
30 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

WoTwins: Automatic Digital Twin Generator for the Web of Things / Sciullo L.; Trotta A.; Montori F.; Bononi
L.; Di Felice M.. - ELETTRONICO. - (2022), pp. 607-612. (Intervento presentato al convegno 23rd IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2022
tenutosi a Belfast, UK nel 14-17 June 2022) [10.1109/WoWMoM54355.2022.00095].

Published Version:

WoTwins: Automatic Digital Twin Generator for the Web of Things

Published:
DOI: http://doi.org/10.1109/WoWMoM54355.2022.00095

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/894472 since: 2022-09-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/WoWMoM54355.2022.00095
https://hdl.handle.net/11585/894472

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

L. Sciullo, A. Trotta, F. Montori, L. Bononi and M. Di Felice, "WoTwins: Automatic

Digital Twin Generator for the Web of Things," 2022 IEEE 23rd International

Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),

Belfast, United Kingdom, 2022, pp. 607-612

The final published version is available online at

https://dx.doi.org/10.1109/WoWMoM54355.2022.00095

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/WoWMoM54355.2022.00095

WoTwins: Automatic Digital Twin Generator for the

Web of Things

Luca Sciullo∗, Angelo Trotta∗, Federico Montori∗†, Luciano Bononi∗, Marco Di Felice∗†,
∗ Department of Computer Science and Engineering, University of Bologna, Italy

† Advanced Research Center on Electronic Systems “Ercole De Castro”, University of Bologna, Italy

Emails: {luca.sciullo, angelo.trotta5, federico.montori2, luciano.bononi, marco.difelice3}@unibo.it

Abstract—Digital Twins are crucial in Industry 4.0 IoT sce-
narios, as they replicate physical assets and enable important
tasks such as predictive analytics, what-if scenarios and real time
monitoring. The heterogeneity of IoT use cases usually makes
the development of digital twins extremely application-specific
as well as prone to interoperability issues. To overcome these
two challenges, we propose WoTwins, a framework that, on one
side, leverages the W3C Web of Things (WoT) standard to model
data and entities, and, on the other side, generates automatically
Digital Twins of existing Web Things by modeling their state
space through a Markov Decision Process (MDP) graph and
by predicting its behavior though Machine Learning techniques.
We conduct experiments on a simulated use cases related to IoT
robotics to evaluate our proposal.

Index Terms—Internet of Things, W3C Web of Things, Digital
Twin, Markov Decision Process, Machine Learning, Simulation

I. INTRODUCTION

Digital Twins (DTs) are computational models that are

coupled with a physical asset and evolve over time in order to

replicate its structure, its behavior and its reaction to events

as closely as possible [1]. DTs are extremely valuable in

various contexts, however they find their natural applicability

in predictive scenarios such as the Industry 4.0, where putting

the physical asset at risk is an infeasible option. Even though

the concept of a digital model of a physical component has

long been used over time, DTs are often extremely specialized

for the appliance that they are abstracting, creating a significant

barrier for reusability [2]. Few research efforts are dedicated to

offer a homogeneous approach. The problem is further exacer-

bated by the fragmentation of IoT devices which expose their

data and services through different access mechanisms and,

in most cases, in a non machine-understandable way. To this

purpose, among the various standardization efforts proposed

over the past decade, one of the most proficient is the Web of

Things (WoT), which has been standardized by the W3C in

2020 [3]. The WoT seeks to abstract physical things (or entire

networks) into single entities called Web Things (WTs), which

expose their functionalities (also called affordances in [3]) by

leveraging standard Web protocols and semantics. In addition,

a number of IoT frameworks is now dedicated to embrace the

concept of DT, but only as a way to abstract the physical layer

through a set of standard interfaces. An example is Eclipse

Ditto1, which recently announced an integration with the WoT

1https://www.eclipse.org/ditto/index.html

[4] and the Eclipse Arrowhead2 which implies a set of core

systems to support their deployment [5]. While these solutions

offer tools for an efficient integration of heterogeneous DTs

within a single application ecosystem, they still do not take

into account the actual representation of the physical asset in

terms of behavioral modeling.

