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Abst rac t 

A programmer wishing to make a change to a piece of code must first gain a ful l understanding of 

the behaviours and functionality involved. This process of program comprehension is difficult and 

time consuming, and often hindered by the absence of useful program documentation. 

Where documentation is absent, static analysis techniques are often employed to gather pro

gramming level information in the form of data and control flow relationships, directly from the 

source code itself. Software maintenance environments are created by grouping together a number 

of different static analysis tools such as program slicers, call graph builders and data flow anal

ysis tools, providing a maintainer with a selection of 'views' of the subject code. However, each 

analysis tool often requires its own intermediate program representation (IPR). For example, an 

environment comprising five tools may require five different IPRs, giving repetition of information 

and inefficient use of storage space. 

A solution to this problem is to develop a single combined representation which contains all the 

program relationships required to present a maintainer with each required code view. The research 

presented in this thesis describes the Combined C Graph (CCG), a dependence-bcLsed represen

tation for C programs from which a maintainer is able to construct data and control dependence 

views, interprocedural control flow views, program slices and ripple analyses. The CCG extends 

earlier dependence-based program representations, introducing language features such as expres

sions with embedded side effects and control flows, value returning functions, pointer variables, 

pointer parameters, array variables and structure variables. Algorithms for the construction of the 

CCG are described and the feasibility of the CCG demonstrated by means of a C/Prolog based 

prototype implementation. 
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Chapter 1 

Introduction 

As computer hardware becomes more and more powerful, the size and complexity of applications 

demanded by users continues to increase. The late 1960s saw the beginning of the 'software crisis' 

- existing software development methods proved to be inadequate when applied to new large scale 

projects. Consequently systems were often late, over budget, unreliable, difficult to maintain and 

unsatisfactory to the users. 

Over the past twenty-five years, the 'software crisis' has been eased to a limited extent through 

the use of software engineering techniques. Software engineering is defined by Fairley[24] as 

The technological and management discipline concerned with the systematic production 

and maintenance of software products that are developed and modified on time and 

within cost estimates. 

Software process models such as the waterfall model have simpHfied management problems, whilst 

techniques such as structured programming, information hiding and formal development methods 

together with the use of tools and a greater emphasis on training and quality have led to more 

reliable software. However, the 'software crisis' is still with us and better techniques, tools and 

education are still required. 

1.1 The Software Maintenance Problem 

Despite improvements in software engineering processes, the need for software maintenance, the 

modification of a program after delivery, remains unavoidable. Software maintenance can be a 

major cost for any large organisation. Foster et al[30] provide an estimated figure showing 2% of 

a typical company's overall expenditure to be on software maintenance. Many other figures have 



been produced showing the costs of maintenance during the lifetime of a piece of software. Parikh 

and Zvegintzov[69] indicate that software maintenance consumes 50% of all computer resources 

and research by Boehm[ll] has shown that maintenance costs can be up to ten times those of 

initial development. Only recently have organisations begun to recognise software maintenance ELS 

a problem and yet i t is in this area of the software life cycle that the greatest potential for savings 

exists. 

Four categories of maintenance have been described. 

• Perfective maintenance - improving the functionality of software in response to the user's 

defined changes. 

• Corrective maintenance - correction of errors in the software. 

• Adaptive maintenance - software alterations due to changes in environment. 

• Preventative maintenance - updating the software to improve its future maintainability, with

out altering the functionality. 

Of the four areas, studies by Lientz and Swanson[59] showed 64% of the costs involved to be in 

perfective maintenance and only 17% in corrective maintenance. 

Many factors have been highlighted as contributing to the software maintenance problem. Lientz 

and Swanson identify six major causes. 

• quality of documentation 

• user demand for enhancements 

• competing demands for maintenance personnel 

• meeting schedules 

• inadequate user training 

• staff turnover 

Sommerville[84] lists several other factors. 

• is the application clearly defined or new? 

• external environment 

• hardware stability 



• language and style of code 

• quality of validation and testing 

Maintenance activities can also render further maintenance more difficult as program structure 

becomes degraded. Software maintenance is generally perceived as having a low profile, with 

management often placing little emphasis on the activity. Few tools exist and the quantity of 

research into the subject, although increasing, is still small. 

Some advances have been made in combating these problems. I t is now recognised that programs, 

must be designed and implemented in ways that will reduce maintenance problems. Yourdon[95] 

states that maintenance costs may be reduced by a factor of five through the use of structured 

analysis, design and programming. The use of quality procedures has become important, leading 

to traceability through the development life cycle. Research has also been carried out to devise 

quality metrics to assess code from a maintenance viewpoint. McCabe[65] and Halstead[37] have 

devised metrics assessing program complexity whilst Kafura and Reddy[49] use seven metrics to 

assess a program. 

Each of these techniques addresses the maintenance problem from the development aspect of 

the software life cycle. Improvements in the software maintenance phase itself have come through 

the application of process modelling to software maintenance. Boehm[12], Patkau[70] and Foster[29] 

each describe models for software maintenance. Reverse engineering techniques in which represen

tations of the system are created at higher levels of abstraction have also been widely applied, 

especially in connection with archaic software systems. Reverse engineering may be classified as 

inverse engineering or design recovery, allowing the recapture of information at the specification 

and design levels respectively. Examples of such systems are described by "Ward et al[87], who 

presents an inverse engineering tool based on formal program transformations, and Antonini et 

al[6], who describe the creation of structure diagrams and design documents from COBOL code. 

Following a reverse engineering step, 'forward' engineering processes may then be used to produce a 

completely new 're-engineered' system. A simpler technique is that of code restructuring, in which 

existing systems are restructured producing code in the same language as the original. 

Software maintenance is made more difficult because any changes made to the source code may 

induce unexpected ripple effects on other parts of the system. "Work on measuring the stability of 

code against ripple effects has been reported by Yau and CollofeIlo[94]. Ripple effects may also occur 

at the design and specification levels and may additionally involve system documentation. Impact 

analysis, the task of 'assessing the effects of making a set of changes to a software system', allows a 



maintainer to estimate what is needed to accomplish a change or identify possible consequences. By 

employing impact analysis techniques a maintainer is able to derive a bounded change set, which 

represents a complete and consistent modification with no undesirable ripple effects. Starting 

with an initial set of impacted objects, impact analysis identifies iteratively additional candidate 

objects until no further candidates are found. Current research in impact analysis focusses on the 

development of automated tools, for example the 'Propagation Control System' developed at Matra 

Marconi [10] [73]. 

1.2 Program Comprehension 

Whenever a change is to be made to a piece of software, i t is important that the maintainer gains 

a complete understanding of the behaviour and functionality involved. This process of •program 

comprehension is frequently made more difficult by the absence of program documentation. The 

maintenance programmer will often not have been involved in the development process or a signifi

cant period of time may have elapsed between development and maintenance. Documentation will 

then become of crucial importance. 

Documentation is often found to be out of date, incomplete, difficult to read, difficult to update 

or not suited to the needs of the programmer. In many cases, particularly with older programs, 

documentation simply does not exist. As pressure increcises through tight development deadlines, 

'non-essential' activities such as documentation are postponed or forgotten. Furthermore the variety 

of available documentation preparation systems means that often within the same project, different 

systems are used. At later stages updating such documentation can become impractical if the 

systems are no longer available or understood. I t is therefore evident that in many Ccises the 

maintenance programmer's only reliable description of the software will be the source code. In this 

CEise the maintainer must attempt to comprehend the code itself. 

Simple code reading can be an effective way of understanding a program but is obviously de

pendent on the size and complexity of the code. Well structured, consistently indented code with 

meaningful identifiers and useful comments will be eeisier to understand than a program with in

consistent style and meaningless names. 

Various models have been developed describing the mental processes involved in program com

prehension. Brooks[13] suggests comprehension involves the top-down construction of a mental 

model at different levels from the problem domain to the programming domain, together with 

the relationships between each domain. Letovsky[56] describes a programmer's mental model as a 



series of layers between the specification and implementation. A programmer employs both top-

down and bottom-up strategies, forming an 'inquiry' when the current mental model is found to be 

inadequate. In either case, a sound understanding of the system at the code level is a pre-requisite 

for successful software maintenance. 

The complex nature of data and control dependencies between the modules and functions 

comprising a software system make the process of program comprehension a difficult task. I t is not 

surprising that Standish[85] reports the time spent on program understanding to be between 50% 

and 90% of the total time spent on software maintenance. Automatic tools are required if this time 

is to be reduced and savings made. 

An important class of automated maintenance tools are static analysis tools, which are able to 

analyse a program without its execution to extract information of use to a maintenance programmer. 

This information, in the form of cross references, control flows, data flows, call graphs or program 

slices, is often presented graphically. By integrating static analysis tools, software maintenance 

environments have been developed. The source codecs analysed and the resulting information 

stored in a central database for later browsing by the maintainer. 

Integrated maintenance environments are able to provide multiple views of a software system. 

The maintainer is presented with information in more than one form and can switch quickly from 

one view to another, often through the use of hypertext and multiple window environments. Views 

can also aid program comprehension by concentrating the maintainer's attention on relevant parts of 

the software. Maintenance environments often present information at different levels of abstraction. 

The maintainer can gain a general understanding of the program and can then examine parts of 

the code in closer detail. 

An example of such a system is Chen et al's C Information Abstractor[18]. This tool collects 

information in a relational database which can be accessed by a maintainer. Cleveland[19][20) also 

describes a tool providing control flows, data flows, call graphs and cross references, together with 

a user interface based on multiple windows, to aid the comprehension of assembler code. 

1.3 Research Problems 

'Whilst the software maintainer is primarily interested in the views and information provided by 

a software maintenance environment, and by the usability of its external interface, an important 

aspect of these tools is the intermediate program representation on which the tool is based. Where a 

maintenance environment is created simply by grouping a set of unconnected software maintenance 



tools, such as a call graph builder, a cross referencer and a program slicer, each tool may require 

its own intermediate program representation. For example, a slicing algorithm will require the 

construction of a different representation than would a data flow analysis algorithm. A maintenance 

environment providing these two static analysis views would require two different intermediate 

program representations. The need for two (or more) representations will lead to repetition of 

program information and inefficient use of storage space. 

Harrold and Malloy[38][39] first recognised this problem and proposed a single intermediate 

program representation containing sufficient information to create each of the views required-by 

the software maintainer. This representation unifies the relationships and dependencies between 

the program components and allows savings to be made in the use of storage space. Any algorithm 

now only accesses one single program representation. 

Harrold and Malloy describe the Unified Interprocedural Graph (UIG), a dependence-based 

intermediate program representation providing four program views - program slices, call graph, 

data flow and control flow. However, the language modelled by the UIG is restricted to only 

ordinal types, assignments, while loops, for statements, if statements and procedures with reference 

parameters. 

Any software maintenance or program comprehension tool can only become of real use if i t is 

practically applicable to large programs written in real programming languages. Such programs are 

the domain in which software maintenance and program comprehension become truly problematic 

and hence costly. The aim of this research is to extend the ideas of Harrold and Malloy to allow 

the modelling of programs written in the C programming language [51]. The C language presents a 

number of additional language constructs and features which are not part of the language considered 

by Harrold and Malloy. The primary features to be addressed in this thesis follow. 

Value-returning functions Functions in the C language may or may not return a value to the 

caller function. 

Embedded side effects Expressions in C may contain embedded side effects through the use of 

the postfix and prefix increment/decrement operators, assignments and function calls. 

Embedded control flow Expressions in C may additionally contain embedded control flow due 

to the conditional expression operator or short-circuit evaluation of boolean expressions. 

Pointers C permits arbitrary assignment of pointer variables and dynamic allocation of memory, 

leading to complex aliasing problems. 



s t r u c t u r e s The combination of pointers and structures permits the use of self-referential struc

tures such as lists and trees. 

A r r a y s There is a strong relationship between arrays and pointers - operations wri t ten using 

arrays can also be achieved using pointer variables. 

V a l u e p a r a m e t e r s Parameters in C are passed by value. To achieve the effects of call by reference' 

a programmer must make use of pointers as actual parameters. 

C o n t r o l s t r u c t u r e s C provides the s w i t c h control structure and allows the creation of unstruc--

tured programs through the use of break, con t inue and goto. 

A n intermediate program representation, the Combined C Graph (CCG) , w i l l be developed to 

represent programs involving these language features. Algor i thms w i l l be created to construct the 

fol lowing program views f r o m the new intermediate representation. 

C a l l g r a p h A representation of the call relationships between the program's functions. 

C o n t r o l dependence A representation of control dependencies between the program's state

ments. 

Def in i t ion-use pairs A representation of data dependencies between the program's statements. 

D a t a flow i n f o r m a t i o n In format ion on the defini t ion and use of global variables and 'pointer' 

parameters. 

P r o g r a m slices A l l statements and predicates of the program tha t might affect the value of a 

variable v at statement s. 

The intermediate representation and view construction algorithms w i l l each be demonstrated 

by means of a prototype implementat ion. 

1.4 Criteria for Success 

1. Different views of a C program are to be made available to a maintainer and these views 

should help the comprehension process. The interface presented to the maintainer should 

allow quick switching between views and should allow the maintainer to concentrate on areas 

of the program which are of particular interest. Views available should include caJl graphs, 

definition-use, data flow, control dependence and program slices. These views should be 

created quickly and should provide the maintainer w i t h accurate and useful information. 



2. The level of coverage of the C language tha t is provided by the representation. Of particular 

importance are features such as pointers, embedded side-effects, embedded control flows and 

value-returning functions. 

3. The accuracy of the representation. Language features w i t h dynamic effects, such as self-

referential structures and arrays w i l l require approximations in order to be modelled statically.-

These approximations must s t i l l provide the maintainer w i t h useful informat ion. 

4. Practical application of any program comprehension tool requires that the tool be able' to . 

deal w i t h large programs, since i t is precisely w i t h such systems that the most significant 

problems in understanding occur. The new intermediate representation must enable large, 

programs to be modelled, bo th in theory and in any practical implementation. Construction 

algorithms must not be prohibi t ively expensive whilst the resulting representation should be 

space efficient. 

1.5 Thesis Outline 

The remainder of this thesis is organised â  follows. 

Chapter 2 reviews the field of program comprehension. Program views are introduced and 

a number of software maintenance environments evaluated. Research into the mental processes 

involved in program comprehension is also discussed. 

Chapter 3 examines in fur ther detail a number of existing intermediate program representations 

( IPRs) , assessing the strengths and l imitat ions of each. The representations are drawn f rom the 

fields of data flow analysis and program slicing, w i t h more recent developments uni fy ing a number 

of ind iv idua l representations to provide a maintainer w i t h different program views. A n important 

feature of many of these IPRs is the representation of the subject program's data dependencies. 

The presence of pointer variables and dynamic allocation w i t h i n a programming language such as 

C make the calculation of these dependencies a d i f f icu l t task. Current research in this field f rom 

bo th the software engineering and compiling communities is discussed. 

Chapter 4 introduces a new fine-grained dependence-based program representation, the Com

bined C Graph. The new graph enhances and modifies previous IPRs to allow many features of the 

C language to be modelled. Embedded side effects and control flows, the C parameter interface, 

control structures, pointer, structure and array variables, external and static variables and standard 

l ibrary routines are each addressed. The program views made available by the CCG are described 



and a formal outline of the vertices and edges of the CCG given. The CCG representation is finally 

demonstrated by means of a theoretical example for a small C program. 

Chapter 5 describes a prototype CCG system. The CCG system analyses the subject C program 

to produce a Prolog fact base. Prolog meta programs enhance this fact ba^e to give a complete 

C C G representation. A maintainer can then perform queries on the CCG representation to cre

ate a number of program views. The Prolog representation may also be translated allowing the 

maintainer to view the CCG using a graphical display tool . 

Chapter 6 details the results achieved using the prototype CCG system. CCGs are constructed 

firstly for four small C programs of up to 121 lines of code, involving different features of the C 

language. Two programs of up to 1000 lines of code are then analysed to demonstrate the applica

b i l i t y of the C C G to the representation of larger programs. Empir ica l results for the construction 

times and space requirements of the CCGs are given. Examples of the views and informat ion made 

available to maintainers are then outlined, and finally two scenarios are described i l lustrat ing the 

use of the CCG system in software maintenance tasks. 

Chapter 7 presents an evaluation of the CCG representation. The language coverage provided 

by both the theoretical CCG and the prototype implementation is first addressed. The program 

views made available are then discussed. The algorithms used in each stage of the construction of 

the CCG are then evaluated, bo th in terms of the results achieved and the theoretical complexity. 

F ina l ly the space requirements of the CCG representation are analysed. 

Chapter 8 finally presents a summary of the research in this thesis, and addresses the criteria 

for success defined above. A number of areas of fur ther work are also outl ined. 



Chapter 2 

An Overview of Program 

Comprehension 

This chapter reviews work in three areas of program comprehension. Fi rs t ly a variety of program 

'views' are discussed, i n particular data and control flow analysis and program slicing. Secondly, 

existing software maintenance environments are described and evaluated w i t h respect to the views 

provided, applicabil i ty t o real programming languages and external user interface. FincQly, differing 

theories of the mental processes of program comprehension are analysed. 

2.1 Program Views 

2.1.1 D a t a F l o w 

Data flow analysis is the process of collecting informat ion on the flow of data through a program, 

in part icular the def ini t ion and use of variables. The original use of data flow analysis wa£ as a 

means of detecting safe conditions for optimisations wi th in compilers. Informat ion collected using 

data flow analysis may be in the fol lowing forms: 

• reaching definitions - variable definitions reaching a program statement. 

• reachable uses - variable uses reachable f r o m a program statement. 

• live variables - variables whose value at a program statement may be used at some following 

statement. 

• available expressions - expression evaluations which reach a program statement wi thout any 

intervening definitions of the variables involved in the expression. 

10 



A compiler can make use of such informat ion to perform optimisations such as constant folding 

and dead code el iminat ion. Two families of algorithms have been developed to solve these data 

flow problems, i terative algorithms and elimination algorithms. A summary of each and their use 

in compiler optimisations is given by Aho et al[3]. 

The use of data flow analysis has more recently extended beyond compilers. Software tools 

providing in format ion to programmers on variable definit ion and uses, part icularly across procedure 

boundaries (interprocedural da ta f low analysis), have been used in error detection during debugging 

and as an aid to program comprehension and impact analysis during maintenance. Data dependence, 

in format ion , indicat ing relationships between statements which provide and use data is of particular 

importance in helping a maintainer's understanding of the effects of a maintenance change. Data 

dependence informat ion is typical ly presented in the form of definition-use graphs. 

E r r o r D e t e c t i o n 

D a t a flow analysis is a technique which can be a powerful method for detecting errors i n software 

and improving its quality. A n early paper l ink ing data flow analysis and software reliabil i ty is by 

Fosdick and Osterweil [28]. 

Da ta flow in a program is expected to be consistent in various ways. I f the pattern of usage 

of a variable is abnormal in any way, this is said to be an anomaly. Anomalies are commonly 

caused by programming errors such as confusion of names, incorrect parameter usage and omission 

of statements. The aim of the analysis is to find anomalies i n large bodies of code w i t h arbi trar i ly 

complex data flow. 

Algor i thms are presented to detect anomalies involving the use of sets based on three events 

- variable definitions, undefinitions and references. Anomalies are identified by unexpected com

binations of events, for example two consecutive definitions wi thout an intervening reference. A 

tool D A V E is described which implements the algorithms to find these anomalies. Array variables ' 

present serious problems since subscript values cannot be evaluated. Array elements are therefore 

treated as a single 'aggregate' variables. The programmer must also s t i l l determine the actual 

underlying errors tha t are the cause of the anomalies. 

A second prototype t o o l Omega, based on D A V E , is described by Wilson and Osterweil[93]. 

Omega detects anomalies in C code, although operations allowed on pointers are restricted and the 

algorithms employed may become exponential. 

Each of the static data flow analysis tools described so far suffer f r o m drawbacks. They are slow 

and restrictions are placed on the code that can be analysed. Array analysis for example would 
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require run t ime knowledge and pointer analysis is d i f f icu l t . Dynamic data flow analysis is an 

alternative data flow analysis method which provides more accurate pointer and array information. 

The use of variables is analysed as the program is executing by instrumenting the program wi th 

extra code involving state variables and state transfer functions. State variables record the last 

action performed on a variable, which may be either 'reference', 'define', 'undefine' or 'anomalous'. 

A state transfer funct ion takes as input the current value of a state variable and the action being 

performed on the variable and returns the appropriate new value of the state variable. This may be 

'anomalous' i f the action violates the variable usages described earlier. Early work on this method', 

was carried out by Huang[46] who considered Fortran 66 programs. Calliss and Cornelius[16] extend 

this work to C programs, considering array elements, structured variables, pointers and dynamic-

variables. 

