be explained by the breakdown of the two cost sources,
in Figure 8. The plot illustrates, for each case in Figure 7:
(i) on the ordinate, the overprovisioning, still expressed as the
added cost over that of the optimal oracle; and, (ii) on the
abscissa, the SLA violations, measured as the percentage of
5-minute time steps during which the allocated resources are
insufficient to serve the slice demand. The trends are consistent
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Fig. 6. Time series of the real traffic generated by the Facebook slice, and of the relative capacity predictions of INFOCOM19, RNN, ES-RNN and TES-RNN.
(a) Weekly time series, with highlighted time intervals for close-in analysis. (b) Zoomed view of the 3:00-6:00 interval of Tuesday, with SLA violation periods
of ES-RNN marked in red on the abscissa. (c) Zoomed view of the 11:00-14:00 interval of Wednesday. Figure best viewed in colors.
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Fig. 7. Additional capacity allocation cost of INFOCOM19, RNN, ES-RNN,
and TES-RNN prediction errors, versus α and for the Facebook slice.
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across all models, and higher values of α always entail less
violations, as one would expect. However, while TES-RNN,
INFOCOM19 and RNN can rapidly bring underprovisioning
cases down to zero when α surges, the ES-RNN model is
much less sensitive to the parameter. Specifically, this predictor
reduces SLA violations at a slower pace than the rate at which
α increases: by looking at the extreme cases in the plot, ES-
RNN lowers violations by just one third when α grows 20-fold.
As α represents the cost of one SLA violation, the cut in the
number of occurrences is insufficient to compensate for the
higher penalty of each infraction, which explains the growing
trend of the SLA violation cost under ES-RNN in Figure 7.

More generally, Figure 8 gives a clear view of the operating
points of each forecasting method. TES-RNN offers by far
the best options to the operator, as it allows choosing among
configurations that simultaneously provide less SLA violations
and lower overprovisioning costs than the benchmarks. ES-
RNN allows staying at low overprovisioning levels as well,

but SLA violation rates cannot be controlled even with very
aggressive α settings, as discussed before. In contrast, both
INFOCOM19 and RNN can limit SLA violation rates, but
without a clear (and relatively high) bound on the minimum
overprovisioning costs achievable. As a result, TES-RNN
brings the best of the other models: for any possible operating
point of INFOCOM19, ES-RNN or RNN, we can choose an
α for TES-RNN that improves cost on both dimensions.

B. Forecasting for anomaly detection

The second use case we consider for the comparative evalu-
ation of TES-RNN is that of anomalous load detection at base
stations introduced in Section IV-B. We set this use case in
a virtualized network environment running an end-to-end net-
work slicing model, where proactive load anomaly detection is
paramount for the timely identification of undesired situations
which could be amended by, e.g., new network configurations.
In such settings, the anomalous load detection NI operates
at the granularity of individual services. Specifically, we run
experiments for slices that each accommodate one of four
different services, i.e., Facebook, Instagram, Snapchat and
YouTube. For each slice, we consider different base stations
and assess the performance of the anomaly detection algorithm
discussed in Section IV-B that relies on forecasting models of
the slice traffic at each such base station.

To support the anomaly detection decision, TES-RNN is
trained with an MSE loss function, according to the discussion
in Section IV-B. With such a loss function, TES-RNN operates
as a traditional mobile traffic forecasting model; this steers our
choice of benchmark to the following models.

• INFOCOM17 [7] is a popular forecasting technique that
is explicitly designed to predict mobile network traffic
at the level of individual base stations. It leverages a
DNN architecture where both global and local SAE layers
are used to learn spatial features in the data, followed
by LSTM layers that capture temporal correlations. This
benchmark represents the state of the art in point forecast
at base station level, i.e., the problem at hand; while other,
more recent predictors of mobile traffic volume have been
proposed in the literature, they target different objectives,
such as forecasting over very long time horizons [23], or
forecasting for the radio access as a whole [24].