To overcome the above mentioned issues, in this paper we

propose WoTwins, a framework that enables the automatic

generation of DTs by leveraging Markov Decision Processes

(MDP) to model the general state space of a physical entity

which has been mapped to a WT. WoTwins leverages the

Thing Description (TD) to retrieve the capabilities of the mon-

itored entity by abstracting from the application domain, and

it is able to learn its behaviour under the form of state-action

transitions. Then, it supports the automatic creation of DTs in

the form of standardized WTs, so that the resulting component

is ready to undergo a seamless on-boarding procedure and to

enable predictive and what-if analysis. More in detail, this

paper makes the following three contributions: (i) it proposes

a framework that is able to autonomously generate a DT of a

physical WT, by inferring its affordances through the TD and

generating a clone, a Digital Web Twin (DWT), that embeds

the behavioral model of the WT in input; (ii) it proposes

multiple techniques to estimate the transition matrix of the

MDP by monitoring the actual behaviour of the WT, including

the application of Machine Learning (ML) techniques for

those cases in which the state space has been only partially

explored; (iii) it evaluates the proposed solution through a set

of extensive experiments over a discrete scenario related to

IoT robotics.

The rest of the paper is organized as follows: Section II

presents the related works from literature, Section III details

the mathematical modeling of DTs on which the proposed

framework is based, while its architecture is outlined in

Section IV, Section V provides implementation details, Sec-

tion VI is about the evaluation of the framework and, finally,

Section VII concludes the paper.

II. RELATED WORKS

Several application scenarios that employ DTs often cannot

rely on supervised or heuristic approaches due to the nearly

intractable multi-objective optimization problems that describe

2https://projects.eclipse.org/projects/iot.arrowhead

them [6]. In such cases, the major task is rather modeled as

a Markov Decision Process (MDP) and Reinforcement Learn-

ing (RL) techniques are exploited in order to autonomously

achieve the global KPIs. However, most of these solutions,

like [7] and [8], are extremely tailored to a single use case,

without a general approach that could be of use outside such

field of application. As a matter of fact, the need for a DT

generalizable model is envisioned as a core part of the path

ahead for the very near future [9]. The work in [10] is a recent

proposal that, similarly to ours, aims to move from one-off

implementation of DTs to a generative paradigm, where formal

mathematical models represent the physical asset and evolve

through time according to a number of states and the sensor

observations in the real world. More in detail, they propose

a general framework based onto a graphical model inspired

by partially observable Markov Chains, where digital states

are estimated probabilistically, then they evaluate it over a

practical use case, i.e. a UAV. Our work uses similar models,

however it focuses on the aspect of data representation, as

it leverages the WoT paradigm to share data and interact,

making the issue of interoperability much less of a burden.

In a similar research trend we can find other solutions, such

as the work in [11], which explicitly refers to the concept of

Probabilistic Digital Twins (PDTs), that are built on Bayesian

probabilistic frameworks. The base concept is that DTs must

rely on both observations, coming from sensing experience, as

well as assumptions, as in fact it is never possible to observe

every single property that affects the physical asset, therefore,

some of the observations must be replaced by mathematical

models in order to capture uncertainties.

A. W3C Web of Things

The concept of DT is often paired with the world of the IoT,

in which the past decade has witnessed an ongoing fragmen-

tation due to the emergence of heterogeneous technologies at

all layers of the stack. The WoT proposes to overcome such

a differentiation by extending legacy Web technologies to the

IoT, bringing in solid standards and uniform interfaces [3].

More in particular, WoT abstracts physical entities into Web

Things (WT), that are software components that act as a bridge

between the physical asset and the outer world. They expose

the entity’s capabilities by means of a Thing Description

(TD), a standard JSON-LD document that describes the WT

metadata, its semantics and a number of affordances, i.e. the

interactions that is is possible to have with such WT. More in

particular, these include: (i) properties, which describe state

variables that can be naturally fetched and/or modified, (ii)

actions, used to call functions implemented by the WT, and

(iii) events, that can trigger effects (such as generating data)

onto the WT on top of defined conditions.