Al iases 

I n order for data flow analysis tools to compute accurate solutions, the problems of variable aliasing 

must be overcome. A n alias exists when a single storage location may be accessed by more than one 

name. Parameter passing by reference and pointer assignments are possible sources of aliasing. To 

accurately determine variable definitions and uses in interprocedural data flow analysis, the afiases 

existing w i t h i n each procedure must be calculated. 

Ear ly work on the detection of aliases is described by Banning[8]. Banning's work deals w i th 

ordinal types, and the creation of aliases through reference parameters and Pascal-like nested 

procedure declarations. The more complex issue of dealing w i t h pointers is not addressed. Banning 

describes a simple recursive depth first search a lgor i thm to detect al l possible aliases. Start ing w i t h 

t r i v i a l alias pairs created whenever a call site has a repeated actual parameter, e.g. P{z,z), the 

a lgor i thm descends call chains finding possible alias pairs arising f r o m the original site. 

Further work describing the detection of aliases is reported by Cooper[21]. Unlike Banning's 

paper which deals w i t h aliasing as an issue in finding procedure side effects. Cooper's paper is 

concerned w i t h the aliasing problem itself. Cooper considers in i t i a l ly only the two level name 

scoping of Fortran and not nested procedures. 

Cooper's a lgori thm commences by detecting induced aliases at each call site directly f rom the 

source code. A n iterative data flow algori thm propagates the sets of introduced aliases throughout 

the program's call graph, hal t ing when no fur ther propagation is possible. The algorithm has worst 

case complexity 0{n^) but the actual behaviour w i l l depend on the frequency of alias introduction 

and propagation. Optimisations are possible by effectively reducing the size of the call graph by 
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detecting call sites which do not introduce alieises or pass formal parameters. A simple extension to 

the a lgor i thm permits analysis of nested procedures where aliases can be propagated into a nested 

block in which both aliased variables are visible. Cooper provides a detailed discussion of aliasing 

problems but , like Banning, does not a t tempt to deal w i t h pointers. 

2.1 .2 C o n t r o l F l o w 

Control flow analysis provides informat ion to a maintainer on the control paths through a program. 

These paths are typically represented as graphs or tables and help a maintainer in understanding • 

the control flow wi th in a piece of software. 

Control dependence informat ion represents directly relationships between program statements, • 

indicat ing tha t the execution of one statement is conditional on the execution of another statement. 

Construction of control dependencies is discussed by Ferrante et al[25] who present an algorithm 

based on dominance relations. 

Interprocedural control flow is typical ly presented in the f o r m of a program call graph, indicating 

direct call relationships between procedures. Vertices of the call graph represent procedures and 

edges of the graph represent calls between them. This informat ion is par t icu la j ly useful in the 

understanding of large systems and can also be used as a basis for the propagation of data flow 

in format ion between procedures. For programs wi thout procedure parameters, the construction of 

the call graph is simple. The vertices and edges of the call graph may be determined by analysing 

each procedure in t u r n to find references to other procedures. When procedure parameters are 

present, the order in which procedures are analysed becomes impor tant and a reference to a formal 

procedure parameter may represent the invocations of dist inct procedures. Construction of the 

call graph for a language w i t h procedure parameters is described by Ryder[80]. The algorithm is 

proved to be correct, has complexity O(n^) , bu t cannot be applied to programs containing recursive 

procedures. 

2.1 .3 P r o g r a m S l i c i n g 

S t a t i c s l ic ing 

I n order to aid understanding, large programs are decomposed into smaller parts. Examples of de

composition are procedures and abstract data types which both allow understanding independent 

of the context w i t h i n the program. Program slicing, first introduced by Weiser(89], is a decompo

sition method based on both control and data flow analysis. A slice is a reduced program which 
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restricts the behaviour of a program to a subset of interest. More specifically, a slice S{v,n) of a 

program P on a variable or set of variables v at statement n , gives the portions of the program P 

which contribute to the value(s) of v before n is executed. Various uses of program slicing have 

been described. These include debugging, testing, maintenance, parallel processor dis tr ibut ion and 

code understanding. 

Weiser presents a fo rmal defini t ion of a program slice and describes an iterative algorithm to 

find an intraprocedural slice i.e. a slice w i t h i n a single procedure. Corrections to this algorithm are 

given by Leung and Reghbati[58]. The complexity of the algori thm is 0{neloge). The a lgor i thm, 

is then extended by Weiser to include procedures calling or called by the original procedure in 

which the slice is taken, giving interprocedural program slicing. Weiser describes four advantages, 

of program slices. 

• They can be found automatically. This gives possible uses in calculating metrics. 

• They are smaller than the original program so they are easier to understand. 

• They execute independently of each other, allowing parallel execution. 

• They reproduce exactly a subset of the program's original behaviour. This gives uses in 

verif icat ion and testing. 

Three disadvantages are also given. 

• They can be expensive to find. 

• A program may have no significant slices. 

• Thei r t o t a l independence may cause addit ional complexity i n each slice tha t could be cleaned 

up i f simple dependencies could be represented. 

A n earlier paper by Weiser[88] shows tha t programmers make use of slices when debugging. Weiser 

suggests tha t programmers a t tempt to reason backwards through the flow of control f rom a point 

where an error becomes manifest, constructing a slice mentally as they do so. 

A n experiment was constructed in which programmers debugged three programs and were 

then asked to recognise five types of code fragments - relevant slices, irrelevant slices, relevant 

contiguous regions, irrelevant contiguous regions and random statements. The results showed that 

the programmers recognised slices as often as relevant contiguous fragments, indicating that they 

had in fact abstracted the slices when debugging. 
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Weiser's slicing a lgor i thm has some problems when applied to C code. I t does not cater for arrays 

and pointer variables and does not deal w i t h statements such as break, con t i nue and goto which 

have effects on the slice. Jiang et al[47] describe some of these problems and present enhancements 

to the a lgor i thm to allow slicing w i t h pointer and array variables and break, con t inue and goto 

statements. A n interprocedural slicing algori thm for C is also given. 

Ottenstein and Ottenstein[67] describe the construction of program slices using an alternative 

method based on an intermediate program representation known as the Program Dependence 

Graph ( P D G ) . The P D G represents explici t ly the data and control dependencies which are the 

bases of program slicing and is consequently ideal for constructing slices. The vertices of the 

graph represent the statements of the program and the connecting edges represent either data 

dependencies or control dependencies between the statements. A slice is constructed by selecting 

the appropriate vertex in the P D G and f r o m this vertex traversing the graph backwards. Visited 

vertices represent the source lines of the slice. The slice is found in linear t ime, in comparison 

to Weiser's O ( n e l o g e ) a lgor i thm. I n p u t / o u t p u t is also accounted for correctly and irrelevant 

statements on multi-statement lines are not included. However, the slices found using this method 

are more restricted than those of Weiser. A slice must be taken w i t h respect to a variable defined 

or used at a part icular statement, rather than an arbi t rary variable at a statement. 

The slicing a lgor i thm described by Ottenstein and Ottenstein discusses only the case of programs 

consisting of a single monoli thic procedure. Their work is extended by Horwitz et al[45] who describe 

a new graph, the System Dependence Graph (SDG) which models multiple-procedure programs 

w i t h parameters passed by value-result. Horwitz et al show tha t Weiser's original interprocedural 

a lgori thm is imprecise since no account is taken of calling context; a called procedure may return 

to any callee procedure, not only the one f r o m which the call was made. A new two-stage traversal-

based interprocedural slicing algori thm is described, w i t h phase one not descending into called 

procedures and phase two not ascending into callee procedures. I n each case the effects of such 

procedures are summarised by a new transitive dependence edge which solves the problems of 

calling context. Again the complexity of the algori thm is linear in the size of the graph. 

The graph traversal program slicing methods are in tui t ively much simpler than the iterative 

algori thm presented by Weiser and are addit ionally cheaper in terms of complexity, although the 

costs of graph construction must be considered. A l imi t ing factor in each case is the language that 

can be represented using the graphs. Neither Ottenstein and Ottenstein nor Horwitz et al deal 

w i t h pointer variables, self-referential structures or unstructured programs. 

Gallagher and Lyle[32] present a paper in which program slicing is applied to the software 
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maintenance process. Slicing is used to obtain a decomposition of the program. The first step is 

to bui ld for one variable a 'decomposition slice' which is the union of certain slices taken at certain 

program statements on the given variable. A second slice, the 'complement slice', is obtained by 

removing certain statements of the decomposition slice f r o m the original program. The complement 

slice must always remain fixed when changes are made to the decomposition slice. The contents of 

the decomposition slice are independent of the slicing method employed. Restrictions are presented 

as to the possible changes tha t may be made to the decomposition slice, and a linear time algorithm 

given for merging the modified slice back into the original program. 

The authors claim tha t the changes made w i l l have no impact on the complement slice, and 

therefore only the modified slice need be tested. This gives rise to a new software maintenance -

process model i n which regression testing is no longer necessary and consequently cost savings can 

be made. As yet the decomposition method described has not been applied to a large software 

system and its effects on real integration testing must be investigated. 

D y n a m i c s l ic ing 

One problem of the program slicing methods described so far is tha t the slices produced may not 

be significantly smaller than the original program. The usefulness of a slice w i l l decrease as its 

size increases. These 'static ' slices contain all the statements that might affect the value of a given 

variable occurrence for any input values. Agrawal and Horgan[ l ] investigate 'dynamic slicing' i n 

which the statements contained in a slice are those tha t actually affect the value of a variable for 

a given program input . This approach is of use in debugging and testing where specific program 

inputs are generally available. 

Several approaches to deriving intraprocedural dynamic slices are described by Agrawal and 

Horgan. The first two make use of the P D G described by Ottenstein and Ottenstein[67]. These 

are simple and efficient methods but the slices resulting may be larger than necessary. The th i rd 

approach uses a Dynamic Dependency Graph in which a new vertex is created for each occurrence 

of a statement in the execution history. This method produces accurate sHces but the size of the 

graphs may be unbounded. A reduced Dynamic Dependency Graph is finally described in which a 

vertex is added only i f i t can cause a new dynamic slice to be introduced. 

Whi l s t dynamic slicing is of value in debugging and testing where the programmer is dealing 

w i t h specific program inputs, the use of the technique in relation to software maintenance has not 

been addressed. Also, no empirical studies have been undertaken to compare the size of dynamic 

slices to tha t of static slices. The technique of dynamic slicing is new and fur ther work is required 
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to evaluate the diflferent algorithms w i t h respect to t ime complexity, applicabili ty to real languages 

and ease of implementation. 

2 . 1 . 4 O t h e r V i e w s 

C o m p o n e n t dependencies 

I n addi t ion to data and control relationships described earlier, program understanding w i l l be made 

easier by the provision of component dependence informat ion , i.e. relationships between source • 

code components. Cross reference tools collect all references to a software object, presenting this' 

in format ion to a maintainer in the f o r m of listings of declarations and subsequent references. Wilde 

and Hui t t [91] describe 'def ini t ion dependencies' which represent the use of a program object in the 

def ini t ion of another object, for example the use of a symbolic constant to set the dimension of an 

array or of a user defined type i n a variable defini t ion. 

D e c i s i o n v iews 

W i l d and Maly[90] ident i fy tha t a significant missing aspect of current software documentation 

is an explanation of why decisions are made. Most documentation describes what a system does 

and how i t does i t . The authors propose a complimentary system to standard static analysis tools 

which can document design decisions. A knowledge base stores decision objects which represent 

part icular decisions, alternate choices, complexity analyses and reasons for selecting the choices 

made. A decision dependency graph links justif ications of decision objects and makes i t possible to 

• trace f r o m a result all the decisions that support i t . 

• find all the results tha t depend on particular decisions. 

The environment allows the user to find relevant informat ion and understand the system, assess . 

the impact of design choices and design and implement solutions. As yet no prototype tool exists 

al though fu tu re work on a hypertext, mult iple windows system is indicated. 

H i g h level v iews 

Whi l s t the aim of this research is to provide a software maintainer w i t h programming level informa

t ion , Letovsky[56] recognises tha t the process of program comprehension relies on building a mental 

representation both bot tom-up f rom the code level and top-down f r o m the problem domain level. 
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Program understanding can be aided by the provision of higher level informat ion and in particular 

by providing traceability f r o m these higher level views to those at the programming level. 

Von Mayrhauser and Vans[86| ident i fy the lack of tools at levels other than the programming 

level. Suggesting the importance of tools supporting rather than forming the comprehension pro

cess, experiments w i t h an integrated code comprehension model lead to a series of tool require

ments. Tools should present informat ion at each level of the comprehension model and should aid 

in switching between its components, w i t h connections between these levels. 

Research in this direction is described by Avellis et al[7] who propose an enhanced view of 

a software system, the Software System Model (SSM) and a Software Evolut ion Expert System 

(SEES) w i t h four basic functionali t ies. 

1. F ind code to be changed. 

2. Advise maintainer on how to make changes. 

3. F ind impact of change. 

4. Organise 1-3. 

The authors indicate tha t for effective maintenance additional views of a system are required. Two 

properties are given to define a useful view. 

• The view focusses the at tention of the maintainer on a small por t ion of the system. 

• The view facilitates defining a map between change descriptions and implementations. 

Six views are described f r o m which the SSM may be constructed. 

p r o g r a m m i n g a n d s t r u c t u r a l view^s Low construction costs but no links between change de

scriptions and code. 

a r c h i t e c t u r a l v iews Standard architectures can allow the SSM to be part i t ioned into subsets and 

changes can be indexed to system parts. 

water fa l l v iews Water fa l l informat ion is available, understood and provides good indexing be

tween change descriptions and implementations. 

d o m a i n v iews Provide fine granularity for change indexing. 

d o m a i n network v iews Expensive to construct but are the most powerful views. Each of the 

other views except waterfal l views are included. Indexing is refined even further . 
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A prototype has been implemented w i t h a generic 3GL programming language view w i t h change 

propagation and change performance knowledge bases. Presently the only implemented view is at 

the programming level. The most interesting section of the paper is the description of the different 

views. Domain, standard architectures and domain network views are providing information at 

higher levels of abstraction and have much in common w i t h the results of research into the theory 

of the program comprehension process, as reported by Brooks[13] and Letovsky[56]. 

2.2 Tools for Program Comprehension 

Various tools exist which are specifically aimed to help w i t h the program comprehension process. 

The method employed by most tools is to perform static analysis on the source code and to store 

the resulting in format ion in a central database. This gathering of informat ion , either automati

cally or manually, is of ten known as redocumentation. The maintainer is then able to access the 

informat ion as required. This section describes various environments which extend this basic idea, 

each providing the maintainer w i t h a variety of programming level views. 

Documentat ion useful dur ing program comprehension may also be created during the develop

ment phase of the software life cycle. Research into documentation environments supporting the 

product ion, management and use of program documentation is described briefly. 

2.2.1 C I n f o r m a t i o n A b s t r a c t o r 

The C Informat ion Abstractor described by Chen et al[18] is a static analysis tool which stores the 

in format ion collected in a relational database. This tool provides informat ion w i t h the following 

qualities: 

• global in format ion abstraction - emphasis is on global references rather than local references. 

This reduces database size and increases speed. 

• database support 

• simple database queries 

• efficiency 

The authors suggest enhancements to the system are possible in the way of an incremental database 

(avoiding the need for complete re-analysis of the system in response to system changes) and the 

addit ion of structured comments to record informat ion tha t cannot be extracted f rom the code. 

19 



The tool provides simple cross referencing informat ion but wi thout a graphical user interface. 

The authors suggest the use of windowing systems to provide 'mult iple views' of the software. The 

description of views however goes no fur ther than the use of mult iple windows to display cross 

references. 

2.2.2 DOCMAN 

Foster and Munro[31] describe a documentation system bui l t on cross referencing. The tool is 

aimed at maintenance programmers working on large software systems and allows documentation 

produced by the programmers to be linked w i t h cross referencing informat ion. Three types of 

documentation are included: 

• encyclopaedia - descriptive comments about objects i n the source code. 

• glossary - descriptions of special words which appear frequently in the documentation. 

• overview - high level descriptions of the system. 

D O C M A N allows the user to cross reference between documentation entities, cross referencer output 

and the source code itself and consequently ease the understanding process. 

The too l is suitable for use w i t h undocumented systems since documentation can be added 

incrementally; as a maintenance programmer works on an area of the code the area is documented. 

2.2.3 Redocumentation of Systems Using Hypertext Technology 

The concepts introduced by Foster and Munro[31] are expanded fur ther by Fletton[26] and Flet ton 

and Munro[27] to give a hypertext tool l ink ing cross references, source code and documentation. 

Links between source code and cross references are generated automatically whilst links in the 

documentation are generated as the documentation is created. 

Eight desirable properties of a redocumentation too l are listed: 

• incremental documentation - i t should not be necessary to document the entire system at 

once. 

• casual update - i t must be easy to update the documentation as the programmer examines 

the code. 

• quali ty assurance checks should be possible on documentation updates. 

• team use 
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• configuration management - document different versions of the system. 

• integrated source code 

• integrated automatic documentation - static analysis 

• in format ion hiding - the documentation can be read at different levels of abstraction. 

2 .2 .4 A n E n v i r o n m e n t for U n d e r s t a n d i n g P r o g r a m s 

Cleveland[19] describes an environment to aid the understanding of old assembler code. The system 

presents various views of the software - control flows, data flows, call graphs and cross references. 

This in format ion is collected using various static analysis tools and is stored in a database. Non-

verifiable or ' sof t ' informat ion may also be added by the user. This is similar to the encyclopaedia 

in format ion described by Foster and Munro[31]. Cleveland[20] also describes a user interface based 

on the use of a large colour screen, mult iple windows and an intelligent cursor. 'Window con

tainment ' assures tha t informat ion relating to an object is grouped together. 'Linkage marking ' 

through the use of colour highlighting is used to relate representations of an object. 

Only a simple prototype tool has been implemented and the papers contain no description 

of how informat ion w i t h i n each -view is related. The views presented are l imited to those only 

provided by static analysis tools and the resulting environment is very similar to that described by 

Fletton[26] and Fle t ton and Munro[27]. 

2.2 .5 V I F O R 

Raj l i ch et al[74] describe a maintenance environment for Fortran, V I F O R (Visually Interactive 

For t ran) . The too l provides a visual fo rm for Fortran programs in addition to the source code. 

This visual f o r m is a simple two column graph w i t h vertices indicat ing source files, subroutines 

and commons and the edges calls, references and 'belong t o ' for file contents. The authors describe 

views of the system but in actual fact these are only subsets of the database formed by queries. 

2.2 .6 C A R E 

Linos et al[60] extend the V I F O R system to facili tate the comprehension of C code, producing 

a software environment C A R E (Computer-Aided Re-engineering). The C A R E system maintains 

a repository of program dependencies w i t h a data model comprising five entity types and four 

relationships. Program understanding is achieved via a graphical model combining a hierarchical 
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control flow display (i.e. call graph) and a new 'colonnade' representation of the program's data 

relationships. This 'm-level graph' extends the two column graph of V I F O R . The user is provided 

w i t h functions to display monoli thic representations of the hierarchical or colonnade graphs or to 

display mult iple views comprising fragments of the code, colonnade or call graph. Transformation 

tools allow the user to derive control flow or data flow views f r o m the colonnade or hierarchical 

graphs, for example to pop-up the data flow graph for a specified funct ion in the call graph. Various 

graphical operations are made available to provide informat ion abstraction and to improve the 

display's readability. Simple empirical tests demonstrate the benefits of using the C A R E system. 

C A R E provides the programming level views seen in other maintenance environments but w i th a 

more advanced graphical user interface. 

2 .2 .7 M i c r o s c o p e 

Microscope described by Ambras and 0 'Day[4] is a knowledge based tool for use in software main

tenance. The system can per form static and dynamic analysis on programs wr i t t en in CommonOb-

jects and Common Lisp. The system is able to perform impact analysis and execution monitoring 

and can record execution histories for browsing. Views at different levels of abstraction are also 

permit ted . These may be module hierarchies, cross references, call graphs or execution histories. 

The prototype implementat ion analyses only a subset of CommonObjects and Common Lisp 

and provides cross references, some execution moni tor ing and a graphical browser. The authors 

suggest tha t the user interface and the response times of queries are cri t ical . Microscope is a more 

ambitious project than the environments described so far but the prototype system does not appear 

to provide any significant improvements over the other systems. 

2.2 .8 P E C A N 

Although a software development tool rather than a maintenance tool , the provision of multiple 

views of a software system is the basis of the P E C A N system reported by Reiss[75]. The internal 

representation used by the system is the abstract syntax tree, which the programmer can view in 

a variety of different forms through the use of mult iple windows. 

Possible program views described in the paper are a syntax directed editor, Nassi-Schneiderman 

flow graphs, data flows, module hierarchies and declaration views. The user can perform editing 

operations using a displayed view which w i l l be reflected in the internal fo rm. Any other displayed 

program views w i l l consequently be updated. Whenever the abstract syntax tree is updated, an 

incremental compiler w i l l update a corresponding semantic representation incorporating a symbol 
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table view, data type view, expression view and flow view. Execution views of data structures and 

the stack can similarly be updated as the program is executed. 