• ES-RNN and RNN, as discussed in Section V-A. In this
case, the models are trained with an MSE loss function.
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Fig. 9. Benchmarking between INFOCOM17, RNN and TES-RNN forecast. (a) MSE values, (b) F1 Scores obtained with the algorithm discussed in
Section IV-B, and (c) ROC Curve for the Facebook service, for different τA thresholds. We remark that subplots (a) and (c) do not show results for ES-RNN
because, as extensively explained in Section III-C, training such a model with a MSE loss function in presence of mobile data traffic yields exceedingly high
overestimation (see, e.g., Figure 1) and a very high number of false positives. This results in the poor ES-RNN performance in subplot (b).

1) Mobile traffic prediction accuracy: We start our as-
sessment by comparing the sheer accuracy of the TES-RNN
against the benchmarks in the task of point forecasting mobile
traffic at base stations. Figure 9a shows the results, for all
models, services, averaged over five different base stations.
Independently of the test configuration, TES-RNN yields a
more accurate prediction than INFOCOM17. The average
MSE reduction across all base stations is in the 15%-30%
range, peaking at 50% for the Facebook case.

2) Anomaly detection performance: Having observed the
superior accuracy of TES-RNN mobile traffic prediction, we
investigate how this reflects on the actual performance of the
anomaly detection. We emulate the situation in which the
network analytics function of a mobile network gathers data
from the UPF [14] to monitor, e.g., the excessive usage of
the network by a terminal, and has to generate an alarm if
such event is anticipated to happen in the near future. We
consider for our test a scenario where different base stations
are monitored with the algorithm introduced in Section IV-B.

Figure 9b shows the performance of all the benchmarks
in terms of F1 Score, averaged over the five selected base
stations, for the four selected application types. TES-RNN
always achieves the best performance, while competitors pro-
vide unbalanced results, highly depending on the considered
application. In particular, the baseline ES-RNN almost always
triggers the anomalous load alarm, as the predicted values are
often well above the thresholds (and the real values).

To further corroborate the quality of TES-RNN in this kind
of tasks, we also evaluate its effectiveness with variable τA
values. More specifically, we show in Figure 9c the ROC curve
for the selected benchmarks. TES-RNN always yields the best
pairing between the Recall and the false positive rate, for all
the considered τA in the range between 30% and 95%.

C. Complexity

We conclude by analyzing the complexity of the proposed
solutions, in terms of the average training time for a single
prediction. The results are reported in Table I and refer
to experiments on a NVIDIA Tesla T4 GPU. In the first
use case, TES-RNN required on average 16.93 minutes per
capacity allocation experiment (combining training and test-
ing), whereas ES-RNN needed 16.32 minutes. INFOCOM19

TABLE I
TRAINING TIME OF ALL CONSIDERED BENCHMARKS, IN MINUTES.

Use Case TES-RNN ES-RNN RNN INFOCOM19/17
1 16.93 16.32 4.56 24.64
2 6.8 6.5 2.09 51.61

was the most taxing model, with a mean of 24.64 minutes
per run. For the second use case, TES-RNN required on
average 6.8 minutes for a single forecasting experiment, while
INFOCOM17 needed on average 51.61 minutes to process the
spatial dependency data needed by the model. Overall, TES-
RNN can be trained as fast as less optimized models (i.e., ES-
RNN) and much faster than state-of-the-art solutions, and is
only slower than models with lower performance (i.e., RNN).

VI. CONCLUSIONS

We proposed TES-RNN, a first-of-its-kind hybrid forecast-
ing model for mobile networks. By enhancing a recently pro-
posed method for joint optimization of statistical models and
neural network architectures, TES-RNN offers unprecedented
performance in supporting different anticipatory networking
tasks. When confronted with two practical application use
cases characterized by different real-world traffic volumes and
dynamics, TES-RNN granted gains up to 25% over state-of-
the-art predictors that were specifically designed for the target
problem. As a result, we believe that TES-RNN paves the way
for a new and improved generation of forecasting models that
will contribute to the success of fully automated, zero-touch
mobile network architectures.

The code of the TES-RNN model is publicly accessible at
https://github.com/nds-group/wowmom22_tes-rnn.
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