The concepts of WoT and DT have seldom been paired

in literature, such as in [12], where a “Digital Twin WT” is

envisioned as a virtual entity derived from the aggregation of

multiple physical ones, or in [13], where the WoT is seen

as the scaffolding to better grasp the intertwining of single

components within structurally complex Systems-of-Systems,

or again in [14], where DTs are WTs that are automati-

cally generated and managed within a container middleware,

however authors do not specify whether the behavior is also

reproduced, as they focuses on semantic interactions.

As a conclusion, the context of DT is extremely novel and

few research efforts have been directed towards automatic

generation of DTs in a generalized context, at the same time

none of them imply a standard, such as the W3C WoT, to

describe how to interact with them.

III. DIGITAL TWIN MODELING

The WoTwins framework enables the automatic generation

of a DT of a running WT in a domain-agnostic way, i.e. no

prior knowledge about the semantic of the WT is required. The

DT of the WT, referred as DWT in the following, is modeled

through a Markov Decision Process (MDP). The latter includes

the following components:

• A discrete list of states (S);

• A discrete list of actions (A);

• A set of probability distributions T : S × A × S → R,

where T (s, a, s′) is the probability of moving from state s

to state s′ after executing action a, with
∑

s′ T (s, a, s
′) =

1, ∀s ∈ S, a ∈ A.

• A reward function R : S ×A → R, where R(s, a) is the

value of the reward when executing action a in state s.

Due to the well structured definition of a WT through its TD,

the mapping between the WT Affordances and the MDP com-

ponents is straightforward. Indeed, let P = {p1, p2, ..., pn}
be the properties of the WT exposed in its TD. We assume

that each property is discrete and assumes only a limited set

of values; let Vpi
be the set of valid values for property pi.

Similarly, let AW be the list of actions of the WT exposed in

its TD. For ease of modeling, we assume that actions can take

only discrete parameters in input and we assume also to have

no information about the effect of this action on the behaviour

of the WT, i.e. zero or multiple properties can change their

value after the execution of an action. The MDP of the DWT

is defined as follows:

• S = Vp1
×Vp2

×· · ·×Vpn
, i.e. the set of states coincides

with the set of possible configurations of the n properties.

Let id : S → N be a function numbering the states.

• A = AW , i.e., same actions of the WT.

The WoTwins framework builds the S and A sets by parsing

the TD of the WT. The transition probability matrix (T) is

estimated by monitoring the running behaviour of the WT, i.e.,

the property change as a consequence of an action invocation.

More specifically, we consider three methodologies for the

estimation of the T matrix:

• Frequency estimator. The probability T (s, a, s′) is esti-

mated from the relative occurrences of the transitions.

More formally:

T (s, a, s′) =
N(s, a, s′)

N(s, a)
(1)

where N(s, a) the number of times action a is executed

from state s, and N(s, a, s′) the number of cases where

Thing Description

Name Affordance
Type Type min,max

(input)

counter Property Integer [0,2]

randomAction(a) Action Integer [0,2]

Mapping Training

Fig. 1. The Figure shows the mapping between a WT and its DWT. The WoTwins framework takes in input a WT exposing one property (counter) and
one action (randomAction). The latter takes as input one parameter (a), and changes the value of the property according to a probability distribution which
depends on the current property value and on the a value. A fully connected MDP is generated by parsing the TD. After having monitored the WT for a
while, the MDP is updated with the values of the estimated state-action transition probabilities.

the WT switches to state s′. We set T (s, a, s′) = 1
|S| in

case the state-action is unknown (N(s, a) = 0). In other

words, we assume that the MDP graph is fully connected

at startup, and that the WT may transit to any possible

state after each action.

• ML estimator. The previous solution may fail when the

MDP includes a large set of states, or when the WT visits

only a limited set of it. For this reason, we investigate

the application of Machine Learning (ML) techniques to

predict the values of the T (s, a, s′) function. The current

implementation leverages an Artificial Neural Network

(ANN) as further detailed in Section V.

• Hybrid estimator. It combines the previous two methods.

It applies the Frequency estimator in case action a in

state s has been executed a minimum number of times,

i.e., N(s, a) > φ where φ ∈ N where φ is a user-defined

threshold. The ML estimator is used otherwise.