The current prototype only allows changes to be made in the structured editor view and addi

tionally provides only Na.ssi-Schneiderman flow graphs. The incremental compiler and interpreter 

are not yet completed and no descriptions are given of how a code change is incorporated into the 

abstract syntax tree and from there into the other program and semantic views. However a tool 

providing the variety of views described and allowing incremental updates of the views could be 

applied to uses in software maintenance. 

2.2.9 Software Documentat ion Env ironments 

Various tools exist which provide support for the production, management and use of documen

tation during each phase of the development life cycle. Such information will be of considerable 

value during the maintenance phase. The tools provide facilities such as central storage, traceabil-

ity and easy access and update. However, undocumented systems are less suitable to this type of 

tool. Redocumentation of a previously undocumented system is a large task and in most cases is 

not economically feasible. FORTUNE[66], the Document Integration Facility (DIP) [33][34] and 

S0D0S[41] are similar integrated documentation tools based on the waterfall life cycle model. 

2.3 Theories of Program Comprehension 

In order to carry out a maintenance task, a programmer must first acquire an understanding of 

the subject system. This stage of program comprehension is often the most time consuming of the 

entire maintenance process and consequently is an area in which savings can be made. Methods 

of avoiding errors in program comprehension are also required to enable more successful and less 

costly software maintenance. 

This chapter discusses research into the problems of program comprehension. The research is 

divided into three areas. The first deals with methods by which information can best be presented 

to a software maintainer. The second describes the mental processes involved in the comprehension 

of source code. The third area discusses research based on the theory of programming plans, 

which considers expert programmers to make use of generic computational structures rather than 

primitive programming elements. 
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2.3.1 Informat ion Presentat ion 

A maintenance programmer will spend a large amount of time in examining the source code of 

the subject system in order to gain an understanding of its functionality and the relationships 

and dependencies between its components. Savings will result if this process is made less time 

consuming and more error free. Research has consequently been carried out in the areas of how 

best to present information to a maintenance programmer and of which information is of most use 

in code understanding. 

Schneiderman et al[81] identify the importance of presentation of information to maintainers. • 

Their study concentrates on the use of new larger, faster display screens and on strategies for 

displaying more information using efficient display formats. The authors deal with coordinated" 

window systems in which windows and their contents appear and scroll automatically as a result of 

user activities. The user is freed from the chore of creating, positioning and manipulating windows. 

Four strategies for coordinated windows are presented. 

• Fusion - Many lines of code are displayed in sequence in multiple windows. This technique is 

used with large sections of code to reduce 'page turning'. 

• Synchronised scrolling - Two or more files in different windows are scrolled together. This is 

useful for comparing versions of code, evaluating test cases, interpreters etc. 

• Embedded selection - Names can be selected from the source code and extra information, for 

example manual pages, declarations and comments, may be displayed in another window. 

• Hierarchical browser - A representation of the high level structure that may be used to access 

the source code or other text. The implemented system has two windows, one displaying 

program structure at different levels of abstraction and the other associated source code. 

Other views can be added such as cross references, execution histories, dataflows etc. Program 

comprehension is helped by showing structured information and the underlying design. An 

empirical test shows that maintainers perform better with the browser than with simply the 

source code. 

The strategies outlined in this paper are very similar to those employed in maintenance envi

ronments such as those described by Cleveland [19] and Fletton and Munro[27]. Hypertext systems 

give embedded selection and generally involve some form of hierarchical browser. Fusion and syn

chronised scrolling do not appear to have been used elsewhere. 
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2.3.2 Comprehens ion Theories 

Before attempting to make a change to a piece of code, a maintenance programmer must gain 

an understanding of that code. Various models exist to explain the cognitive processes that pro

grammers go through when performing this task. A better understanding of how comprehension 

occurs may lead to code which is more suited to the maintainer's needs. Summaries of research 

into program comprehension are given by Robson et al[79] and Deimal and Naveda[23]. 

Letovsky[56] reports an empirical study of the cognitive processes involved in program compre

hension. Six professional programmers were video-taped whilst enhancing an existing Fortran 77, • 

250 line program. The subjects were additionally supplied with some program documentation and 

were asked to 'think aloud' whilst examining the code. 

Letovsky finds that the programmers often form 'inquiries' concerned with the same topic. An 

idealised inquiry is made up of four parts. 

1. The subject encounters a fact and asks a question. 

2. The subject conjectures an answer. 

3. The subject attempts to find an answer in the code or documentation, or by detailed reasoning 

about the program. 

4. The subject finally draws a conclusion and resumes the previous activity. 

Letovsky presents taxonomies of questions and conjectures and gives examples from the thinking 

aloud protocols. He views programmers as knowledge based understanders with 

• a knowledge base of previous expertise and background knowledge. 

• a mental model representing the current understanding of the program. 

• an assimilation process - how the programmer builds the mental model. 

The mental model consists of layers. At the top level is the program specification and at the bottom 

the implementation. The intermediate layers are annotations which link the specification goals and 

implementation. Letovsky describes how this model is built both top-down and bottom-up and 

how questions arise when the programmer finds the mental model to be incomplete. 

One interesting conclusion of the paper is the application of the research to the design of program 

documentation and documentation standards. Documentation should facilitate easy answering of 

the questions posed by programmers. 
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An alternative model of the comprehension process is described by Brooks[13]. When a pro

grammer understands a program, a mental model is built up of successive knowledge domains, 

from the problem domain to the programming domain. The relationships between these domains 

must also be understood. Brooks' theory differs from that of Letovsky in how the mental model 

is actually constructed. Brooks describes this process as being largely top-down. The programmer 

generates hypotheses about the program and attempts to verify these from the code. These hy

potheses are generated in a hierarchical manner. Brooks claims that the bottom-up technique of 

code reading considered by Letovsky is less powerful and less important than the top-down method.-

Pennington[71] provides support for the mental models of both Letovsky and Brooks. She 

suggests that programmers build at leEist two mental models, in particular a program model and 

a domain model. The program model relates to the program's textual structures and the do

main model to the objects and functions in the problem domain. For effective comprehension a 

programmer must be able to cross reference between the two models. 

2.3.3 P r o g r a m m i n g P lans 

A significant body of research has been carried out in the area of programming plans. Rather than 

thinking in terms of low level primitive elements such as assignments and tests, expert program

mers instead build up a knowledge of commonly used computational structures called programming 

plans, which can be combined to implement higher level abstractions. Examples of plans are list 

enumerations, binary searches and successive approximation loops. The research can be divided 

into two distinct areas, firstly experiments to investigate the cognitive basis for the theory of pro

gramming plans and secondly the development of plan-based tools for code analysis and synthesis. 

Theory of programming plans 

Soloway and Ehrlich[82] suggest that programmers have two basic forms of programming knowledge. 

• Programming plans - program fragments that represent stereotypic action sequences in pro

gramming, for example a running total loop plan, an item search loop plan. 

• Rules of programming discourse - rules that specify conventions in programming such as the 

name of a variable should usually agree with its function. These rules set up expectations in 

the minds of the programmers about what should be in a program. 

The authors suggest that programs are composed from programming plans modified to fit the needs 

of specific problems. The composition of the plans are governed by rules of programming discourse. 
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Two empirical studies are described which evaluate the hypothesis that expert programmers 

possess programming plans and rules of discourse. The first study asked programmers to fill in 

blanks in programs. The second asked programmers to recall the programs. In both cases plan-like 

and unplan-like programs were used. In the first study expert and novice programmers, and in the 

second only experts, were used as subjects. 

The results of the first study showed that the performance of experts was reduced to that of the 

novices with unplan-like programs. The second study showed that plan-like programs were easier 

to remember and that the critical lines, i.e. the plans, were remembered first. 

The authors conclude that advanced programmers have strong expectations about what pro

grams should look like. When these expectations are violated their performance drops drastically. 

Style is not just a matter of aesthetics; there is a cognitive basis for writing programs in the 

conventional manner. 

The results show plans and discourse rules to have a powerful effect on comprehension. Surface 

complexity measures would be unable to detect the difiiculties inherent in unplan-like programs. 

Further work on program plans is described by Letovsky and Soloway[57]. The authors suggest 

that maintainers have difiiculties understanding code containing delocalised plans, i.e. a plan re

alised by lines scattered in different parts of the program. When a plan is close together i t is easy 

to recognise. When i t is split up partial understanding of the program can result. Purely local 

understanding may lead to inaccurate understanding of the program as a whole. 

The authors describe the task of program understanding as that of uncovering the intentions 

behind the code - the 'goals'. A plan is a technique for realising a goal in a particular implemen

tation. 

Six programmers were video-taped making a program enhancement, 'thinking aloud' as they 

did so. Pour examples are described of comprehension failures due to delocalised plans and possible 

solutions given to avoid these misconceptions. These generally involve the programmer being more 

explicit in comments and other documentation. For example the 'role' and 'goal' of a variable and 

any 'non-normal' updates of a variable should be documented. The authors suggest documenting 

plans, indicating the purpose and implementation of the plan with pointers to the code. Other 

solutions are to use symbolic execution and data fiow analysers. The latter are particularly suitable 

since delocalised plans can be considered as plans with data flow links. 

Soloway et al[83] describe further work in the area of dealing with the problems of delocalised 

plans. The authors describe an experiment involving the performance of an enhancement to a 250 

line Fortran program, given the provision of typical program documentation. Again the 'thinking 
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aloud' protocol was used as the programmers carried out the task and the 'inquiry' episode originally 

described by Letovsky[56] observed when a programmer's expectations were not met. Particular 

breakdowns in expectation were found with a delocalised plan involving the retrieval and processing 

of a record. Two higher level strategies were observed, systematic and as-needed. The systematic 

strategy involves tracing the flow of the entire program from the beginning whereas the as-needed 

strategy involves only studying the areas of the program considered useful. Programmers employing 

the as-needed strategy were found to have difficulties with delocalised plans whilst the systematic 

strategy becomes unworkable with large programs. 

The authors develop a new type of program documentation explicitly identifying causal in

teractions in the delocalised plans and relating the interactions to a listing of the source code. 

Improvements in comprehension of the delocalised plan result with this new documentation, al

though problems are still found with programmers who actually misunderstand the code rather 

than those simply unable to form any understanding. 

Plan-based tools 

The Programmer's Apprentice The Programmer's Apprentice project is a long term project 

involving the use of artificial intelligence and software engineering techniques. The aim of the 

project has been to develop an interactive knowledge based tool to provide assistance to program

mers in both the construction and maintenance of programs. At the basis of this work has been 

the use of'inspection methods', that is performing recognition of'cliches' (i.e. plans) from a known 

library to allow program synthesis, analysis and verification. 

Plan Calculus A formalism for the representation of program plans has been developed by 

Rich[76][77]. This formalism is the basis of the whole Programmer's Apprentice project. The plan 

calculus allows plans to be represented independently of the original source language and to be 

combined in a straightforward manner. Plans can be verified and relationships between one plan 

and another made explicit through the use of 'overlays'. 

Rich reports that translators from source text to the plan calculus representation have been 

constructed for subsets of Lisp, Fortran and Cobol. Whilst problems such as side effects and 

aliasing can be represented by the plan calculus, the language features permitted by the translators 

are much more limited. 
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Recognizer The Recognizer[78][92] developed at M I T is a prototype tool to detect plans 

within code using a library of standard plans and to build hierarchical descriptions of the plans 

found. The code is first translated into the plan calculus, this step being the only language de

pendent part of the tool. The possible use of different syntaxes to code a plan and the use of 

delocalised plans is hidden by this representation. The plan calculus produced is then encoded as 

a flow graph, subgraphs of which will comprise the specific plans. The Recognizer has a library of 

several hundred plans and overlays which are each coded as flow graph grammar rules. The flow 

graph of the input program is parsed and any matched right hand side of a grammar rule replaced, 

by the corresponding left hand side. In this way a plan in the code is replaced by a more abstract 

operation. A hierarchy of plans will result which represents the program's design tree. From this 

hierarchy textual documentation can be generated by inserting the actual identifiers from the code 

into slots in standard templates associated with each plan. Unrecognisable code, i.e. that not made 

up of known plans, is dealt with in two ways. Firstly the parse can be started at each intermediate 

position of the flow graph and ended before the complete flow graph has been parsed. Secondly, 

low level plans can be recognised even if they cannot be combined using higher level plans. 

The prototype Recognizer has been demonstrated with only small Common Lisp programs. 

Data plans for modelling data structures and plans involving side effects are not dealt with. For 

the Recognizer to be of value in the maintenance of real software, complex data structures and 

side effects must be handled. The current system additionally performs an exhaustive search which 

is purely based on the structure of the fiow graph and the encoded plans. Ways of limiting the 

exhaustive search are required if this technique of plan recognition is not to prove too expensive. For 

this purpose the authors suggest the possibility of additionally performing a top-down specification 

driven analysis to produce expectations by which the search can be limited. 

P R O U S T The PROUST system developed by Johnson and Soloway[48] performs a plan-based 

analysis of novice Pascal programs with the aim of reconstructing the design and implementation 

steps originally performed by the programmer. In this way, bugs in the program can be understood 

and an explanation given to the programmer. 

PROUST is supplied with the subject Pascal program and a specification in the form of a set of 

goals. Using a library of standard plans and common bugs, PROUST attempts to find a mapping 

between the requirements and code - a program interpretation. The space of possible interpretations 

is increased by the possibility of programs containing bugs. The system must therefore be able to 

generate a wide variety of programs. PROUST maintains an agenda of goals, selects the first and 
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from its knowledge base and determines if the goal selected requires decomposing. I f not, the plan 

library is searched for appropriate plans and matches made with the source code. Various heuristics 

are used to constrain the generation of program interpretations. Each candidate interpretation is 

evaluated by examining how well other parts of the program conform to expectations based on the 

current interpretation. 

The system's knowledge base has been tailored to analyse a particular programming problem 

and its performance evaluated on 206 student programs. A complete analysis resulted in 72% of 

the cases, of which 95% were found to be correct. 

The PROUST system appears to have been reasonably successful in its task of analysing simple 

programs. However, fundamental limitations will arise with unusual bugs, novel plans and ambigu

ous cases where human interaction is required. A practical student tutoring system also requires 

the ability to handle a variety of problems and as indicated in the paper, would need some way of 

effectively interacting with the students. 

Whilst there is considerable supporting evidence for the theory of programming plans, only 

limited success has been achieved with these practical applications. The need for large plan libraries 

and the problems of delocalised plans and 'unplan-like' code make the technique difficult to apply 

to large-scale programs. 

2.4 Summary 

This chapter has reviewed literature in three areas of program comprehension. Software views, 

in particular at the programming level, have been discussed in terms of their construction and 

usefulness for program understanding. Existing software maintenance environments were then 

described, focussing on the views provided and languages covered. Finally the cognitive processes 

involved in program comprehension were described, leading to an investigation of the theory of 

programming plans. 
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Chapter 3 

Current Techniques 

This chapter discusses research in two areas. Section 3.2 analyses a number of existing interme

diate program representations (IPRs) and assesses the strengths and limitations of each. This is 

preceded by a discussion on graph terminology since i t is on this theory that each of these IPRs are 

based. An important component of many of these IPRs is a representation of the program's data 

dependence information. The computation of this information is complicated by the presence of 

pointer variables and dynamic memory allocation and is an ongoing area of research. The theory 

and problems of this work are outlined in section 3.3. 

3.1 Graph Terminology 

A graph is made up of a set of elements known as vertices together with a set of arcs connecting the 

vertices known as edges. Formally, a graph G is represented by the relation G{V,E), where V is a 

set of vertices {vi,...,Vn} and E is the set of ordered pairs called edges, {{x,y) \ {x,y) e V x V}. 

The number of vertices in G is represented by I V ] and the number of edges by Given any 

graph edge {vi,V2), then vi is the source vertex of the edge and V2 the sink vertex of the edge. The 

vertices vi and V2 are said to be adjacent. 

The graph G^iV,, E,,) is a subgraph of G{V, E) liVsCV and Es C E. 

A path is a sequence of vertices such that each successive pair of vertices is adjacent. I f two 

vertices are adjacent or are connected indirectly through one or more intermediate vertices, there 

is said to be a path between the two vertices. I f on a given path, each vertex is visited only once, 

the path is said to be a simple path. 

Graph edges may be either directed or undirected. A directed edge indicates that information 

flows in only one way along the edge from the source vertex to the sink vertex. An undirected edge 
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allows information to flow in both directions along the edge and can be defined as a pair of directed 

edges {vi,V2) and (v2,vi). 

3.2 Program Representations 

This section describes various existing intermediate program representations and discusses the asso--

ciated benefits, limitations and drawbacks of each. The representations considered are drawn from 

two techniques used in program comprehension: data flow analysis and program slicing. Graphical 

representations have been used in the construction of data flow information whilst dependence-

based representations are used as a basis for program slicing. More recent research has focussed 

on the possibility of unifying the representations from each area to allow the creation of a variety 

of program views from a single intermediate program representation. 

3.2.1 C a l l G r a p h 

A simple representation of a program is the program call graph. Vertices of the call graph represent 

procedures whilst edges represent possible calling relations between procedures. Edge labels may 

be added to represent the actual parameters of each call. An example call graph for the program 

in table 3.1 is shown in figure 3.1. In the absence of procedure parameters the construction of 

the call graph is simple. Where procedure parameters are present the call relationships can no 

longer be determined statically from the code itself and the 0{n^) construction method described 

by Ryder[80] may be used. 

Interprocedural data flow analysis based on the call graph is possible but this is limited to 

flow-insensitive algorithms i.e. the control flow within procedures is not considered. Information is 

gathered at each vertex as to the variables possibly defined or used within each procedure. This 

information can then be propagated throughout the graph to produce a solution for the desired 

data flow problem. 

Whilst the call graph itself provides important information for program comprehension, only 

limited data fiow information can be generated. Intraprocedural control fiow information is not 

available and thus control flows and program slices cannot be constructed. The absence of spe

cific locations for variable definitions and uses similarly prevents the calculation of cross reference 

information and more accurate flow-sensitive data fiow analysis. 
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1. program Main() 
2. sum = 0; 
3. i = 0; 
4. while i<20 do; 
5. CalcSum(sum,i); 
6. endwhile 
7. i = i ; 
8. sum = sum; 
9. end. 

10. procedure CalcSum(s,j) 
11. I n c ( j ) ; 
12. i f s<100 then 
13. s = s + j ; 
14. endif 
15. return 

16. procedure Inc(x) 
17. X = X + 1; 
18. return 

Table 3.1: Example program. 

sum, 1 

CalcSxim 

call edge 

Figure 3.1: Example Call Graph. 
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3.2.2 Interconnect ion G r a p h 

The Interconnection Graph (IG) described by Debnath and Bieman[22] allows the analysis of the 

interprocedural structure of a program. By analysing paths in the IG explicit and implicit interac

tions between procedures can be identified, enabling the development of interconnectivity measures, 

testing strategies covering interprocedural interactions and a basis for debugging tools. 

Debnath and Bieman first describe the generalised program graph (GPG) which represents 

individual procedures written in an imperative language such as Pascal, Fortran or C. The GPG 

synthesises the control flow graph and data dependence graph - nodes represent variable definitions -

and edges control flow and data dependencies. A reduced GPG (RGPG) is then described which 

contains only nodes for parameter definitions and edges to represent control and data dependency-

relationships between the nodes. The interconnection graph (IG) is formed by adding 'interaction 

edges' to connect nodes denoting the definitions of actual parameters with nodes representing the 

definition of formal parameters. Debnath and Bieman then define control and data interaction 

paths between a pair of procedures and use this notion to determine both explicit and implicit 

interactions, where the interaction between two procedures cannot be identified by examining the 

procedures in isolation. 

The interconnection graph is useful in allowing a maintainer to analyse the effects of a code 

change in other procedures, although the absence of control dependence information prevents 

the construction of program slices and the lack of local definitions prevents the computation of 

definition-use information. 

3.2.3 P r o g r a m S u m m a r y G r a p h 

The Program Summary Graph (PSG) devised by Callahan[15] is an extension of the basic call 

graph which additionally permits flow-sensitive data flow analysis, that is control flow internal 

to procedures is considered. The PSG was originally developed as a representation to allow data 

flow analysis of do loop structures to enable parallelisation of Fortran programs. The control flow 

internal to each procedure is summarised and hence the graph is much more compact than the ful l 

control flow graph, growing linearly with program length. 

The graph is made up of four types of vertices. These are 'entry' and 'exit' vertices for every 

formal reference parameter of every procedure and 'call' and 'return' vertices for every actual 

reference parameter of every call site. The vertices thus represent procedure entry, exit, call and 

return. Global variables are represented as additional formal and actual reference parameters. 
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sum 

• 0 -

I n c 

0 

call/return node - - - > binding edge 

entry/exit node - > reaching edge 

Figure 3.2: Example Program Summary Graph. 
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The PSG vertices are connected by two different edge types. The first, 'binding edges', connect 

actual parameters to formal parameters at procedure invocations and formal parameters to actual 

parameters at procedure returns. The call structure of the program is represented by these edges. 