A performance comparison between the two classes of estima-

tors is reported in Section VI. Figure 1 shows an example of

MDP generation from a WT that exposes one property Counter

(with possible values 0, 1 and 2) and one action randomAction

(with a parameter in range {0, 1, 2}). At startup, the WoTwins

framework creates a fully connected MDP, where all states are

reachable after an action execution. After a monitoring phase,

the WoTwins framework estimates the values of T matrix:

the subfigure on the left shows the resulting MDP where the

transitions with zero probability have been pruned.

It is worth highlighting that the choice of the MDP introduces

some implicit assumptions about the WT being modeled, like

the fact that the property variables are discrete and that the

current states contain all the information to predict the system

evolution over time. However, we believe that such assump-

tions may fit well the characteristics of many IoT devices,

specially edge ones, that expose limited functionalities of

actuation and configuration. Finally, we remark that the reward

function is currently not exploited by the WoTwins framework.

However, the possibility to self-optimize the behaviour of a

WT based on predicted reward values of the DWT will be

considered as future study.

IV. FRAMEWORK ARCHITECTURE

The WoTwins architecture is micro-services oriented and

each macro-functionality has been designed to be contained

in a single module, as shown in Figure 2. We distinguish

between front-end and back-end functionalities. In the first

case, all the front-end functionalities are included in the

Dashboard module, that offers an intuitive Graphical User

Interface (GUI) to use the WoTwins framework. The latter

includes the possibility to interact with the physical WTs and

the relative DWTs and of controlling the training phase that is

used to estimate the T function of the MDP. As better detailed

in Figure 3, user starts the training phase during which the

behaviour of the WT is observed, in terms of property value

changes after the execution of each action. The user can

decide when to stop the monitoring phase by spawning a

new DWT with the current level of training. Finally, user can

interact with the DWT enabling what-if analysis through a

dedicated interface, for instance invoking actions on the DWT

and observing in real-time the system evolution as sequence

of next states. We highlight that the interaction with the DWT

occurs through a WoT interface which is a clone of the TD

of the physical WT; in other words, the fact that the user or

a software client is interacting with a simulated entity rather

than with its physical counterpart is equivalent in terms of API.

The back-end functionalities are split into four different

modules: (i) the Core Module, (ii) Twin Module, (iii) Thing

Module, (iv) Learning Module. The Core module is in charge

of enabling the communication between the Dashboard Mod-

ule and the other components, by translating the requests from

the dashboard into proper commands to invoke on the other

services. In addition, the Core module implements the WT

monitoring phase by including mechanisms for collecting WT

data which will be used during the training phase (mainly

events of property changes and actions invocations). Finally,

it acts as a proxy for interacting with the DWT once it has been

generated. The Thing Module is responsible of communicating

with the physical WT, while the Twin module includes all

the functionalities for spawning a new DWT as well as for

interacting with it. Finally, the Learning Module includes the

algorithms for the estimation of the behaviour of the DWT,

DASHBOARD
MODULE

LEARNING
MODULE

CORE
MODULE

TWIN
MODULE

THING
MODULE

BACK-END

FRONT-END

Fig. 2. The WoTwins architecture

thing: bulb
state: on

Thing
discovery

Thing
managing

Application
deployment

Data
monitoring

IF Door.state == 'Open'
THEN Bulb.TurnOn()

action: turn off

WoT Store

Door Lock

1 2 3 4Model
training

Twin
spawning

Twin
Interactions

WoTwins - Interacting Twin

1 2 3

START TRAINING

MODEL

SPAWN THE TWIN

MONITOR TRAINING

New DWT

WHATIF ANALYSIS

Fig. 3. The WoTwins interaction flow

modeled by its MDP as described before.

V. IMPLEMENTATION

The Dashboard module includes front-end functionalities

and is constituted by a Web interface written using the Angular

framework, and in particular the Apache Echarts3 library

for plotting the MDP graphs of each TW/DTW. The back-

end functionalities consist of four services, as explained in

Section IV; each of them has been implemented in Typescript

using NodeJS as a runtime system. Both the Twin module and

the Thing module are W3C WoT-enabled services, meaning

that they implement a WT following the W3C WoT Scripting

API indications4. More in detail, they run a WoT Servient that

has been written using the Eclipse Node-wot5, the official

NodeJS WoT framework provided by the W3C. The Core

module is based on the NestJS6 framework and it covers a dual

role: on the one side, it offers REST APIs to interact with the

framework, on the other side it communicates with the W3C

WoT services of the Twin and the Thing Modules through

Node-wot as a client library. Finally, the Learning Module

includes the MDP estimator algorithms mentioned in Section

III. All the services have been containerized through docker

and orchestrated through docker-swarm. The ML estimator has

been implemented in Python through the Keras7 framework.