The second edge type, the 'reaching edge', summarises the control structure internal to a procedure 

by indicating the fiow of data between procedure control points. These definition free execution 

paths within procedures are calculated using standard data flow analysis algorithms. Edges on the 

graph indicate where definitions from an entry vertex reach a call site or a return statement, or 

where definitions from a call site reach another call site or return statement. An example PSG is. 

shown in figure 3.2 representing the program in table 3.1. 

Callahan presents iterative analysis algorithms using the PSG to solve interprocedural data 

flow problems such as may be preserved, i.e. there is a path on which the parameter is preserved 

unchanged over the call. For example, a reference parameter may be preserved over a call site i f 

there is a path on the graph from the appropriate call vertex to the associated return vertex. These 

algorithms are less precise in the presence of aliases which are not addressed in detail. 

The specific locations of definitions and uses within procedures are not represented and thus 

information such as definition-use associations, program slices and cross references cannot be cal

culated. Additionally, the graph does not represent calling context. Following paths on the graph 

can lead to a procedure returning to a call site other than the one at which the execution was 

invoked and hence inaccurate data flow solutions. 

3.2.4 In terprocedura l F l o w G r a p h 

Harrold and Soffa[40] extend the PSG to allow the computation of interprocedural definition-

use and use-definition chains, defining the Interprocedural Flow Graph (IFG). In addition to the 

vertices and edges of the PSG, the IFG has interprocedural reaching definition and reachable use 

sets attached to each vertex. These indicate variable definitions that can reach these vertices and 

variable uses that can be reached from these vertices. This information is constructed by first 

performing intraprocedural data flow analysis on each routine to gather local information and then 

propagating the results of this analysis throughout the graph. During the propagation phase, i t 

is important that the calling context of procedures is maintained. The provision of a new 'inter-

reaching' edge summarising reference parameters that may be preserved across call sites allows 

the use of a two phase propagation algorithm. This eliminates the problem of the PSG where a 

procedure may return to an out of context call site. The authors present algorithms to enable 

the calculation of interprocedural definition-use and use-definition chains based on the reaching 
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Main 
{RU3,RU4,RU5) 

^sura^ — — " " 

{RU6) 

CalcSum 

6 
{RU2} 

{RU6} 

0 < -

I n c 

-0 

0 

RUl : i in line 7 
RU2: sum in line 8 
RU3: s in line 12 
RU4: s in line 13 
RU5: j in line 13 
RU6: X in line 17 

Reachable uses from table 3.1 

{RUl.RUS) 

call/return node o 
entry/exit node 

binding edge 

reaching edge 

inter-reaching edge 

Reachable use sets attached to call and exit nodes. 

Figure 3.3: Example Interprocedural Flow Graph. 
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definition and reachable use sets at each node. Again reference parameters and global variables are 

supported but the problem of aliasing is not addressed. Space requirements for the IPG are similar 

to those of the PSG, that is linear in the length of the program. IPG construction has complexity 

0{n'^). An example IPG for the program in table 3.1 is shown in figure 3.3. 

The IPG contains sufficient information to allow the analysis of interprocedural data dependen

cies. Cross reference information is also available by gathering variable definitions and uses from 

the representation. The program's control dependencies are not fully represented and consequently 

control flows and program slices cannot be formed. 

3.2.5 P r o g r a m Dependence G r a p h 

The Program Dependence Graph (PDG) is a dependence based IPR originally introduced by Fer-

rante et al[25] and also discussed by Ottenstein and Ottenstein[67] and Horwitz et al[45]. The 

PDG consists of vertices representing program statements and edges representing control and data 

dependencies. A definition of the PDG is given by Horwitz et al and has been taken as the basis 

for three extensions discussed in sections 3.2.6, 3.2.7 and 3.2.8. The language represented involves 

only scalar variables, assignments, conditionals and while loops. An 'end' statement indicates the 

final value of a variable. The vertices of the graph represent assignment statements and control 

predicates. The edges of the graph represent dependencies between program components. An ex

ample PDG for the monolithic program in table 3.2 is shown in figure 3.4. Construction of the 

PDG is O(n^) in complexity. 

A control dependence edge is labelled true or false and indicates that whenever the predicate 

at the source vertex evaluates to the label on the edge, then the program component at the target 

will eventually be executed if the program terminates. Given the restricted language, these control 

dependencies reflect the nesting structure of the program and are easy to determine. 

Two kinds of data dependencies are considered, flow dependencies and def-order dependencies, 

and are computed using standard data flow analysis techniques described by Aho et al[3]. A 

flow dependence edge indicates the definition of a variable at the source vertex which reaches a 

use at the target vertex along some path in the control flow graph. Flow dependencies are further 

classified into loop-carried and loop-independent dependencies. For example the fiow dependence in 

figure 3.4 from i = i + 1 to sum = sum + i is loop independent since the definition and use each 

occur within the same loop iteration. The dependence i = i + l t o i = i + l i s a loop carried 

dependence since the definition and use occur on subsequent iterations. A def-order dependence 

between two vertices represents definitions of the same variable at the two vertices which are both 
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Maxn 

sum = 0 w h i l e i<20 sum = sum 

i f sum<100 

sum = sum + i 

flow dependence 

control dependence (True/False) 

Figure 3.4: Example Procedure Dependence Graph. 
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1. program MainO 
2. sum =0; , 
3. i = 0; 
4 . w h i l e i<20 do; 
5. i = i + 1; 
6. i f sum<100 t h e n 
7 . sum = sum + i ; 
8. e n d i f 
9. endwhi le 

10. i = i ; 
11. sum = sum; 
12. end. 

Table 3.2: Example monoli thic program. 

in the same branch of any enclosing condit ional statement, w i t h a t h i r d program component which 

is flow dependent on both . This dependence constrains the order i n which values may be read f rom 

a variable. 

Ferrante et ars[25] i n i t i a l application for the P D G was as an internal representation for an 

optimising compiler. Various optimisations are found to operate efficiently on the P D G , for example 

detection of parallelism, node spl i t t ing , code mot ion and loop fusion. L imi ted incremental update 

of the P D G is described in response to compiler optimisations. As described in section 2.1.3, the 

P D G has more recently been used as a representation for the construction of program slices in 

linear t ime. A simple backwards traversal of the control and data dependencies f r o m the required 

statement produces an accurate program slice. Other uses of the P D G have been described by 

Ottenstein and Ottenstein[67] in the calculation of program complexity metrics, by Griswold and 

Notkin[36] as a basis for program restructuring and by Horwitz et al[44] in the integration of 

program versions. 

Whi l s t the P D G has many applications and in the area of program comprehension provides 

useful in format ion in the f o r m of control and data dependencies and program slices, the P D G in 

the fo rm described is unable to model real programs. 
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3.2.6 System Dependence Graph 

The work on slicing and PDGs by Ottenstein and Ottenstein[67] considered only single monolithic 

programs. Slicing across procedure boundaries using similar dependence-based methods has been 

tackled by Horwi tz et al[45]. This involves the use of an extension to the P D G , the System 

Dependence Graph (SDG). This graph w i l l model a similar language to the P D G , but w i th programs 

made up of a collection of procedures. Each procedure ends w i t h a return statement and parameters 

are passed by value-result. 

The SDG consists of a 'Procedure Dependence Graph ' for each of the program's procedures.' 

A non-standard two stage mechanism is used for run-t ime parameter passing. When procedure P 

calls procedure Q, values are transferred by means of intermediate 'cal l ' temporary variables, one 

for each parameter. Similar ' r e tu rn ' temporaries are used when values are copied back on returning 

to P f r o m Q. Five new vertices are required to represent this scheme: 

• call site vertex - represents a call site. 

• actual-in vertex - control dependent on the call site, copies the value of the actual parameter 

to the call temporary variable. 

• actual-out vertex - control dependent on the call site, copies the value of the return temporary 

variable to the actual parameter. 

• formal- in vertex - control dependent on the called procedure's entry vertex, copies the value 

of the call temporary variable to the fo rmal parameter. 

• formal-out vertex - control dependent on the called procedure's entry vertex, copies the value 

of the formal parameter to the re turn temporary variable. 

The use of temporary variables forces the creation of data dependencies at the actual and formal ' 

vertices. 

Three new interprocedural graph edges connect the procedure dependence graphs. 

• call edge - f r o m each call site to the corresponding procedure entry vertex. 

• parameter-in edge - f r o m reach actual-in vertex at a call site to the corresponding formal- in 

vertex in the called procedure. 

• parameter-out edge - f r o m each formal-out vertex in the called procedure to the corresponding 

actual-out vertex at the call site. 
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Actual-in Actual-out 
j 

Entry 

v o i d I n c ( ) 

Formal-in 
i n t X 

Formal-out ^ control dependence (True/False) 

— | — ^ call edge 

. .|. transitive dependence 

U >. parameter-in edge 

> parameter-out edge 

Figure 3.5: Example System Dependence Graph 'encapsulated' interface. 

This model restricts data dependencies between procedures to be f r o m actual-in to formal-in 

vertices and f r o m formal-out to actual-out vertices, producing an 'encapsulated' interface between 

procedures. This is shown in figure 3.5 

A f o u r t h new edge, the interprocedural flow edge, represents transitive dependencies between 

actual-out and actual-in parameters across call sites. The edge serves a similar purpose to the inter-

reaching edge of the I F G in helping to preserve procedure calling context during graph traversals. 

For a language wi thout recursion, the problems of calling context can be overcome by introducing 

a separate copy of a procedure dependence graph for each call site. This solution is obviously 

undesirable for large programs. For a language w i t h recursion, transitive dependence edges are 

calculated by defining an a t t r ibute grammar, the 'linkage grammar ' to model the call structure of 

each procedure and any intraprocedural transitive flow dependencies between the parameter ver

tices. Interprocedural transitive edges are then found by calculating the corresponding 'subordinate 

characteristic graphs' of the linkage grammar's non-terminals. 

Horwi tz et al present a two stage interprocedural slicing algori thm making use of the interproce-
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dural transitive edge, based on the graph traversal method described by Ottenstein and Ottenstein 

[67]. Each phase traverses only a subset of the SDGs edges to avoid ascending or descending the 

graph respectively. 

Two methods are described by which the SDG can be adapted to call by reference parameters. 

The first is to effectively remove the problem by examining the aliases that may exist at each 

instance of a procedure call. For each different alias configuration a new procedure is created, the 

call site adjusted and the variables renamed so that each alias set becomes a single variable. 

The second method is to generalise the definitions of data dependencies to create edges for 

the dependencies arising as a result of possible aliases. For ordinal types potential aliasing occurs 

whenever a procedure has more than one formal reference parameter or global of the same type. 

B o t h methods have l imi ta t ions . The former may lead to the creation of many procedure de

pendence graph copies for large programs w i t h many aliases. The lat ter generalised definitions 

w i l l produce many extra spurious data dependencies, giving both inaccurate program slices and 

inefficiencies i n the usage of storage space. 

W h i l s t simple value parameters of the C language can be adequately modelled by the SDG 

representation by employing a subset of the value-result mechanism, the use of pointer parameters 

in C presents greater difficulties. The SDG explici t ly names each actual parameter at each call 

site, defining actual-in and actual-out vertices together w i t h corresponding formal- in and formal-out 

vertices accordingly. For parameters w i t h bounded size, for example of type i n t *, i t is possible 

to in the same way define actual and formal vertices for the pointer and the referenced object. 

However, when a recursive structure appears as a parameter, i t is no longer possible to define 

appropriate ac tua l / formal vertices since the structure is not bounded in size. 

Like the earlier IPRs considered, the language represented by the SDG is currently too restricted. 

For example value-returning procedures, pointer and structure variables are not tackled. Program 

understanding in format ion in the fo rm of call graphs, control and intraprocedural data dependencies 

and program slices may be constructed. However the absence of the 'inter-reaching' edge of the IFG 

means tha t local data flow informat ion cannot be propagated throughout the SDG to construct 

interprocedural definition-use informat ion . 

3.2.7 C System Dependence Graph 

Based on Horwi tz et al's SDG[45], Livadas[61][62][63] describes an extended SDG allowing the 

handling of constructs forming a subset of A N S I C[5]. E x t r a features modelled by Livadas are 

declarations of local and global variables, pass by value parameters, pointer operations l imited 
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1. void mainO 13. i n t CalcSum(int s . i n t * j ) 21. void I n c ( i n t *x) 
2. { 14. { 22. { 
3. i n t sum; 15. I n c ( j ) ; 23. *x = *x + 1; 
4. i n t i ; 16. i f (s<100) { 24. } 
5. sum = 0 ; 17. s = s + • j ; 
6. i = 0; 18. } 
7. while (i<20) { 19. return s; 
8. sum = CalcSumCsum,&i); 20. > 
9. } 

10. i = i ; 
11. sum = sum; 
12. } 

Table 3.3: Example C program. 

to one level of indirection (i.e. * x ) , arbi t rary re turn statements, value-returning functions and 

control constructs such as s w i t c h , f o r and do. .while. Structures are decomposed into pr imit ive 

components, globals represented as extra reference parameters and static variables represented cis 

' limited-scope globals'. 

Livadas' SDG is based on the program parse tree, i.e. the graph's vertices represent nodes in 

the parse tree rather than statements of the program. Three new edge types are introduced. 

• aifect-param edge - represents dependence between an actual parameter and the function's 

re turn value. 

• re turn- l ink edge - represents dependence between the return nodes in the funct ion and a 

corresponding call site. 

• return-control edge - indicates the dependence between the return statement and other fo l 

lowing statements not executed when the funct ion exits on the return statement. 

Livadas tackles the aliasing problem using the alias-removing transformations/procedure copying 

method described by Horwitz et al[45]. A C System Dependence Graph representation of the 

program in table 3.3, a C version of the program in table 3.1, is shown in figure 3.6. The graph 

shown is, for simplicity, resolved at the statement level rather than the token level. 
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Figure 3.6: Example C System Dependence Graph. 
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A program slicing algori thm similar to the two phase algori thm described by Horwitz is applied 

to the new SDG. Enhanced slicing accuracy is reported via two means. Firs t ly, by determining 

dur ing SDG construction whether an actual parameter is never, sometimes or always modified 

dur ing procedure execution, the architecture of the SDG is adjusted accordingly. Secondly by 

resolving the SDG nodes at the token level, in certain cases smaller and therefore more accurate 

slices w i l l result. For example slicing on variable i at statement 4 of the program fragment 

1. i = 0; 
2. sum = 0; 
3. sum = sum + A l p h a ( & i ) ; 
4 . a = i ; 
5. b = sum; 

produces the slice 

1. i = 0; 
3. A l p h a ( & i ) ; 
4 . a = i ; 

B y employing a finer-grained SDG, Livadas is able to omit the dependencies involving sum at 

statement 3 f r o m the resulting slice. 

Livadas' SDG is constructed using a new bot tom-up method in which only one copy of a 

procedure dependence graph is required for any number of recursive call sites. The algorithm is 

conceptually simpler than tha t employed by Horwitz et al, no longer requiring the use of at t r ibute 

grammars and subordinate graphs to determine transitive dependencies. 

Livadas describes the Ghinsu environment[61] which currently provides program slicing, inter

procedural definition-use analysis, call graph and data flow dependence informat ion , together wi th . 

an object finding mechanism[63] based on the SDG IPR . 

Livadas' SDG is closer to the representation of real programs than the other IPRs considered 

so far, al though the language covered s t i l l omits some features of the C language. In particular 

restr ict ion of pointers to only one level of indirection means tha t Livadas keeps the encapsulated 

procedure interface of Horwi t z ' SDG and simplifies data dependence analysis. I t is not clear how this 

representation can be extended to deal w i t h arbi t rary pointer parameters and pointer assignments. 

Livadas has made good progress in the areas of graph construction and program slicing. The use 

of a ' refined' dependence-based representation to allow more accurate slicing is a new and beneficial 
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approach although w i l l lead to less space-efficient graphs, causing problems in the representation 

of large-scale programs. 

3.2.8 Unified Interprocedural Graph 

Given the applicabil i ty of the I F G to interprocedural data flow calculations and of Horwi tz ' SDG 

to program slicing, Harrold and Malloy[38][39] ident i fy the possibility of merging the two represen

tations to create the Unified Interprocedural Graph ( U I G ) . Numerous redundancies exist between 

the vertices and edges of these two graphs. The cal l / re turn vertices of the IFG are equivalent to the. 

actual-in/actual-out vertices of the SDG. Similarly, the ent ry/exi t vertices of the IFG are equivalent 

to the SDG's fo rmal - in / fo rmal -ou t vertices. Finally, the IFG's binding edges are equivalent to the-

parameter-in/parameter-out edges of the SDG. These redundancies are eliminated in the U I G and 

consequently savings made in terms of space. A U I G representation of the program in table 3.1 is 

contained in figure 3.7. 

The algorithms designed to operate on each component subgraph remain applicable to the U I G 

by simply considering only subsets of the available edges and vertices. The provision of the inter-

reaching edge of the I F G means tha t intraprocedural reaching defini t ion and reachable use sets 

can be propagated to allow the calculation of interprocedural definition-use associations, whilst the 

control in fo rma t ion of the SDG permits interprocedural program slicing. Flow-insensitive data flow 

analysis is also possible given tha t the call graph of the program is represented by the procedure 

entry vertices and call edges of the SDG. The complexity of these algorithms remains identical to 

the complexity of the algorithms when applied to the original graphs. Given tha t only a single 

representation need be accessed, the authors claim that savings can be made in the access times of 

these algorithms. 

The U I G provides many different views of a program yet suffers f r o m the same limitat ions as 

Horwi t z ' SDG in the representation of C programs. The language modelled by the U I G is currently 

too restricted and the addi t ion of features such as arrays, structures, pointers and value-returning 

procedures is required. The methods employed for parameter passing must also be addressed, the 

U I G suff'ering f r o m the same l imitat ions as the SDG in the representation of recursive structure 

parameters used in C. Harro ld and Malloy nevertheless present a useful approach and start ing point 

for the development of a unified I P R for a real programming language. The benefits of having a 

single representation make this a good approach for the development of a multiple program view 

maintenance environment. 
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3.2.9 Maintainer's Assistant Program Representation 

Pla tof f et al[72] describe the Maintainer's Assistant Program Representation ( M A P R ) , an IPR 

designed to provide source code, architecture, syntax, static semantics, control and data flow views 

of C programs. M A P R consists of abstract syntax graphs, cross reference graphs, control flow 

graphs and data flow graphs, allowing the implementation of tools such as restructuring tools, 

impact analysers, architecture analysers and testing tools. 

Abst ract syntax graphs are the foundation of M A P R . C preprocessor informat ion is maintained 

w i t h i n the graphs and annotations indicate expression types and the presence of side effects. Cross" 

reference in format ion is implemented as attributes on the vertices of the abstract syntax graphs 

w i t h identifler declarations linked to subsequent uses. The control flow and data flow graphs" 

are s imilar ly linked to the abstract syntax graph by pointers between associated vertices. Data 

flow analysis employs the techniques of Landi and Ryder[54][55] and hence provides approximate 

solutions in the presence of multi-level pointers. 

A l though the representation is integrated by simple links between its components, the approach 

is different to tha t of the U I G . M A P R is essentially a collection of linked representations rather 

than a single representation w i t h an associated set of view-forming algorithms. M A P R may be 

less efficient i n its use of storage space since informat ion w i l l be repeated between the M A P R 

subcomponents. 

The authors claim tha t M A P R is able to represent all of the C language but no formal definition 

of the representation or examples are given. Data and control dependence informat ion are not 

represented expl ic i t ly i n M A P R and hence traversal-based program slicing algorithms cannot be 

applied. No mention is given to any program slicing tool based on M A P R . The specific construction 

costs and space requirements of M A P R are not described. 

3.2.10 Standard Representation of Imperative Language Programs 

Bieman et al[9] ident i fy the problem that many software tools and measures are defined in terms 

of different program representations, such as the source code, program flow graph or data depen

dencies. I n many cases algorithms are deflned in a language dependent fashion and are hence 

d i f f icu l t to compare. Bieman et al's solution to this problem is a standard language independent 

representation protecting the program's semantics and containing sufficient informat ion to permit 

control flow and data dependence analysis. 

Hid ing program semantics by encoding variables is suggested as a way to gain access to propri-
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etary software in order to validate tools and measures on large projects. The language independent 

representation may be constructed f r o m any imperative language - a translator must be made avail

able to map the language to the standard representation whilst tools and measures are defined in 

terms of the representation itself. 

The standard representation, like the U I G , incorporates control fiow, data dependencies, pro

cedure interfaces and the use of operators but unlike the U I G is not a graph-based representation 

but is defined using a formal specification language. Using the standard representation Bieman et 

al define the computat ion of the basic software science mectsures (i.e. number of distinct operators, 

and dis t inct operands, to ta l number of operator and operand occurrences), the cyclomatic number 

and in format ion fiow measures. 

The authors recognise similar problems to Harrold and MaIloy[39] but coming f rom a metrics 

background concentrate more on the computat ion of measures. Program comprehension based on 

the standard representation w i l l require other program views such as program slices or data flow 

informat ion . Translators f r o m languages such as C may also be d i f f icu l t to construct, part icularly 

the less restrictive use of pointer variables. 

3.3 Data Dependence Analysis of Pointer Variables 

When stat ically analysing a program the effect of aliasing must be taken into account. The precision 

by which these effects can be determined w i l l be a significant factor in the usefulness of the static 

analysis. This is especially true of data dependence analysis, where the presence of aliasing creates 

addit ional dependencies. Imprecise aliasing informat ion w i l l lead to fur ther spurious dependencies. 

The flow dependence is an impor tan t component of each of the dependence-based IPRs described 

earlier. For a language wi thou t aliasing Horwi tz et al[45] define a flow dependence f rom vertex vi 

to vertex ^ 2 , ^'2) to exist when: 

• i ; i is a vertex tha t defines variable x. 

• V2 is a vertex tha t uses variable x. 

• Control can reach V2 after vi v ia a path in the control flow graph along which there is no 

intervening redefinit ion of x. 

This corresponds to the computat ion of a definition-use association f r o m vi to v^. Simple algorithms 

to calculate definition-use ctssociations are described by Aho et al[3] and may be employed in the 

construction of SDG and U I G intraprocedural fiow dependence edges. 
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For languages wi thout pointer variables, aliases can be created through the use of reference 

parameters and non-local variables. A n alias w i l l result in procedure P whenever a call is made 

to procedure P of the form P(x,x), where the actual parameter is repeated, or P{g), where g is a 

non-local variable accessed wi th in P. Further aliases can then be created w i t h i n procedures called 

f r o m P by calls such as Q{a,b), where a and b are aliases w i t h i n P. Any alias created wi l l hold 

throughout the execution of a callee. Horwi tz et al extend the original defini t ion of flow dependence 

to deal w i t h 'potential aliasing' which exists in a language w i t h reference parameters whenever a 

procedure has two or more parameters of the same type, two or more non-local variables of the • 

same type or a parameter and non-local variable of the same type: 

• is a vertex tha t defines variable x. 

• ii2 is a vertex that uses variable y. 

• X and y are potential aliases. 

• Control can reach V2 after vi v ia a pa th in the control fiow graph along which there is no 

intervening defini t ion of x or y. 

More accurate alias analysis in the presence of reference parameters and global variables has been 

described by Banning[8] and Cooper[21]. 

The defini t ion presented by Horwi tz et al for definition-use associations in the presence of 

aliasing relies on the fact that an alias holding when a variable is defined w i l l also hold when 

tha t variable is used. There is a direct relationship between variable names and memory locations 

which does not change intraprocedurally. This approach, although not discussed by Harrold and 

Malloy[38][39], could be applied to the reference parameters of the U I G . 

I n C, assignments between pointer variables allow aliases to be created intraprocedurally and 

allow the aliases holding in a caller to be affected by assignments w i t h i n a callee. Aliasing infor

mat ion can no longer be calculated for an entire procedure but must be updated after each pointer 

operation. The presence of self-referential structures fur ther complicates the aliasing problem. 

Linked data structures may be potential ly unbounded and must be represented in some finite way. 

More precise aliasing solutions are required i f useful data dependence informat ion is to be achieved. 

Recent work by Landi and Ryder[54][55] presents an algori thm to approximate safely interpro

cedural pointer-induced aliasing, based on the use of conditional analysis techniques - assuming an 

alias pair exists at entry to a procedure P , then can variables x and y be aliased at statement n 

w i t h i n P? A may-hold predicate indicates whether this is true or false for a given statement, an 
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assumed alias pair and a pair of variables x and y. A must-hold funct ion indicates the set of aliases 

that must exist at a procedure entry point to ensure an alias pair exists at a statement n in the 

procedure P. 

Pande et al[68] extend this work to give an approximate a lgor i thm for obtaining interproce

dural definition-use associations in the presence of single level pointers. Pande first calculates the 

interprocedural reaching definitions, again using the conditional analysis technique. The ahasing 

in format ion computed by Landi and Ryder is then used to account for the generation and ki l l ing 

of reaching definitions 

The point specific aliases are said to allow sufficient accuracy for the definition-use information 

to be useful to a maintenance programmer, although i t appears tha t the work has not yet been, 

applied to large scale C programs. 

The compil ing community is a source of research into the data dependence analysis of pointer 

variables. B y modelling the effects of dynamic variables, possible sources of parallelisation can 

be determined. A method for the calculation of data dependencies for programs w i t h pointers 

and heap allocated storage is presented by Horwitz et al[42]. Horwi tz et al address the reaching 

definit ions problem in terms of memory locations, rather than variable names and aliases: 

Program-point q has a flow dependence on program-point p i f p writes into a memory 

location loc tha t q reads, and there is no intervening wri te into lac along the execution 

pa th by which q is reached f r o m p. 

Horwi tz et al's a lgori thm is divided into two phases. The first phase, the 'reaching-stores phase', 

computes at each program-point a set of store graphs tha t approximate the possible memory layouts 

tha t could arise dur ing execution. Program variables, together w i t h any dynamic variables allocated 

dur ing execution, are represented by abstract memory locations. A store graph consists of vertices 

representing abstract memory locations and edges representing pointer relationships between the 

abstract locations. A n in i t i a l store graph is iterated around the program's control flow and call 

graph un t i l a fixed-point solution is achieved. The contents of each abstract location and pointer 

relationships between abstract locations are updated at each program-point to reflect the semantics 

of the statement. Each abstract memory location is labelled by the program-point which last wrote 

to tha t location. 

Three approximations are used to ensure that the set of store graphs at each program-point is 

effectively computable whenever the program contains a loop. 

• A 'one-element domain ' of atoms prevents state sets f r o m differ ing only on the value of an 
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atom. 

• A 'condense' operation l imi ts store size by replacing a non-empty region of a store wi th a 

single vertex. This k-bounding l imi ts acyclic paths w i t h i n self-referential data structures to 

depth k. 

• A 'collapse' operation uses an equivalence relation to l i m i t the size of a set of states. 

The second phase, the 'inference phase', examines the set of stores reaching each program-point 

and determines the locations read. A flow dependence p q exists i f q reads a location labelled 

p in any store graph reaching q. 

Horwi tz et al's a lgori thm is defined using an abstract semantics and only a small practical Lisp 

example is described. Use of the algori thm w i t h C programs w i l l require a method to deal w i t h 

the more complicated dynamic allocation statements and a means of approximating the iteration 

throughout the control flow/call graph dur ing the reaching stores phase. The number of possible 

control paths through a large program can preclude all-paths analysis, hence some method of path 

l im i t a t i on may be required. 

A similar pointer /s t ructure dependency analysis algori thm is described by Chase et al[17]. A 

'storage shape graph' (SSG) is constructed at each statement of the program. A n SSG consists of 

vertices representing simple variables and heap-allocated storage w i t h a special vertex representing 

all atoms. Edges in the SSG represent pointer relationships. 

Chase et al's basic a lgor i thm produces at each statement SSGs containing the same vertices, 

one for each simple variable and one for each statement in a program allocating a data structure. 

I n i t i a l l y each SSG has no edges. The analysis proceeds by i terat ing throughout the program's 

ca l l /cont ro l flow graph i n the same way as Horwi tz et al. A t each statement, edges are added to 

the SSG to represent the semantic effects of the statement. When a fixed point is reached, edges in 

an SSG represent an approximation to the possible pointer relationships into and through allocated 

storage, tha t could arise by executing any path to the statement for which the SSG was computed. 

The most accurate solution occurs whenever an SSG comprises the least number of edges that is 

s t i l l a conservative approximation to actual storage. 

A n extension to the a lgor i thm allows mult iple vertices w i t h i n an SSG for each dynamic allo

cation statement. These vertices may be merged under certain conditions. This operation is the 

equivalent to Horwi tz et al's k - l imi t i ng approximations. The k - l imi t ing method has two main l i m 

itations. Firs t ly, informat ion on a structure beyond depth k is lost, Secondly, unless k is small, 

k-bounded approaches can be inefficient. Chase et al's merging operation maintains more structural 
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in format ion and allows the detection of acyclic structures such as lists and trees. B y never merging 

vertices f r o m different allocation statements. Chase et al assume tha t heap space allocated at the 

same statement is liable to be treated in the same way. For a type-based language this is equivalent 

to never merging vertices that could be given different type definitions. 

Like Horwi tz et al. Chase et al describe only a small Lisp-based example and the control paths 

problem s t i l l exists. The actual computat ion of data dependencies is also not described, only the 

computat ion of program aliases. 

3.4 Summary 

This chapter has evaluated a number of intermediate program representations, selected f rom the 

fields of data flow analysis and program slicing. The common l imi ta t ion of each representation is 

the language modelled. I n most cases only ' toy ' languages are addressed. Harrold and Malloy's 

U I G [38] [39] allows the creation of a variety of program views but is unable to model many features 

of the C language. Livadas' reflned SDG[61][62][63] allows more accurate program slicing, but is 

unable to deal w i t h the arb i t rary pointer usage of C. 

Algor i thms have been described for the data dependence analysis of languages wi th pointer 

variables, self-referential structures and heap-allocated storage. The algorithms are largely theo

retically based and have yet to be demonstrated w i t h large programs. However, useful information 

can be achieved in the data dependence analysis of C using these methods. 
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Chapter 4 

Combined C Graph 

This chapter describes the Combined C Graph (CCG), a dependence-based intermediate program 

representation (IPR) allowing the modelling of many features of the C language. A brief intro

duction to some of the features of the C language is given in section 4.1. The approaches taken 

in the development of the CCG are described in section 4.2, which addresses the additional lan

guage features modelled and outlines the vertices and edges comprising the CCG. Using earlier 

dependence-based intermediate program representations as a basis, embedded side effects and con

trol flows, pointer parameters, value-returning functions, structures, arrays and pointer variables 

are introduced. The CCG representation makes available to the software maintainer a variety of 

programming level views. Section 4.3 goes on to describe these views and their construction from 

the CCG. A more formal description of the vertices and edges of the CCG is given in section 4.4, 

whilst algorithms for the construction of the CCG are contained in section 4.5. Section 4.6 finally 

contains an example CCG for a small C program. 

4.1 The C Programming Language 

The C Programming Language[51] was originally designed and implemented in 1972 by Dennis 

Ritchie on the DEC PDP-11 for the UNDC operating system. The language has its history in the 

BCPL language developed by Martin Richards and the B language designed by Ken Thompson in 

1970. The language is a general purpose programming language and although useful as a language 

for writing compilers and operating systems has grown in popularity and been used to write large 

systems in many application domains. C is a concise, small language which contains a mixture of 

low level assembler-style commands together with higher level commands. For many years the de 

facto standard for C was taken from the first edition of Kernighan and Ritchie's The C Programming 
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Language[50] and known ' K & R ' C. In 1988, the American National Standards Institute completed 

a standard definition for the language, known as 'ANSI C'[5]. The two standards differ only slightly, 

the most important changes being the provision in ANSI C to describe function arguments and the 

definition of a standard library. The following subsections give a brief flavour of the C language, 

describing features which add to the simpler declarative languages modelled by other IPRs. 

4.1.1 Variables and Types 

C is a typed language. The basic types available are characters, integers and floating point numbers 

of different lengths. From these basic types i t is then possible to derive other data types using 

pointers, arrays, structures and unions. For example variables of the same type can be put into" 

arrays: 

char months [12]; 

Multi-dimensional arrays can also be created: 

char coords[50] [100]; 

Variables of different types can be grouped into structures. For example: 

s t ruc t address { 

i n t number; 

char s t r ee t [30] ; 

char town[20]; 

> my_house; 

The typedef operator can be used to create new types. Union variables are declared in a similar 

way to structures but memory is only assigned for the largest item. The programmer must keep ' 

track of what the union is being used for. For example: 

union person { 

i n t age; 

f l o a t he ight ; 

} b i l l ; 

b i l l . a g e = 30; 

b i l l . h e i g h t = 1.71; 
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Pointer variables are widely used in C. The * operator is used to dereference a pointer variable. 

The & operator returns the address of a variable. A pointer is constrained to point to a given 

type. Pointers to structures are commonly used, particularly in connection with dynamic memory 

allocation, to create recursive structures such as lists or trees. The -> operator is provided as an 

abbreviation to access the fields of a referenced structure. For example, (*address_ptr) . s t reet 

becomes address_ptr->street. 

Pointers and arrays in C are closely related. Operations making use of array variables may also 

be carried out using pointer variables. For example, the notation month [3] refers to the fourth 

element of the array month, array subscripts starting at 0. By declaring a pointer variable char 

*p and assigning p = ftmonth [ 0 ] , the pointer p now points to the start of the array month. The 

equivalent notation *(p + 3) can then be used to access the fourth element of the array. The 

compiler ensures that the pointer is incremented in relation to the type and size of the referenced 

object. 

Another use of pointer variables is to create pointers to functions. A pointer to a function can 

be used like any other variable. 

4.1.2 Expressions 

An expression in C is constructed from operands and operators. C has many different operators 

- arithmetic operators, increment and decrement operators, boolean operators, bitwise operators, 

relational operators and assignment operators. Any expression can be used as a statement in the 

language. For example, the expression x = y is a statement which assigns the value of y to x. 

Al l expressions return a value, which in the case of assignment is the value assigned to the left 

hand side argument. By combining expressions i t becomes possible to create larger expressions 

containing embedded side effects. For example, the statement: 

X = (y + Z++); 

will have the side effect of incrementing z in addition to assigning a new value (y + z) to x. 

The order of evaluation of sub-expressions is unspecified with the exception of && (logical and), 

I I (logical or), ?: (conditional operator) and , (the comma operator). 

4.1.3 Control Flow 

The C language has a wide variety of control constructs. In addition to i f statements, while and 

f o r loops, C provides the switch multi-way decision statement and the do loop, which tests at the 
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bottom of the loop. The non-structured break statement enables early exit from the innermost 

enclosing loop or switch whilst continue causes the next iteration of any enclosing f o r , while or 

do loop to begin. Finally a goto statement is also provided. 

In addition to these control constructs, control flow can also exist within expressions. The 

boolean operators && (logical and) and I I (logical or) each make use of short circuit evalua

tion. Hence a boolean expression such ELS a && b && c will contain control flows between the 

sub-expressions a, b and c. Similarly the conditional operator ?: creates control flows between its 

sub-expressions. For example the expression: 

( i > 100) ? i++ : i ~ ; 

evaluates either i++ or i — dependent on the outcome of ( i > 100). 

4.1.4 Functions 

C provides no procedures, only functions. Functions may not be nested but with the exception of 

main (the start function) may be called recursively. Execution of a function continues until the 

end of the function is reached, a r e tu rn statement is reached, or an e x i t statement is reached 

terminating the program. The r e tu rn statement is used to return a value to the caJling function. 

I f no r e tu rn statement is present, the value returned is undefined. 

Parameters are passed to a function using the call by value mechanism. The actual parameter 

value is copied to the formal parameter and therefore cannot be modified by changes to the formal. 

To modify an actual parameter, the programmer must pass a pointer value. The called function 

can then dereference the formal parameter to access the object to be modified. 

4.1.5 External Variables, Scoping Rules and Block Structure 

The C language has complex scoping rules which become of great importance with larger programs 

for which the source is kept in several files or indeed in separately compiled libraries. 

Variables defined within a function may be accessed only within that function. These local 

variables come into existence when the function is called and disappear when the function is exited 

and are known as automatic variables. An alternative is to define variables which are external to 

all functions. These variables remain in existence permanently. A variable defined in global space 

may be accessed within a function by declaring the variable inside the function using an extern 

statement. For example an externally defined integer i may be declared and then accessed within a 

function by declaring the variable within the function using extern i n t i . Space for the variable 
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is however only assigned by the single external definition. 

Preceding an external variable definition with the keyword s t a t i c limits the variable's scope 

to the rest of the source file being compiled. Variables locai to a function may also be defined as 

s t a t i c . Static internal variables remain in existence and preserve their value between function 

calls. 

I t is possible to define variables in C in a block-structured manner, despite the absence of nested • 

procedures. Variables can be declared at the start of any compound statement such as a while 

or i f statement. Any variables declared within an inner block in this manner hide any similarly 

named variables defined in outer blocks or as extern. 

Variables may also be initialised as they are defined. For example, the following statement 

defines the integer i and initialises i t to the value 100: 

i n t i = 100; 

4.1.6 Standard Library 

The C language is provided with a set of standard library routines. This library provides functions 

to perform tasks such as input and output, mathematical routines, string handling and storage 

management. The standard library is not part of the C language as such but the definition provided 

by the ANSI standard allows for compatibility and ease of porting. 

4.1.7 C Preprocessor 

Facilities such as file inclusion, macro substitution and conditional inclusion are also not part of the 

language itself but are provided by the C Preprocessor. The preprocessor forms a separate grammar 

to the language itself and is implemented as a first stage in compilation. The most commonly used 

features are #def ine to replace a token with a given character string and #include to include the 

contents of another file. 

4.2 C C G Overview 

This section describes the approaches taken in the development of the CCG to allow the modelling of 

many features of the C language. An earlier IPR, the UIG described by Harrold and Malloy[38][39], 

provides useful information yet is unable to model C features such as embedded side effects and 

control fiows, pointer parameters, value-returning functions, structures, arrays, pointer variables or 
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C control constructs such as break, continue, switch or goto. The CCG representation refines and 

extends the UIG to enable the modelling of each of these constructs and language features[52][53]. 

The CCG is a dependence-based IPR containing explicit representations of the program's data 

and control dependencies. 

The CCG is a directed graph comprising dependence graphs for each function making up the 

subject C program. These subgraphs are known CLS Function CCGs (FCCGs). The FCCGs making 

up a CCG are connected by a variety of interprocedural graph edges representing call relationships, 

parameter passing and interprocedural data dependencies. 

Each FCCG is a directed graph where, at the most basic level, vertices represent the statements 

of the program, such as cissignments and control predicates. Each FCCG has a special 'entry' vertex 

which is the root of the directed graph representing the body of the function. Refinements to this 

basic model are introduced to represent expressions with embedded side effects or embedded control 

flows and are discussed in detail below. 

The edges of an FCCG represent the control and data dependencies between the statements. A 

control dependence edge indicates that the execution of the statement at the sink vertex of the edge 

is determined by the execution of the predicate at the source vertex of the edge. For C programs 

involving only i f . . then, .else and whi le control constructs, the control dependence edges of 

an FCCG will reflect directly the nesting structure of the control predicates. Each statement 

immediately nested within the loop or conditional whose predicate is at vertex v will be control 

dependent on v. Control dependence edges are labelled 'true' or 'false' indicating the outcome of the 

predicate at the source vertex. Control dependencies for other C control structures are discussed 

in section 4.2.1. 

A data dependence edge between two vertices indicates that a program's computation may 

change if the relative order of the two vertices were changed. The data dependence edges of the 

CCG are more accurately flow dependencies. A flow dependence corresponds to a definition-use 

association from the source to sink vertex. A variable defined at the source vertex is used at the 

sink vertex with no intervening redefinition. 

Each FCCG has annotations describing the solutions to three flow-sensitive data flow analysis 

problems: 

• May be preserved - variables whose value is maintained unchanged on some path through a 

function. 

• Live on entry - variables used on some path through a function before being redefined. 
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• Live on exit - variables which are used on some path on leaving a function before being 

redefined. 

Variables involved are either objects referenced by pointer parameters or external variables. Sets 

representing the solutions to these problems are attached to each FCCG. 

4.2.1 Embedded Side Effects, Embedded Control Flows and Value-returning 
Functions 

Side effects occur when a variable is altered during the evaluation of an expression. In C, side effects' 

can arise as a result of assignment statements, increment and decrement operators and function 

calls. Wherever a statement may contain an expression, side eflFects are possible. For example, the' 

variable y is defined as a side effect of the test: 

i f (x == (y = 5)) . . . 

The increment of variable i in: 

while (a [ i++] == 0) . . . 

similarly is a side effect. A function call involves side effects if any variables are defined during the 

execution of the function. For example: 

i f (x == f O ) . . . 

may involve the definition of variables within function f . 

As a result of embedded side eflPects, data dependencies can exist between the individual sub

expressions of a program statement. For example, the statement: 

y = f 0 + x; 

may lead to data dependence from any definition of x within f , where x is a global variable, to the 

use of variable x in the addition expression. 