More in detail, the service keeps a history of the ⟨s, a, s′⟩
state transitions performed by the monitored WT. To be able

3https://echarts.apache.org/en/index.html
4https://www.w3.org/TR/wot-scripting-api/
5https://github.com/eclipse/thingweb.node-wot
6https://nestjs.com/
7https://keras.io

to estimate the probability T (s, a, s′) also for a state s that has

been never visited by the WT, the estimator attempts to learn

the patterns of state transitions rather than the destination state.

The pattern is defined as the state difference id(s′) − id(s),
where id(·) is the state numbering function previously intro-

duced in Section III. The ML model is a feed-forward ANN

with a dense hidden layer and an output layer with softmax

activation.

VI. PERFORMANCE EVALUATION

In this Section, we test and evaluate the WoTwins frame-

work by demonstrating its ability of autonomous DWTs gen-

eration from a generic WT.

To this aim, we set up a simulation environment where a small

ground rover (GR) moves on a fixed-size N×N grid map.

The GR is characterized by its position ⟨x, y⟩ inside the grid

map, i.e. 0 ≤ x, y < N and movements are constrained to

be inside the grid map. The GR can execute a single step

movement in four directions: up, down, left, right or it can

stay still. We assume a slotted time model T = {t0, t1, . . . },

with a fixed time slot duration. The simulation environment

works as follows: at each time slot tk ∈ T , the action move is

executed and the GR advances to time slot tk+1 accordingly to

the function parameter: up, down, left, right, stop. The overall

rationale is the simulation of a ground rover that starts from its

home charging station and moves around the map by executing

its task and returning back home to recharge its batteries.

To make this simulation environment not trivial, we intro-

duced a non-deterministic behaviour in the movement; more

specifically Sx,y is a binary variable for each cell ⟨x, y⟩ which

models the presence of slippery material on the ground. Here,

Sx,y = True if the cell is slippery and False otherwise.

Moreover, we define pslip as the probability of slip on a

slippery cell. The slippery effect will change the destination

cell after one movement, i.e. it will move the GR left or

right after a move(up) or after a move(down) or it will

move the GR up or down after a move(left) or after a

move(right), as depicted in Figure 4.

0 1 2 3

0

1

2

3

pslip

Fig. 4. The scenario environment used for the experiments with N = 4. The
GR is placed at position ⟨2, 2⟩ and the action move(up) is executed. The
normal behaviour would move the GR to ⟨2, 1⟩. If S2,1 = True then with
probability pslip the rover will go to ⟨3, 1⟩ or ⟨1, 1⟩.

Then, we mapped the GR states and actions through a WT

with the affordances listed in Table I.

TABLE I
THE AFFORDANCES OF THE GR.

Affordance
Type

Value Brief Description

Property x ∈ [0..N − 1] The x-coordinate of the GR’s position
Property y ∈ [0..N − 1] The y-coordinate of the GR’s position
Action move(d) Move the GR. Here d is the possible

direction with admissible values: d ∈
{up, down, left, right, stop}

The evaluation process consists of three phases: (i) model

training, (ii) DWT spawning, and (iii) DWT evaluation. In

the first phase, we executed a variable number of learning

rounds to train the matrix T (see Section III). To this aim,

the GR moves randomly in the grid map starting from cell

⟨0, 0⟩; all the movements and the change in the GR’s states are

observed by the Monitor Training module. The slippery cells,

i.e. the cells ⟨x, y⟩ having Sx,y = True, are placed randomly

in the scenario with a percentage of 20% and with pslip = 0.1.