An expression in C may also contain embedded control flow. This occurs with the conditional 

expression operator ?:. The conditional expression: 

(a > b) ? a : b; 

evaluates either a or b depending on the outcome of (a > b) . The use of short-circuiting in 

evaluating boolean expressions similarly leads to embedded control flow. For example, in the 

expression: 
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i f (x && y && z ) ... 

i f X is false, the value of the entire expression is false and y and z will not be evaluated. There is 

consequently a possible change in control flow associated with the && (logical and) and I I (logical 

or) operators and hence control dependencies between the sub-expressions involved. 

A dependence-based representation resolved at the statement level will be unable to model-

these embedded side effects and control flows. Data and control dependencies which cannot be 

represented at the statement level will exist between sub-expressions. 

A finer-grained representation is necessary and has two advantages: 

• A maintainer is presented with a more intuitive representation of the code. 

• As described by Livadas[61][62][63], i t becomes possible to construct more accurate program 

slices. 

The solution presented by Livadas is to resolve the IPR at the parse tree level, such that each 

vertex of the IPR represents a node in the parse tree. Whilst this undoubtedly provides fine 

grained information, the number of program vertices required will become large. 

The approach taken in the CCG is to wherever possible resolve the representation at the state

ment level. However, where embedded side effects or control flows exist, extra vertices are created 

for each sub-expression containing a side effect or possible change in control flow. This approach 

gives two benefits. 

• The CCG contains refined information at the sub-expression level. 

• The number of graph vertices is reduced. 

For example, the statement: 

a = b; 

will produce only a single program vertex. 

However the statement: 

a = b++; 

will produce two vertices, representing b++ and a =. 

A function call followed by an assignment: 

X = f ( ) ; 
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gives two vertices c a l l f () and x =. 

The conditional expression: 

a > b ? c : d; 

gives three vertices a > b, c and d. 

A boolean operator produces a vertex for each operand. For example: 

a && b; 

produces two vertices a and && b. 

More complicated expressions combining side eflFects, function calls or control flows are broken 

down to separate the relevant sub-expressions. For example: 

*y++ = *x++ + f ( ) + (z = a && b ) ; 

gives seven vertices. These are a, && b, z =, c a l l f ( ) , *x++, *y++ and a final assignment vertex. 

Three new edges are introduced to connect the vertices created when sub-expressions involve 

side effects, function calls or control flows. The first of these edges is the expression-use edge. This 

edge connects a sub-expression vertex evaluating a value which is then used at another program 

vertex. The statement: 

X = (y = 5); 

will produce two vertices, one to represent the embedded side effect y = 5 and the other to represent 

the final assignment x =. This assignment uses the value produced by the expression y = 5. An 

expression-use edge from (y = 5) to (x =) indicates this relationship. Figure 4.1 contains an 

expression-use edge representing the use of the expression y = 5 at an assignment node x =. 

An lvalue is an expression referring to a named region of storage, its name being derived from 

the assignment statement, the left hand side of which must be an lvalue. The second new edge, an 

lvalue-definition edge is added whenever a program vertex evaluates an lvalue expression which is 

then defined at a second program vertex. This situation arises when side effects occur on the left 

hand side of an assignment statement. 

The C language, with the exception of boolean, comma and conditional operators, imposes no 

order of evaluation rules on expressions. The expression: 

*p++ = 100; 

may as a result be evaluated as follows. 
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expression-use edge 

Figure 4.1: Expression-use edge. 

1. Evaluate the lvalue *p. 

2. Increment the pointer p. 

3. Evaluate the right hand side expression 100. 

4. Assign the value of the expression 100 to the lvalue *p. 

An lvalue definition edge from (*p++) to (= 100) will result. This is shown in figure 4.2. 

The third new edge type is the return-expression-use edge. This edge allows the representation 

of value-returning functions, indicating the relationship between the expression evaluated at a 

return statement and its use within any calling function. Return-expression-use edges pass from 

each vertex evaluating a return value to each vertex at which that value may be used. For example: 

x = f ( ) ; 

where f contains: 

r e tu rn a * b; 

will produce a return-expression-use edge from ( r e tu rn a * b) to (x =). This edge is shown in 

figure 4.3. 

4.2.2 Parameter Interface 

The C language uses the pass by value parameter mechanism. Pointer parameters are used to 

effect call by reference. A new parameter interface is required between the function subgraphs to 

represent each of these schemes. 
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lvalue-definition edge 

Figure 4.2: Lvalue-definition edge. 

r e t u r n 
a * b 

retum-expression-use edge 

Figure 4.3: Return-expression-use edge. 
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Ordinal types 

The pass by value parameter scheme used by the C language requires a new parameter interface 

to represent procedure calls and to connect the FCCGs. As seen in section 3.2.6, the SDG models 

pass by value-result parameters, creating a graph vertex for every actual and formal parameter 

at each procedure call, entry, exit and return point. The vertices created are known as actual-in, 

formal-in, formal-out and actual-out vertices respectively. The UIG uses the same scheme to model 

pass by reference parameters in the absence of aliasing. 

Since pass by value is a subset of pa.ss by value-result, pass by value parameters can be rep

resented using a subset of these vertices, i.e. only the actual-in and formal-in vertices. These are 

known simply as actual and formal parameter vertices. The actual-out and formal-out vertices da 

not play any part in pass by value. 

Pointer parameters 

Pointer parameters present more complex problems. The SDG/UIG representation creates vertices 

for each reference parameter, which can always be enumerated and remain the same on each path 

to a given call site. For example, the call P(a, b) always requires actual-in vertices for the two 

reference parameters a and b. 

The use of pointer parameters in C means that the actual parameters at a call site can no 

longer be represented explicitly. Where a pointer is passed as a parameter, the objects referenced 

by the pointer may no longer be bounded, or may be different on alternative paths to the same 

call site. Appropriate actual vertices for the referenced objects cannot be constructed in this case. 

Actual vertices are only created for the parameters explicitly passed by value and not implicitly as 

referenced objects. 

Like the UIG, the CCG includes call and entry vertices, together with call edges to represent 

function calls. Parameter binding edges connect actual and formal parameters. 

An example parameter interface is shown in figure 4.4, representing the call I n c ( j ) . In this 

case, j is an integer and actual and formal parameters are created for the actual j and formal 

parameter x. I f j was of some pointer type, only the pointer j would be given an actual vertex, 

whilst a formal vertex would exist only for the formal pointer parameter x. Any objects referenced 

by j would not be represented in the call interface. 

This new parameter interface shows a major difference between the UIG and the new CCG. In 

the UIG only intraprocedural data dependencies are represented explicitly whilst all interprocedural 
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IncO 

Actual 

void Inc() 

Fonnal 
i n t X 

=^ control dependence (True/False) 

— | — ^ call edge 

[J > parameter edge 

Figure 4.4: CCG parameter interface. 
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information is encapsulated within the call interface. Interprocedural definition-use associations 

arise as a result of the call by reference parameter passing scheme. A location may be defined 

within one procedure and later read within another procedure only where that location is visible 

as a result of its use as a reference parameter. This interprocedural definition-use information is 

not explicitly contained in the UIG. Instead, the IFG subcomponent of the UIG allows reachable 

use information to be gathered intraprocedurally and then to be propagated throughout the graph, 

making use of the encapsulated parameter interface. Interprocedural definition-use relationships 

can then be determined. 

In C, the combination of pass by value and pointer parameters means that referenced objects 

can be accessed within a callee function without explicitly appearing in the parameter interface. " 

Interprocedural dependencies can no longer be encapsulated within the call interface but must 

instead be represented explicitly in the CCG. 

The CCG fragment in figure 4.5 shows such an explicit interprocedural data dependence. The 

variable p j is passed to the function Inc which increments the integer referenced by the formal 

parameter x. The binding effects of the call to Inc mean that x wil l reference and hence increment 

the object * p j , which is not involved in the CCG parameter interface. An interprocedural data 

dependence exists from the definition of *pj to the use of *x within Inc. 

' A n o n y m o u s ' parameters 

The C language allows the value of an expression to be used as an actual parameter. I t is possible 

to construct function calls of the form f ( g O ) , where the actual parameter is the value returned 

from the function g. For calls of this format, the parameter interface is modified by the addition of 

a 'dummy' vertex. This new vertex represents the evaluation of the actual parameter and serves to. 

maintain the 'shape' of the parameter interface where there is no explicit actual parameter vertex. 

Figure 4.6 shows the CCG subgraph for the call Inc ( f ( ) ) . A dummy node is added to represent 

the evaluation of the actual parameter f ( ) , which is derived from the return expression within f . . -

4.2.3 Control Structures 

The CCG introduces the control structures f o r , do. .whi le , switch, break, continue and goto, 

in addition to the i f . . then, .else and while loops of the SDG/UIG representations. 

For 

The f o r statement: 
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Actual 

void I n c ( ) 

Formal 
i n t *x 

flow dependence 

control dependence (True/False) 

—|—^ call edge 

[ ] > parameter edge 

Figure 4.5: Explicit data dependence edge across parameter interface. 
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I n c O 

Dummy 

v o i d I n c ( ) 

Entry 
v o i d f O 

Formal 
i n t X 

r e t u r n ( e x p ) ; 

control dependence (True/False) 

call edge 

.5=- retum-expression-use edge 

[ ] >. parameter edge 

Figure 4.6: Dummy node for 'anonymous' parameter. 
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s t a t e m e n t 

control dependence (True/False) 

Figure 4.7: CCG control structure for f o r statement. 

f o r ( e x p r l ; expr2, expr3) 
statement 

can be represented by the while construct 

e x p r l ; 
whi le (expr2) { 

statement 
exprS; 

} 

This gives rise to the control dependencies shown in figure 4.7. 

Do . .wh i l e 

The do. .whi le construct of the C language: 

do 

statement 
while (expr ) ; 

is represented by a similar pattern of control dependencies to the more common while loop. 

However the statements of the loop body are additionally control dependent on any enclosing 

condition. This is shown in figure 4.8. 
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s t a t e m e n t 

control dependence (True/False) 

Figure 4.8: CCG control structure for do. .while statement. 

Swi tch 

The multi-way decision switch statement is modelled using a new switch control dependence edge. 

Each constant expression of the switch statement is switch dependent on the switch expression. 

The statements following each constant expression are in turn control dependent on the constant 

expression vertex. Where the execution of the following statements does not terminate with a 

break statement, execution 'falls through' to the next case arm and these statements are also 

control dependent on the former constant expression. The representation for the following switch 

statement is shown in figure 4.9. 

switch (expr) { 
case cons t -expr l : statementsl; 

break; 
case const-expr2: statements2; 
case const-expr3: statements3; 

break; 
d e f a u l t : statements 

statementsl are control dependent on case const-exprl , and statements2 are control de

pendent on case const-expr2. statements3 are control dependent on both case const-exprl 

and case const-expr2 since statements2 do not terminate with a break statement, instead 

'falling through' to statementsS. 
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case 
const-exprl 

statementsl statements2 scatements 

^ control dependence (True/False) 

switch dependence 

Figure 4.9: CCG control structure for switch statement. 

Break , continue, goto 

Break and continue statements, in providing early exits from loops, together with the goto state

ment, allow the construction of unstructured C programs. By defining control dependence in terms 

of a control flow graph and dominators, as reported by Ferrante et al[25], rather than simple nest

ing of control structures, as reported by Horwitz et al[43], control dependence information can be 

obtained for unstructured programs. No extra graph features are necessary. 

4.2.4 Pointer, Structure and Array Variables 

An accurate representation of the program's data dependencies requires analysis of any pointer, 

structure or array variables involved. 

Pointer variables are effectively 'decomposed' to allow the construction of data dependencies 

through the pointer itself and also any objects referenced by the pointer. Any pointer variables 

referenced in the computation of an expression may give rise to data dependencies. For example, 

the statement x = *p, where x is of type i n t and p of type * i n t , references both the object p 

and the referenced object *p, before defining x. Flow dependencies incident on the vertex x = 

*p may consequently be through either the variable p or the referenced object *p. Similarly an 

lvalue expression may lead to dependencies through any pointer variables involved. For example, 

the assignment *p = y, where p is of type * i n t and y of type i n t will use both y and the pointer 
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p before defining object *p. 

Structure variables are also 'decomposed' into primitive components to facilitate more accurate 

data flow analysis. Consider the following declarations. 

s t ruc t po in t { 
i n t x; 
i n t y ; 

>; 

s t r u c t rect { 
s t r u c t po in t p t l ; 
s t r u c t po in t p t2 ; 

>; 

s t r u c t po in t p t ; 
s t r u c t rec t screen; 

The variable pt is decomposed into the primitive components p t . x and p t . y . The variable 

screen is decomposed into the primitive components screen.p t l .x, screen .p t l .y, screen.pt2.x 

and screen. p t2 .y . Dependence analysis is carried out in terms of these primitive components. The 

structure assignment pt = sc reen .p t l uses both sc reen .p t l .x and sc reen .p t l .y and defines 

p t . x and p t . y . 

More complicated data structures may involve both pointer and structure variables. For exam

ple: 

s t r uc t node { 
i n t data; 
char *name; 

>; 

s t ruc t node *item; 

defines a pointer to a structure, a field of which is itself a pointer variable. This data structure 

can be decomposed into item, (*item) .data, (*item) .name and *((*i tem) .name). 

Array variables present difficulties for static analysis techniques. Firstly in most cases the array 

element referred to by the expression a [ i ] cannot be determined since the value of the subscript 

i is unknown until run-time. In this case approximations to the possible elements involved must 

be made. Secondly arrays often consist of large numbers of elements and therefore using 'decom

position' techniques similar to those used with pointer and structure variables will be expensive in 
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terms of the space required. The approach taken is therefore to represent arrays as 'aggregates', 

i.e. a single variable, and not to attempt analysis of the individual elements. An assignment to an 

array element is considered to conditionally define the entire array. A reference of an array element 

is treated as a use of the entire array. 

4.2.5 Block Structure, External and Static Variables 

Variables in C may be declared at the start of any block, i.e. at the entry to any compound 

statement, and not only at the entry to a function. Declaration of a variable will hide any variables 

of the same name declared in outer blocks. The CCG reflects the scoping rules of the language and 

the visibility of variables in the creation of data dependence information. 

Variables may also be declared in a C program external to all functions. These external vari

ables may be deflned within one function and referenced within another function, leading to an 

interprocedural data dependence. In the same way as the objects referenced by a pointer param

eter, interprocedural data dependencies through global variables are represented explicitly in the 

CCG. 

Where a local variable is declared as s t a t i c , its value is preserved across invocations of the 

function or block in which the variable is declared. Static variables are treated in the same way as 

external variables, but with visibility limited according to the language's scoping rules. 

4.2.6 Standard Library Functions 

Standard library routines where the body of the function is unknown may be represented in the 

CCG by forming 'stub' routines having the same interprocedural effects. I t is not necessary that a 

'stub' routine model the intraprocedural effects of the actual function. Entry and actual vertices 

are created for the unknown routine, together with a return statement vertex if necessary. Any 

definitions of objects referenced by pointer parameters or external variables must also be represented 

to accurately model the function's interprocedural eff'ects. This approach can also be employed 

where the subject C program contains as yet unimplemented functions. A CCG can be constructed 

by creating 'stub' routines to model the effects of these unknown functions. 

An example stub routine for the standard library routine labs, defined in s t d l i b . h , is shown 

in table 4.1. The labs function returns the absolute value of its long argument. Its interprocedural 

eff'ects are confined to call and parameter bindings, together with a value returned to the caller 

function. The actual value returned by labs is unimportant since the CCG ignores all constant 

values. 
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long labs( long n) 
{ 

r e tu rn n; 
} 

Table 4.1: 'Stub' routine for labs standard library function. 

4.3 Program Views 

The following section describes the different program views which can be created from the CCG. 

These views are program slices, definition-use pairs, call graphs, control dependencies and flow 

sensitive data flow information. 

4.3.1 Program Slicing 

A simple program slice can be achieved on a dependence-based IPR by traversing backwards the 

control and data dependence edges of the IPR. This algorithm can be applied to the CCG to 

construct a program slice at any vertex of the graph. A slice at statement p on variable v is obtained 

by traversing backwards the edges of the CCG from p. Where v is defined at p, the program slice 

should include statements contributing to the values of any variables used to compute p. Hence 

all flow dependencies are traversed from p. Where v is used at p, the program slice should only 

include statements actually contributing to v and not to other variables defined or referenced at p. 

In this case only flow dependencies involving v are followed from p. 

By producing a more refined program representation to deal with expressions with embedded 

side effects or control flows, as discussed in section 4.2.1, more accurate program slices can be 

constructed. In the following example, by refining the embedded side effect i++, a slice on a at 

statement 4 includes only those statements which contribute to a. Statements contributing to sum 

are not included. 

1. i = 0; 
2. sum = 0; 
3. sum = sum + i++; 
4. a = i ; 
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1 = 0 ; ) sum = 0 sum = sum + 

(a) Refined CCG 

sum = 0 sum = sum + i 

(b) Embedded side effect 

•I-
flow dependence 

expression-use edge 

Figure 4.10: Enhanced slicing accuracy with refined CCG. 

A CCG for this program fragment is shown in figure 4.10(a). The resulting slice obtained from 

a backwards traversal of edges from (a = i ) follows. 

i = 0; 
i++; 
a = i ; 

I f no extra node is created for the embedded side effect i++ the graph in figure 4.10(b) results 

and the program slice becomes the entire program. 

4.3.2 Ripple Analysis 

By reversing the direction of the program slicing algorithm, rather than forming a solution showing 

the set of statements possibly affecting the value of a variable, the solution obtained represents 
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the potential effect of changing a variable at the given statement. A maintainer can form a 'ripple 

analysis' view by constructing a 'forward', rather than the more usual 'reverse' program slice. 

Again, the 'refined' CCG will give enhanced accuracy over a statement-based IPR. 

4.3.3 Definition-use Pairs 

Both intraprocedural and interprocedural definition-use associations are represented explicitly in 

the CCG. The maintainer may then view a CCG subgraph showing only these relationships, or 

may construct a more precise query to generate more specific definition-use information, such as 

definition-use relationships within a single function or from a single program statement. 

4.3.4 Call Graph 

Like the definition-use information, call relationships are contained explicitly within the CCG. A 

maintainer can query the representation to produce a complete program call graph, or more refined 

information such as the callees of a given function or call paths from one function to another. 

4.3.5 Control Dependence Information 

Control dependence information is similarly represented explicitly within the CCG. Intraprocedural 

control dependence views may be formed by taking simple subgraphs of the CCG representation. 

4.3.6 Flow-sensitive Data Flow 

Each FCCG is annotated with solutions to the flow-sensitive data flow problems may be preserved, 

live on entry and live on exit. A maintainer is able to form views showing this information for given 

functions or variables. 

4.4 C C G Description 

This section describes formally the vertices and edges comprising the CCG. The CCG is composed 

of a collection of FCCGs each representing an individual function of the C program. Each individual 

FCCG is a directed graph containing the vertices and edges described below. 

4.4.1 F C C G Vertices 

Each FCCG contains a unique entry vertex. Each formal parameter of the function is also rep

resented by its own formal parameter vertex. Call sites within a function are represented by a 
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special call vertex. Any other program statement without embedded side effects or control flow is 

represented by an FCCG vertex. 

Any statements containing embedded side effects or control flows generate vertices for each 

sub-expression containing a side effect or possible change in control flow. A binary expression 

containing side effects 

X © y 

gives the following vertices. 

• y , x ® : side effect in y 

• X , © y : side effect in x 

• X , y , © : side effects in x and y . 

A boolean expression with short-circuit evaluation 

a © b © c 

with precedence (a © b) © c gives three vertices 

a , © b, © c 

A C conditional expression 

a ? b : c 

gives three vertices 

a, b, c 

Any FCCG vertex which evaluates an actual parameter is termed an actual vertex. A dummy vertex 

is created whenever an actual parameter value is the return value of a function call. The function 

call 

f ( g ( ) ) 

gives vertices c a l l f , c a l l g and dummy. 

4.4.2 F C C G Edges 

Intraprocedural flow dependencies 

The definition of intraprocedural flow dependence is given in terms of memory locations. 

Given program-points p and q within function / , program-point q has a flow dependence 

on program-point p, p —yj q, ii p writes into a memory location loc that q reads, and 

there is no intervening write into loc along the execution path by which q is reached 

from p. 
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An intraprocedural flow dependence p —>/ 9 corresponds to a definition-use association from vertex 

p to vertex q. 

Control dependencies 

Control dependence is defined in terms of the program control flow graph and dominators. 

Control flow graph A directed graph G with a unique entry vertex START and unique exit vertex 

STOP. Each vertex has up to two adjacent vertices. Edges are labelled true, false or 

unconditional. For any vertex N in G there exists a path from START to iV and from 

to STOP. 

Post-dominator A vertex V is post-dominated by a vertex W in G if every directed path from V 

to STOP (not including V) contains W. 

Control dependence Let X and Y be vertices in G. Y is control dependent on X iff 

• there exists a directed path P from X to F with any Z in P (excluding X and Y) 

post-dominated by Y, and 

• X is not post-dominated by Y. 

A control dependence from vertex p to vertex q, p —^^ 9) is labelled true or false, giving p —»^ q or 
F 

Whenever the predicate represented by vertex p is evaluated and its value is equal to 

that of the label, the program component executed by vertex q will be executed if the 

program terminates. 

Formal parameter vertices are each control dependent on the entry vertex. Any actual vertex 

or FCCG vertex derived from an actual parameter expression and not enclosed by any conditional 

is control dependent on the corresponding call vertex. 

A switch dependence s -^g c exists from any switch vertex s to each case constant-expression c. 

Expression-use edge 

An expression-use edge from vertex p to vertex q, p -^eu 1 indicates the evaluation of an expression 

at vertex p, followed by a use of the resulting value at q. A binary expression containing side effects 

X © y 

gives the following expression-use edges: 
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• y ^ c „ x © : side effect in y 

• X — © y : side effect in x 

*ei;. ©1 y^e-u © '• side effects in x and y 

Lva lue-def in i t ion edge 

An lvalue-definition edge from vertex p to vertex q, p -^u q indicates the evaluation of an lvalue' 

at vertex p followed by a write to the corresponding storage location at vertex q. An assignment 

expression: 

X © y 

with side effects within x gives the lvalue-definition edge: 

x-^Zrf © y •• side effect in x 

4.4.3 Interprocedural C C G Edges 

Interprocedural edges are separated into two classes, those associated with the call interface and 

those which represent interprocedural data dependencies. 

Ca l l interface edges 

Cal l edge A call from a function / to a function g is represented by a call edge, c -^cail from 

the call vertex c within / to the entry vertex e of g. A recursive function will contain a call edge 

from the recursive call vertex to its own entry vertex. 

Parameter b ind ing edge A parameter binding edge, a -^tind f , connects each actual parameter 

vertex a and the corresponding formal parameter vertex / within the callee. 

R e t u r n expression-use edge A return-expression-use edge from return vertex p to vertex q, 

p -^reu q, indicates the evaluation of an expression at the return statement p, the value of which is 

subsequently used in an expression at statement q. 

In te rprocedura l flow dependencies 

An interprocedural flow dependence is defined as follows. 

Program-point q within function h has an interprocedural flow dependence on program-

point p within function g, p -^f q, if p writes into a memory location loc that q reads, 
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and there is no intervening write into loc along the execution path by which q is reached 

from p. 

The flow dependence p —*f q, corresponds to an interprocedural definition-use association from 

vertex p within function g to vertex q in function h. Interprocedural flow dependencies are described 

using the same notation as intraprocedural flow dependencies. 

4.4.4 Graph Annotations 

Each FCCG is annotated with solutions to three flow-sensitive data flow problems. 

• may be preserved - a variable may be preserved across a call to function / if there is a path 

through / along which v is visible after formal/actual parameter binding and at the return 

vertex of / and v is not defined on that path. 

• live on entry - a variable v is live on entry to function f if v is visible after formal/actual 

parameter binding and there is a path through / along which v is used either within / , or in 

any function transitively called from / , before being defined. 

• live on exit - a variable v is live on exit from function / i f -u is visible at the return vertex of 

/ and there is a path on exiting / along which v is used before being defined. 

Three sets are associated with each function / . 

• preserved[f) 

• live.onjentry{f) 

• livejonjexit{f) 

Each variable in preserved{f) and live,on.entry{f) is given its name after the formal/actual 

parameter binding within / , and also at the point at which i t is initially defined, in the form 

function/name/lineno. Each variable in live^on-exit(f) is given its name at a return vertex of / , 

and also at the point at which i t is initially defined, in the form function/name/lineno. 

4.5 C C G Construction 

This section describes the construction of the CCG. The CCG is constructed in three steps. The 

first step is to determine the vertices, expression-use edges and lvalue-definition edges for each 

function of the subject C program. These edges are intraprocedural and may be computed for each 
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FCCG independently of information from any other function. Intraprocedural control dependence 

analysis is then performed giving a 'partial' FCCG for each function. 

The second step of the CCG construction is to connect each partial FCCG by adding call, 

parameter binding and return-expression-use edges. 

The final step involves the computation of both intraprocedural and interprocedural data de

pendence information, employing data flow analysis techniques. Existing dependence algorithms 

are extended to allow the computation of flow-sensitive data flow information. 

4.5.1 Partial F C C G Construction 

F C C G vertices, expression-use edges, lvalue-definition edges 

The vertices of an FCCG are derived directly from the statements making up the subject C function. 

However, analysis of each expression is necessary to detect any embedded side effects or embedded 

control flows and to refine the FCCG accordingly. 

An abstract syntax tree is first constructed for the subject function. A depth-first traversal of 

this tree is performed to determine embedded side effects and control flow within the expressions 

of each statement and to construct the vertices of the FCCG. Operators of interest during the 

traversal of an expression tree are: assignment operators, postflx increment and decrement, prefix 

increment and decrement, logical and, logical or, the conditional operator, the comma operator 

and function calls. 

Where a subtree of an expression has at its root vertex an assignment operator, postfix increment 

or decrement, prefix increment or decrement or function call, this subtree forms a sub-expression 

with embedded side effects. Such sub-expressions are identified during the depth-first traversal of 

the abstract syntax tree and refined vertices created. 

Expression-use edges are added from the sub-expression vertex to the parent vertex, except in 

the case where the sub-expression is the left-child of an assignment operator. This sub-expression 

evaluates an lvalue and consequently an lvalue-definition edge connects the sub-expression and 

parent vertices. 

The abstract syntax tree for the expression 

*p++ = X + (y = 1 0 0 ) ; 

is shown in figure 4 . 1 1 . The depth-first traversal of this tree identifies sub-expressions with side 

effects *p++ and y = 1 0 0 . Three vertices are created - *p++, y = 1 0 0 and = x +. These ver

tices are connected by the expression-use edge (y = 1 0 0 ) — » e „ ( = x +) and lvalue-definition edge 
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EXPR 

ASSIGN 

POSTFIX ++ ADD 

ASSIGN 

P 
Y 100 

Figure 4.11: Abstract syntax tree for expression *p++ = x + (y = 100); 

(*p++)—+;^(= X +) . The resulting vertices and edges are shown in figure 4.12. 

Where a subtree of an expression has as its root vertex a logical and, logical or, conditional 

operator or comma operator, this subtree forms a sub-expression with embedded control flow. In 

each case the left and right sub-expressions of the root vertex form refined FCCG vertices. The 

abstract syntax tree for the expression 

a && (b I I c) 

is shown in figure 4.13. Three vertex-forming sub-expressions are formed by a depth first traversal 

of this tree, giving vertices a, b and c. 

A special entry vertex is created for the FCCG and a formal vertex for each formal parameter. 

Actual parameters are identified during the abstract syntax tree traversal and abstract and dummy 

vertices created accordingly. The function's control flow graph is also created during the traversal 

of the abstract syntax tree. 
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X + ; 

> expression-use edge 

> lvalue-definition edge 

Figure 4.12: Vertices and edges derived from expression *p++ = x + (y = 100); 

EXPR 

LOG.AND 

LOG.OR 

Figure 4.13: Abstract syntax tree for expression a && (b I I c ) ; 
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Control dependence analysis 

Control dependence information is constructed for each FCCG using an algorithm derived from 

Ferrante at al[25]. The algorithm allows the computation of control dependencies based on the 

program control flow graph constructed earlier. The algorithm is applied initially on the flow 

graph for each function, producing a control dependence graph rooted at the function's entry 

vertex. The algorithm is then applied on the control flow subgraph for each actual parameter list 

of each function call. This creates a control dependence subgraph rooted at each function call node, 

representing control dependencies within the call's actual parameters. 

The definitions of control flow graph, post-dominator and control dependence used in this 

algorithm are those given in section 4.4. The first stage in the calculation of control dependencies 

is to construct the post-dominator relations for an augmented control fiow graph. The control fiow 

graph has a special predicate vertex ENTRY with outgoing edges to START (true) and STOP 

(false), representing the external conditions required for program execution. 

The computation of post-dominator relationships can be achieved by computing dominators on 

the 'reverse' control flow graph. This graph is created by simply reversing the edges of the control 

flow graph. The notion of dominance is defined as follows. 

Let X and Y be vertices in the control flow graph G. Vertex X dominates vertex Y if 

every path from START to Y includes X. 

Dominator sets, Dom{n), the set of vertices dominating a vertex n, may be constructed for 

each vertex using the algorithm defined in table 4.2. Post-dominator sets, PostDom{n), the set of 

vertices post-dominating n, are calculated by performing this algorithm with no = STOP and 

employing the reverse control flow graph. 

The post-dominator sets are now converted to a post-dominance tree representation, in which 

each vertex post-dominates only its descendents. Each vertex n in the control flow graph has a 

unique immediate post-dominator. 

The immediate post-dominator m of vertex n, immedjpost_dom{n), is the last post-

dominator on any path from STOP to n. 

In terms of the post-dominator relation. 

If d ^ n and d £ Postdom(n), then d postdom m 

The post-dominance tree is constructed such that 

Parent of n = immedjpost_dom{n). 
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Let -

no = start vertex of control flow graph G 

Dom{n) = V m € Dom{n) | m dominates n 

N = Set of vertices in control flow graph G 

Initialisation -

Z)(no) := {no} 

For n E N — {no} do 

D{n) := N 

Update 

While changes in any D{n) 

For n E N — {no} do 

D{n) := { n } U flp is a predecessor of n 
Dip) 

Table 4.2: Computation of dominator sets. 
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Self post-dominators are then removed from the resulting sets and a control flow graph edge set S 

is calculated such that: 

S = {edge{A, B) \ B is not an ancestor of A in the post — dominator tree 

&& edge{A,B) G control flow graph G } 

Control dependence edges are then determined using this set 5 as follows. 

For edge{A,B) in S 

find L, the least — common parent of A and B in the post — dominator tree 

L will either be A itself, or the parent of A in the post-dominator tree. The proof of this is given 

by Ferrante at al[25]. 

Case 1 : L = parent of A 

All nodes in the post — dominator tree on the path from L to B, including B 

but not L, are control dependent on A. 

Case 2: L = A 

All nodes in the post — dominator tree on the path from A to B , including A 

and B, are control dependent on A. 

The required nodes can be found by performing a backwards traversal of the post-dominator 

tree from B until reaching the parent of A ( if a parent exists). A l l vertices visited before the 

parent of A become control dependent on A. The label of the control dependencies formed will be 

equivalent to the label of the control flow graph edge edge{A,B). 

An example control flow graph and its post-dominator relations are shown in figure 4.14. Fig

ure 4.15 illustrates the post-dominator tree constructed from these relations. Examining the control 

flow graph to determine 5, the set of edges A, B such that B is not an ancestor of A in the post-

dominator tree gives: 

S = {iENTRY,START),il,2),{4,5),{4,6),i7A),i8,9)} 

Examining these edges produces the following control dependencies. 

ENTRY START, ENTRY 1, ENTRY 3, ENTRY 4, ENTRY 7 

ENTRY - ^^ 8, ENTRY 10 

4 - f 5, 4 - f 6 



7 - ^ 4 , 7 - . ^ 7 

3, 8 4, 8 7, 8 8, 

Switch dependencies may aJso be constructed along with the control dependence edges by 

modifying the input control flow graph. Each switch vertex has flow edges labelled switch to each' 

case and d e f a u l t vertex. These vertices have true control flow edges to the first statement of the 

corresponding statement list and additionally a false control flow edge to the statement following 

the entire construct. This false edge forces the case statement lists to be control dependent on the 

case or de fau l t vertices, and these in turn to be switch dependent on the switch vertex, as defined 

in section 4.4. 

4.5.2 Connect ing the P a r t i a l F C C G Subgraphs 

The second step in the construction of the CCG is to connect the partial FCCG subgraphs. For C 

programs not making use of pointers to functions, call edges can be constructed by simply connect

ing any call vertices created in step one with the corresponding entry vertices. Binding edges are 

constructed to connect actual and formal parameter vertices, representing the associations between 

formal and actual parameters. Finally return-expression-use edges connect vertices evaluating the 

return value of a function to vertices at which this value is referenced. 

4.5.3 D a t a Dependence Analys i s 

The computation of data dependence information for programs with pointer variables is aji area 

of ongoing research. Methods are derived from the compiling community, where research attempts 

to model statically the effects of pointer variables associated with recursive data structures to 

determine possible parallelisation. Examples of such work is by Horwitz et al[42] and Chase et al[17]. 

Alternative data dependence analysis techniques have been described by Landi and Ryder[54][55] 

and Pande et al[68] who use conditional analysis techniques to determine pointer-induced aliasing 

and reaching definition information for C programs. 

The method employed in the construction of the CCG is based on that described by Horwitz 

et al[42] and extended to allow the additional computation of flow-sensitive data flow analysis 

information may be preserved, live on entry and live on exit. The algorithm described by Horwitz 

et al allows the calculation of data dependencies in the presence of pointers, structures and dynamic 

memory allocation. The data dependencies calculated using this method are a static approximation 
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ENTRY 

START 

STOP 

PostDom(STOP) = {} 

PostDoni(ENTRY) = {STOP} 

PostDom(START) = {STOP, 1,3,4,7,8,10) 

PostDom(l) = {STOP,3,4,7,8,10) 

PostDom(2) = {STOP,3,4,7,8,10} 

PostDom(3) = {STOP,4,7,8,10} 

PostDom(4)= {STOP,7,8,10) 

PostDom(5) = {STOP,7,8,10} 

PostDom(6) = {STOP,7,8,10} 

PostDom(7)= {STOP,8,10} 

PostDom(8) = {STOP.IO} 

PostDom(9) = {STOP, 1,3,4,7,8,10) 

PostDom(10)= {STOP) 

Figure 4.14: Control flow graph and post-dominator sets. 
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S T O P 

/ \ 
10 E N T R Y 

7 
/ I \ 

4 5 6 

3 

2 1 

/ \ 
9 S T A R T 

Figure 4.15: Post-dominator tree. 

of those dependencies actually arising during program execution. 

The algorithm is divided into two phases. The first phase, the 'reaching-stores phase', computes 

at each program vertex a set of store graphs that approximate the possible memory layouts that 

could arise during execution. Program variables, together with any dynamic variables allocated 

during execution, are represented by abstract memory locations. Structure variables are decom

posed into the constituent fields and abstract locations allocated for each field. Array variables are 

represented by a single abstract location. Each abstract memory location is labelled by the CCG 

vertex which last wrote to that location. The second phase, the 'inference phase', examines the 

set of stores reaching each program vertex and determines the locations read. A fiow dependence 

p q exists if q reads a location labelled p in any store graph reaching q. 

Reaching-stores phase 

Each store graph at a program vertex is made up of subgraphs representing each function in the 

current activation stack, together with subgraphs representing external variables, static variables 

and dynamically allocated variables. Each function subgraph contains abstract locations for each 

local variable. The 'external' and 'static' variable subgraphs contain abstract locations representing 
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the program's external or static variables. The 'dynamic' subgraph contains abstract locations 

representing each of the program's dynamically allocated variables. 

An abstract location loc is represented by the following relations: 

• id(loc) - a unique identifier. 

• name{loc) - the name of the program variable represented by loc. Static and local variables are 

in the form /function/name/lineno and external variables in the form name. Dynamically 

allocated variables are not named. 

• lastjlef[loc) - the program vertex at which loc was last defined. 

• points J,o{loc) - the set of abstract locations pointed to by loc. 

An initial store graph is created at the start of the program comprising the external and static 

variable subgraphs only, together with an initially empty 'dynamic' subgraph. This store graph is 

iterated throughout the program's control flow/call graph. In the absence of expression-use, return 

expression-use and lvalue-definition edges the store-graph is updated at each vertex p as follows. 

Let a and b each represent expressions. 

• p is an entry vertex: 

- Add to the store graph a new subgraph representing the newly active function. 

• p is a return vertex: 

- Remove from the store graph the subgraph representing the currently active function. 

• p is a non-pointer assignment a = b: 

- Determine the object o referred to by expression a. 

- Find the abstract location loc corresponding to o. 

- last.def(loc) = p. 

• p is a pointer assignment a = b: 

- Determine the object o l referred to by expression a. 

- Find the abstract location loci corresponding to o l . 

- Determine the object o2 referred to by expression b. 
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- Find the abstract location /oc2 corresponding to o2. 

- points.to{locl) = pointsJo(loc2). 

- last_def{locl) = p. 

• p is a pointer assignment a = &b: 

- Determine the object o l referred to by expression a. 

- Find the abstract location loci corresponding to o l . 

- Determine the object o2 referred to by expression b. 

- Find the abstract location /oc2 corresponding to o2. 

- points.to{locl) = loc2. 

- last_def (loci) = p. 

This algorithm is modified when the CCG contains expression-use, return-expression-use or 

lvalue-definition edges. These edges each evaluate expressions at the source vertex and use the 

resulting values at the sink vertex. Annotations are attached to the edges during analysis of the 

source vertex to enable these values to be 'transmitted'. The annotations are later read during 

analysis of the corresponding sink vertex to determine loci and /oc2 at the sink vertex. 

A refined CCG vertex r with an outgoing expression-use, return-expression-use or lvalue-

definition edge annotates these outgoing edges as follows. 

• Where r represents an expression a with outgoing lvalue-definition edge e: 

- Determine the object o referred to by expression a. 

- Find the abstract location loc corresponding to o. 

- Annotate e with id{loc). 

• Where r represents a pointer expression a with outgoing expression-use or return-expression-

use edge e: 

- Determine the object o referred to by expression a. 

- Find the abstract location loc corresponding to o. 

- Annotate e with id{loc). 

• Where r represents an ordinal expression a with outgoing expression-use or return-expression-

use edge e: 
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- Annotate e with NULL. 

A refined CCG vertex r with incoming expression-use, return-expression-use or lvalue-definition 

edges reads these annotations. Abstract locations loci and/or loc2 are determined from these 

annotations rather than the sub-expressions at r. annot{e) refers to the annotation associated with 

edge e. 

• Where r represents an expression a with an incoming 

lvalue-definition edge e: 

- loci = annot{e). 

• Where r represents an expression a with an incoming expression-use or return-expression-use 

edge e: 

- if annot{e) ^ NULL, loc2 = annot{e). 

The relations points Jo and last_def are then updated as before. 

Inference phase 

The inference phase examines the resulting store graphs at each program vertex p. Flow depen

dencies are constructed as follows; 

• For each object o used at p: 

- Find the abstract location loc corresponding to o. 

- Construct flow dependence last.de f {loc) —>/ p. 

Flow sensitive data flow analysis 

Three flow-sensitive data flow analysis problems, may be preserved, live on entry and live on exit 

can be solved by extending the reaching stores and inference phases of the data dependence analysis 

algorithm. Each abstract location of a store graph at each CCG vertex has additionally two further 

relations entry(loc) and exit{loc). The former contains tuples of the form { f , v ) , where: 

• / is a function name. 

• V is a name referring to a variable visible within / after formal/actual parameter binding. 

The latter contains tuples of the form { f , v ) , where: 
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• / is a function name. 

• II is a name referring to a variable visible within / at a return vertex of / . 

The entry set for an abstract location in a store graph at a CCG vertex p represents those 

functions which the location has entered and not yet exited on the execution path to p, after the 

location was last defined. 

The exit set for an abstract location in a store graph at a CCG vertex p represents those 

functions which the location has exited on the execution path to p, after the location was last. 

defined. 

The initial CCG vertex of a function / is the vertex which is the immediate successor of the 

final formal parameter vertex in the control flow graph. 

The entry set for each abstract location loc is constructed during the reaching-stores phase in 

the following way. 

• entry(loc) = {} 

• At the initial CCG vertex i within function / , with loc visible, add the tuple { f , v ) , where v 

is the name referring to loc at i. 

• I f loc is defined at a CCG vertex, entry{loc) = {} 

• When exiting function / , remove all tuples of the form ( f , v ) from entry. 

The exit set for each location loc is constructed during the reaching-stores phase in the following 

way. 

• exit(loc) = {} 

• Following a return vertex r within function / , with loc visible, add the tuple { f , v ) , where v 

is the name referring to loc at the r . 

• I f loc is defined at a CCG vertex, exit{loc) = {} 

Solutions to the data flow problems may be preserved, live on entry and live on exit may now 

be computed during the inference phase as follows. 

• may be preserved - a variable v may be preserved across a function / i f the entry set of its 

corresponding location loc at a return vertex of / contains a tuple i f , v ) . This indicates that 

V has not been defined on this path through / and hence has been preserved. The name of 

variable v when first defined is obtained from the name{loc) relation. 
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i n t mainO 
{ 

i n t a, b; 

b = a = 0; 
while (b < 5) 

a = sq(&b); 

1. enter mainO 
2. a = 0 
3. b = 
4. while (b < 5) 
5. &b 
6. c a l l sqO 
7. a = 

i n t s q ( i n t * f ) 

( * f ) + + ; 
r e tu rn * f * * f ; 

} 

8. enter sq() 
9. f 

10. (*f )++ 
11. r e tu rn * f * * f 

Table 4.3: Example C program and corresponding CCG vertices. 