During the third phase, we evaluated the performance of the

generated DWT in terms of average accuracy metric. The latter

is the ratio of correct estimations of the DWT’s final position

compared with the real (simulated in our case) WT’s position

after N STEPS movements.

We used the Frequency estimator methodology to update

the transition probability matrix T . In Figures 5(a) and 5(b),

we evaluated the evolution of the DWT after different learning

rounds, for different values of N STEPS, and for two dif-

ferent grid size: 4×4 in Figure 5(a) and 8×8 in Figure 5(b). It

is easy to notice that the learning rounds and the N STEPS

parameters have a significant impact on the accuracy index.

In fact, the longer the WT behaviour is observed, the more

the MDP model is able to correctly emulate the behaviour

of the original WT. The accuracy decreases with N STEPS

due to the longest path to emulate. However, in Figure 5(a)

the accuracy tends to reach easily the stable point above 0.8,

while in Figure 5(b) the increase is much slower due to the

larger MDP size. The impact of the MDP size is shown in

Figure 5(c) which shows the accuracy as a function of the

grid size on the x-axis. The results confirm that the Frequency

estimator method can be used only on small scenarios and,

more in general, for WTs having a small number of state-

action transitions. Figures 6(a) and 6(b) show the heatmaps

of the explored grid cells during the learning phase after 1000
learning rounds for grid maps of 8×8 and 16×16, respectively.

It’s easy to notice that in the 16×16 case (Figure 6(b)) the

GR explored only a small part of the whole scenario; as a

consequence, the Frequency method is not able to estimate

correctly the GR behaviour for the unexplored states.

Finally, Figure 6(c) compares the three different estimators

of the transition matrix T described in Section III. On the x-

axis we report the grid size while on the y-axis the average

accuracy for N STEPS=1. We considered different settings

of the environment and of the testing methodology compared

to the previous experiments: (i) the environment is still non

deterministic however the slipping cells are placed on the diag-

onal and not randomly; (ii) during the training phase, the rover

performs random actions of fixed length (10 actions) starting

from an initial position with x, y both randomly chosen in the

interval {0, N
4
}. As a result of this setting, the GR may have

not explored all possible state-action combinations in large-

scale grid environments. Vice versa, during the testing phase,

the initial position of the rover is randomly chosen among all

the cells of the scenario. It is easy to see that the Frequency

estimator achieves its highest accuracy for N = 4, however

the performance drops when increasing the scenario size due

to the consequential explosion of the number of states. At the

same time, the Figure confirms the ability of the ML estimator

to learn the state transition patterns of the rover in an effective

way. The Hybrid estimator (φ = 3) combines the benefits of

both approaches: it uses the frequency measure for N = 4 and

starts using the ANN as primary solution for N > 10.

VII. CONCLUSION AND FUTURE WORKS

In this paper we proposed WoTwins, a framework that

is able to generate DTs on demand in WoT scenarios. The

W3C WoT standard guarantees the standardization of our

approach, since if the physical asset is consistently described

by a TD, then we are able to gain access to all its interfaces

to the outer world. WoTwins maps the affordances of a WT

into a Markov Decision Process (MDP), and it learns the

behaviour of the WT by estimating the state-action transition

probabilities through multiple techniques. In particular, we

integrated a ML approach to learn the state transition function

over unseen scenarios and validated the effectiveness of our

proposal over a test use case. Future works include: the support

for reward properties to enable WT self-optimization and the

100 250 500 1000
Learning rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

N STEPS = 1
N STEPS = 2
N STEPS = 5
N STEPS = 10

(a)

100 250 500 1000
Learning rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

N STEPS = 1
N STEPS = 2
N STEPS = 5
N STEPS = 10

(b)

4x4 6x6 8x8 10x10 12x12 14x14 16x16
Grid size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

N STEPS = 1
N STEPS = 2
N STEPS = 5
N STEPS = 10

(c)

Fig. 5. The accuracy index when varying the learning round and N STEPS is shown in Figures 5(a) and 5(b) with a grid size of 4×4

and 8×8, respectively. The accuracy when varying the grid size and N STEPS is shown in Figure 5(c).

0

5

10

15

20

25

30

35

40

(a)

0

5

10

15

20

25

30

35

40

(b)

4x4 6x6 8x8 10x10 12x12 14x14 16x16
Grid size

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Frequency-based
DL-based
Hybrid (Frequency+DL)-based

(c)

Fig. 6. Figures 6(a) and 6(b) show the heatmaps of the visited cells during the learning phase in a grid map of 8×8 and 16×16, respectively.
The accuracy index when varying the grid size and for three different estimators is shown in Figure 6(c).

extension to other modeling approaches to support continuous

properties.

ACKNOWLEDGEMENTS

This work is supported by the FSE REACT EU - PON

R&I 2014-2020 under the contract RTDA GREEN (CUP

J41B21012140007) and by the EU ECSEL Joint Undertaking

under grant agreement No 826452 (Arrowhead Tools), within

the EU Horizon 2020 research and innovation programme.

REFERENCES

[1] AIAA Digital Engineering Integration Committee, “Digital twin: Defi-
nition & value. An AIAA and AIA position paper,” American Institute

of Aeronautics and Astronautics (AIAA) and Aerospace Industries Asso-

ciation (AIA), 2020.

[2] S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling
digital twins from the artisanal to the industrial,” Nature Computational

Science, vol. 1, no. 5, pp. 313–320, 2021.

[3] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura,
and K. Kajimoto, “Web of Things (WoT) Architecture,” W3C Recom-
mendation, Apr. 2020, https://www.w3.org/TR/wot-architecture/.

[4] T. Jäckle, “W3C WoT (Web of Things) integration,” https://www.eclipse.
org/ditto/2022-03-03-wot-integration.html, accessed: 2022-03-04.

[5] G. Kulcsár, P. Varga, M. S. Tatara, F. Montori, M. A. Inigo, G. Urgese,
and P. Azzoni, “Modeling an industrial revolution: How to manage
large-scale, complex iot ecosystems?” in 2021 IFIP/IEEE International

Symposium on Integrated Network Management (IM). IEEE, 2021, pp.
896–901.

[6] Z. Huang, Y. Shen, J. Li, M. Fey, and C. Brecher, “A survey on ai-
driven digital twins in industry 4.0: Smart manufacturing and advanced
robotics,” Sensors, vol. 21, no. 19, p. 6340, 2021.

[7] T. Wang, J. Cheng, Y. Yang, C. Esposito, H. Snoussi, and F. Tao,
“Adaptive optimization method in digital twin conveyor systems via
range-inspection control,” IEEE Transactions on Automation Science

and Engineering, 2020.
[8] F. Jaensch, A. Csiszar, A. Kienzlen, and A. Verl, “Reinforcement

learning of material flow control logic using hardware-in-the-loop simu-
lation,” in 2018 First International Conference on Artificial Intelligence

for Industries (AI4I). IEEE, 2018, pp. 77–80.
[9] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context:

a survey on technical features, scenarios, and architectural models,”
Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, 2020.

[10] M. G. Kapteyn, J. V. Pretorius, and K. E. Willcox, “A probabilistic
graphical model foundation for enabling predictive digital twins at
scale,” Nature Computational Science, vol. 1, no. 5, pp. 337–347, 2021.

[11] C. Agrell, K. R. Dahl, and A. Hafver, “Optimal sequential decision mak-
ing with probabilistic digital twins,” arXiv preprint arXiv:2103.07405,
2021.

[12] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, F. Zonzini, L. De Marchi,
M. Di Felice, A. Marzani, and T. S. Cinotti, “Modron: A scalable and
interoperable web of things platform for structural health monitoring,”
in 2021 IEEE 18th Annual Consumer Communications & Networking

Conference (CCNC). IEEE, 2021, pp. 1–7.
[13] G. Privat, T. Coupaye, S. Bolle, and P. Raipin-Parvedy, “Wot graph as

multiscale digital-twin for cyber-physical systems-of-systems,” in Proc.,

2nd W3C Web of Things Workshop. Grenoble, France: Gilles Private

Orange Labs Services, 2019.
[14] S. Muralidharan, B. Yoo, and H. Ko, “Designing a semantic digital twin

model for iot,” in 2020 IEEE International Conference on Consumer

Electronics (ICCE). IEEE, 2020, pp. 1–2.