• live on entry - when a variable v is used at a CCG vertex p within function / , for each tuple 

(g,v) G entry at the corresponding abstract location loc at p, add v to livejonjentry{g). The 

name of variable v when first defined is obtained from the nameQoc) relation. 

• live on exit - when a variable v is used at a CCG vertex p within function / , for each tuple 

{g,v) 6 exit at the corresponding abstract location loc at p, add v to live.on,exit{g). The 

name of variable v when first defined is obtained from the name{loc) relation. 

Example 

Table 4.3 contains an example C program and the corresponding CCG vertices, numbered 1 

to 11. Figures 4.16, 4.17 and 4.18 show diagrammatic representations of the store graphs created 

during the reaching stores phase for this example program. The program contains only local variable 

vertices and hence the 'external', 'static' and 'dynamic' subgraphs are empty. On entering main 

a subgraph for this function, containing abstract locations representing local variables a and b is 

added to the initially empty store graph. These abstract locations are each updated as program 

variables are defined at vertices 2 and 3. 

On entering function sq, an additional subgraph is added, containing the local variable f of sq. 
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The variable f is defined at CCG vertex 9 and hence the corresponding location 12 is updated. The 

relation points J.o{l2) is also updated to reflect the eff'ects of the formal-actual parameter binding. 

Using this relation, vertex 10 updates the location 11 representing the variable * f . On leaving 

function sq the subgraph representing sq is removed from the current store graph. The iteration 

continues until a fixed-point solution is attained, in this case during the second execution of sq. 

The inference phase examines each store graph at each CCG vertex. For each variable used, 

the corresponding abstract location loc is determined and flow dependencies constructed from 

lastjdef{loc). For example, vertex 11 uses both f and * f , which are locations 12 and Zl respectively.'-

last_def{l2) is 9, giving a flow dependence: 

( f ) — » / ( r e t u r n * f * * f ) 

last.def(ll) is 10, giving a flow dependence: 

( ( * f ) + + ) - » / ( r e t u r n * f * * f ) 

At vertex 4, variable b (location 11) is used. Examining the store graphs at 4 shows last.def{ll) 

to be 2 or 10, giving intraprocedural flow dependence: 

(b=)-^/(while (b<5)) 

and interprocedural flow dependence: 

( ( * f ) + + ) ^ / ( w h i l e (b<5)) . 

Other flow dependencies created are: 

(b=)->_f (while (b<5)) 

( f ) - . _ f ( ( * f ) + + ) 

Entry and exit sets are attached to the abstract locations of the store graphs. During the 

reaching stores phase, at vertex 10, the tuple (sq, * f ) is added to the entry set for the abstract 

location 11 representing b. At this vertex * f is defined and entry{ll) becomes { } at the following 

vertex 11. 

At the return vertex of sq, the variable *f is again visible and is added to exit{ll), which 

becomes (sq, * f ) . On the second iteration, exit{ll) is set to { } at vertex 10 when *f is defined. 

Examining the entry and exit sets during the inference phase gives, may_be.preserved{sq) = 

{ } , since each entry set is empty at the return vertex of sq. live.on.entry{sq) is found to be { ( * f , 

/ m a i n / b / l ) } due to the use of * f at 10 with entry{sq) = { (sq , * f ) } . live.on.exit[sq) is found 

to be { ( * f , / m a i n / b / l ) } due to the use of * f at 10 with exit{sq) = {(sq, * f ) } . 
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1. main ( 

MAIN 

entry(lO) = {} 
exit(lO) = { ) 

entry(11) = {} 
exit(ll) = {} 

2. 

MAIN 

entry(lO) = {} 
exit(lO) = I } 

entry(ll) = (} 
exit(ll) = {} 

3. a = 

MAIN 

entry(lO) = {} 
exit(lO) = { ) 

entry(ll)= { ) 
exit(ll) = {} 

Figure 4.16: Data dependence analysis for example program. 
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w h i l e (b < 5) 

MAIN 

entry(lO) = {) 
exit(10)={) 

entry(ll)={) 
exit( l l )={) 

MAIN 

entry(lO) = (} 
exit(lO) = {} 

entry(Il)={) 
exit(ll) = {(sq,*f)) 

&b 

MAIN 

entry(lO) = {) 
exit(IO)={) 

entry(ll)={} 
exit( l l )={) 

MAIN 

entry(lO) = {) 
exit(lO) = {) 

entry(ll)={) 
exit(ll)={(sq,*f)) 

c a l l ( s q ) 
MAIN 

entry(IO) = {) 
exit(10)= { ) 

entry(ll)={} 
exit( l l )={} 

MAIN 

entry(lO) = {} 
exit(lO) = {) 

entry(ll)={) 
exit(ll)= {(sq,*0) 

MAIN 

entry(lO) = {) 
exit(10)= 0 

entry(ll) = () 
exit(ll)=((sq,*f)} 

Figure 4.17: Data dependence analysis for example program cont. 
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e n t e r s g { ) 

MA N 

entry(10)={) 
exit(10) = { ) 

10 
a 2 b 3 

entry{ll)=() 
exit(ll) = {) 

11 

entry(12)=() 
e x i t a 2 ) = { ) 

MA N 

10 
a 2 b 10 

entry(10)=() 
exit(10)={) 

e m r y a i ) = { l 
exil(ll) = {(sq,*0) 

entry(l2) = { l 
exit(12) = { ) 

9. 

MAIN 

entry(10)={) 
exit(10) = { ) 

10 
a 2 b 3 

entry(ll)=() 
exit(ll) = {) 

11 

entry(12) = { ) 
exit(12) = { ) 

MAIN 

10 
a 2 b 10 

entry(10) = { ) 
exit(10)=() 

entry(ll) = {) 
exit{ll)={(sq,*f)) 

entry(l2)={) 
exit(I2) = { } 

10. (*f)++ 
MA N 

10 11 
2 b 3 ^ f 9 

entry(10)= 0 
exit(10) = ( ) 

entry(ll)={(sq,*f)) entry(12)={) 
exit(ll) = () exit(12) = { ) 

MAIN 

10 
10 

11 — 
2 b 10 f 9 

entry(10)=() 
exit(!0) = { ) 

emry(ll)= ((sq,*f)) entry(12)=() 
exit(ll)={(sq,*f)) exit(12) = { ) 

11. r e t u r n 

MAIN 

10 
10 

11 
a 2 b 10 f 9 

entry(10)=() 
exit(lO) = () 

entry(ll) = {) 
exit(ll) = () 

entry(12)={) 
exit(12) = { ) 

Figure 4.18: Data dependence analysis for example program cont. 
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1. void mainO 
2. { 
3. i n t sum; 

in t i ; 
i = sum = 0; 
while (i<20) { 

4. 
5. 
6. 
7. 

12. i n t CalcSum(int s . i n t * j ) 20. void I n c ( i n t *x) 
13. i 21. i 
14. I n c ( j ) ; 22. *x = *x + 1; 
15. i f (s<100) { 23. } 
16. s = s + * j ; 
17. } 

sum = CalcSum(sum,&i); 18. return s; 
8. } 19. } 
9. i = i ; 
10. sum = sum; 
11. } 

Table 4.4: Example C program. 

4.6 Example 

A CCG for the program shown in table 4.4 is contained in figure 4.19. The program contains value 

and pointer parameters, value-returning functions, pointer variables and statements with embedded 

side effects. Three FCCGs are created, for main, CalcSum and i s q respectively. 

main 

• Vertices 

enter mainO 

sum = 0 

i = 

while ( i < 20) 
c a l l CalcSumO 

sum (actual parameter) 

& i (actual parameter) 

sum = 

i = i 

sum = sum 
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bntry 
vo id mainO 

whi le (i<20) sum = sum 

sum = 

Actual 
sum 

Actual 

Formal Formal-in 
i n t s turn 

Actual-in 

EnUy 
vo id I n c ( 

Formal-in 
inl; *x 

• 3* flow dependence 
control dependence (True/False) 
call edge 

- expression-use edge 
" - "5^ return expression-use edge 
D " parameter-in edge 

Figure 4.19: Example CCG. 
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• Flow dependencies 

(sum = 0)-^j;(sum) 

(sum = 0)-^/(sum = sum) 

( i = ) ^ / ( w h i l e ( i < 20)) 

( i = ) ^ / ( i = i ) 

(sum =)—*^(sum) 

(sujn =)-^y^(sum = sum) 

• Control dependencies 

(enter main())—^J(sum = 0) 

(enter m a i n ( ) ) - + ^ ( i =) 

(enter ma in ( ) ) -^^ (whi l e ( i < 20)) 

(enter main())— i-J(i = i ) ) 

(enter main())-^^(sum = sum) 

(while ( i < 2 0 ) ) - 4 j ( c a l l CalcSumO) 

(while ( i < 20))-^J(sum =) 

( c a l l CalcSumO)^^ (sum) 

( c a l l CalcSumO)-^^(&i) 

• Expression-use edge 

(sum = 0 ) -^e„( i =) 

CalcSum 

• Vertices 

enter CalcSumO 

s (formal parameter) 

j (formal parameter) 

c a l l IncO 

j (actual parameter) 

i f (s < 100) 

s = s + * j 
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r e tu rn s 

Flow dependencies 

( s ) - ^ ^ ( i f (s < 100)) 

(s)-4_f(s = s + * j ) 

( s ) - ^ ^ ( r e t u r n s) 

( j ) ( f o r m a l ) ^ / ( j ) 

( j ) (formal)—>/(s = s + * j ) 

(s = s + * j ) - ^ y ( r e t u r n s) 

Control dependencies 

(enter CalcSumO ) ^ ^ (s) 

(enter CalcSumO)—>J ( j ) (formal) 

(enter CalcSumO ) ^ ^ ( c a l l I n c O ) 

(enter CalcSumO)^^ ( i f (s < 100)) 

(enter CalcSumO ) ^ f ( r e tu rn s) 

( c a l l I n c ( ) ) - > ^ ( j ) (actual) 

( i f (s < 100))^^ (s = s + * j ) 

Annotations 

preserved{CalcSum) = {} 

livejonjentry{CalcSum) = { ( * j , i /main /2 )} 

live_on.exit{CalcSum) = { ( * j , i / ina in /2)} 

Inc 

• Vertices 

enter Inc ( ) 

X (formal parameter) 

*x - *x + 1 
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• Flow dependencies 

( x ) ^ / ( * x = *x + 1) 

(*x = *x + 1)—>/(*x = *x + 1) 

• Control dependencies 

(enter I n c ( ) ) - ^ ^ ( x ) 

(enter Inc())->? ' (*x = *x + 1) 

• Annotations 

preserved{Inc) = {} 

livejon_entTy{Inc) = { ( * x , i /main /2 )} 

livejonjexit{Inc) = { ( * x , i /main /2 )} 

In te rp rocedura l edges 

• Call interface edges 

( c a l l CalcSumO)^ca//(enter CalcSumO) 

(sum)-*6i„rf(s) 

(&i )^6 , „< / ( j ) 

( r e tu rn s)—+reM(sum =) 

( c a l l Inc ( ) ) -> , „ ,n (en te r I n c O ) 

( j ) - ^ w ( x ) 

• Interprocedural flow dependencies 

( i = ) ^ / ( * x = *x + 1) 

(*x = *x + l ) - ^ / ( s = s + * j ) 

(*x = *x + l ) ^ / ( w h i l e ( i < 20)) 

(*x = *x + l ) ^ / ( i = i ) 
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4.7 Summary 

This chapter has described a new dependence-based IPR, the Combined C Graph (CCG), which 

extends earlier IPRs to model many features of the C language. The CCG is a fine-grained rep

resentation allowing the modelling of expressions with embedded side effects and control flows. 

Pointer variables, pointer parameters, value-returning functions, structures, arrays and the control, 

constructs break, continue, switch and goto are introduced. This chapter has discussed the 

approaches and techniques employed to represent each of these features. 

A variety of programming views may be constructed from the CCG. Simple program slices and' 

ripple analyses can be constructed with accuracy enhanced as a result of the 'fine-grained' approach 

employed in the CCG. Definition-use pairs, call graphs, control dependence and flow-sensitive data 

flow information may be easily constructed. 

A formal definition of the vertices and edges comprising the CCG has been outlined, followed 

by algorithms to permit the construction of the representation. Finally an example of the CCG for 

a small C program has been described. 
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Chapter 5 

Implementation 

This chapter describes a prototype implementation of the CCG representation. This prototype 

system allows a software maintainer to construct a CCG for a C program, to construct 'view-

forming' queries on this representation and to view graphically the relationships represented by the 

CCG. 

The subject C source code is translated into Prolog facts, forming the CCG fact base. Meta 

programs are then written to analyse this fact base and to form views of the CCG. A further 

translation step allows the CCG itself to be viewed using a graphical display tool. 

Section 5.1 gives an architectural overview of the CCG system. Section 5.2 outlines the Prolog 

facts comprising the CCG fact base. Section 5.3 describes meta programs which may be constructed 

to form views of the subject system and to support maintenance activities. Finally section 5.4 shows 

the graphical representation of the CCG fact base. 

5.1 System Architecture 

The components and flow of information within the CCG prototype system are shown in figure 5.1. 

The first stage in the construction of the CCG representation is the translation of the subject 

set of files, the C sources into an equivalent Prolog representation, the partial CCG fact base. The 

'rules' and 'facts' of the Prolog system make it ideal for representing the vertices and edges of the 

CCG in a relational form. The C sources may be either ANSI[5] or K&R[50] C but must have 

been preprocessed by the C Preprocessor cpp. The translation program ccgJrans is written using 

the yacc compiler-compiler, using the C grammar contained in [51]. This translator is based on 

the PERPLEX C analysis tool described by Biinter[14]. The PERPLEX system forms a generic 

Prolog fact base to allow the easy development of program analysis and other software engineering 
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C Sources 

cpp/ccgjtrans translation 

Partial 

CCG Fact Base 

Meta Programs 

interprocedural control flow analysis build_ccg 

control dependence analysis control_dep 

data dependence analysis data_dep 

load 

Meta Programs 

user queries ccg_query 

load 

load 

Prolog runtime system 

load/write 

CCG Fact Base CCG Fact Base translate 
Graphical display tool 

CCG Fact Base 
• •—! *• 

trans _graph_tool 
Graphical display tool 

USER 

Figure 5.1: CCG prototype system architecture. 
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programs. The CCG translator ccg^trans modifies the PERPLEX system to generate the partial 

CCG fact base. The C sources are translated file by file and then linked together, allowing incre

mental update of the partial CCG fact base when changes are confined to a single file. The partial 

CCG fact base comprises Prolog facts representing the vertices of the CCG, the object and types 

of the subject program and the control flow within each C function. The interprocedural control 

edges, control dependence information and data dependence information are not contained in this 

partial fact base. 

The second stage of the CCG construction is to augment the partial CCG fact base to give the. 

complete CCG representation, the CCG fact base. This process is achieved using the Prolog runtime 

system which loads the partial CCG fact base together with Prolog meta programs implementing-

algorithms described in section 4.5. Build-ccg first constructs additional Prolog facts representing 

the program's call, parameter binding and return relationships. Control and data dependence 

analyses are then performed on the current fact base to produce the complete CCG fact base. The 

control dependence algorithm, making extensive use of the program flow graph, post-dominator sets 

and relations can be easily implemented as a Prolog meta-program. The semantic effects of each 

CCG vertex are represented in the Prolog fact base and hence the data dependence algorithm can 

also be implemented in Prolog, making use of Prolog lists to represent the abstract memory states. 

The control and data dependence algorithms are known as controLdep and data.dep respectively. 

A software maintainer is able to use the CCG fact base in two ways. The Prolog runtime 

system may load further meta programs ccg^query to enable the maintainer to construct a variety of 

queries via the Prolog command shell, forming views of the subject system. The meta-programming 

capabilities of the Prolog language make i t well suited for this purpose. The CCG fact base can 

also be translated into a form which may then be loaded into a graphical display tool. The Prolog 

meta program trans.graphJool implements this translation step. The maintainer can then view 

directly the program relationships represented in the CCG. 

5.2 C C G Fact Base 

The CCG fact base is a Prolog representation of the vertices and edges comprising the CCG. The 

fact base is designed to provide an accurate representation of the subject C system and to allow the 

construction of a comprehensive set of analysis meta programs. The prototype system covers the C 

language with the exception of information on constants, casts, case-labels, operators in expressions, 

initialisation of objects within declarations and pointers to functions. The flow-sensitive data flow 
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information of the CCG is also not implemented in the prototype system. 

The CCG fact base comprises thirteen different fact types. Eight of these facts represent the 

different vertices and edges of the CCG. These facts are: 

• node fact - represents the type and semantic effects of a CCG vertex. 

• flow fact - represents an intraprocedural or interprocedural flow dependence between two 

CCG vertices. 

• control fact - represents a control dependence between two CCG vertices. 

• expuse fact - represents an expression-use edge between two CCG vertices. 

• Ivaldef fact - represents an lvalue-definition edge between two CCG vertices. 

• retum-expuse fact - represents a return-expression-use edge between two CCG vertices. 

• call fact - represents a call edge between a CCG call vertex and CCG entry vertex. 

• bind fact - represents a binding edge between two CCG vertices. 

The remaining five facts are not defined as part of the CCG itself but represent the program's 

control flow graph and additional information on the components of the subject C system. 

• edge fact - represents the control flow between two CCG vertices. 

• file fact - represents a file which is a member of 'C sources', the subject C system. 

• type fact - represents a name defined as a type. 

• tag fact - represents a tag name given in a s t r uc t , union or enum definition. 

• object fact - represents the declaration or definition of a program component. 

A ful l description of each of the thirteen fact types is contained in appendix A. A complete Prolog 

fact base produced following the analysis of a small C program is contained in appendix B. 

5.3 Meta Programs 

The CCG fact base may be interpreted as a set of relations and consequently can be treated as a 

relational database. Prolog makes use of position to allow access to the particular fields of a fact 

or 'relation' and hence meta programs can be written to imitate database queries. 
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The current prototype system implements a variety of analysis meta-programs providing a 

maintainer with different programming level views of the subject C system. Information can be 

constructed on program objects and types, function call relationships, parameter information, con

trol dependencies, definition-use associations, program slices and ripple effects. Each meta program 

query can be executed using the Prolog wild card ('_') in place of any of the arguments to produce 

all matching solutions. 

The implemented meta programs are: 

• list(Selection) - lists the files, functions, globally defined objects or types specified by Selection. 

• module_call(Filel, File2) - produces the module call dependency between Filel and File2, show

ing calls in Filel to function calls in File2. 

• fun_call(Functionl, Function2) - lists function pairs where Functionl calls Function2. 

• globaLcall(File, Function, ObjectName) - lists globally defined objects ObJectName which are 

referenced by Function within File. 

• fun_calLchain(Functionl, Function2) - lists call chains from Functionl to Function2. 

• find_def(ObjectName) - extracts information from the definition of objects named ObjectName. 

• formals(File, Function) - lists formal parameters of Function within File. 

• list_cont_dep(File, Function, From, To) - lists control dependencies from vertex From to vertex 

To of Function within File. 

• list_nodes(File, Function, Number) - list vertex Number of Function within File. 

• list_bind(Filel, Functionl, Numberl, File2, Function2, Node2) - lists binding edges from vertex 

Numberl of Functionl within Filel to Number2 of Function2 within File2. 

• list.bind_name(File, Function, Name) - lists binding edges to formal parameter Name of Function 

within File. 

• cont_chain(File, Function, From, To) - lists control dependence chains from vertex From to 

vertex To of Function within File. 

• def_use(Filel, Functionl, Numberl, File2, Function2, Node2) - list definition-use associations 

from vertex Numberl of Functionl within Filel to Number2 of Function2 within File2. 
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• inter_def_use(Filel, Functionl, Numberl, File2, Function2, Node2) - lists interprocedural definition-

use associations from vertex IMumberl of Functionl within Filel to Number2 of Function2 within 

File2. 

• intra_def_use(File, Function, Numberl, Number2) - lists intraproceduraJ definition-use associa

tions from vertex Numberl to vertex Number2 of Function within File. 

• slice(File, Function, Number) - constructs a program slice at vertex Number of Function within 

File. 

• rippie(File, Function, Number) - constructs a ripple analysis or 'forward slice' from vertex 

Number of Function within File. 

5.4 Graphical Display Tool 

The CCG fact base may be translated via a simple Prolog meta program to a form which allows 

the CCG, or part of the CCG, to be displayed using a graphical display tool. The tool used was 

developed by Bodhuin[10]. An example display is shown in figure 5.2. 

5.5 Summary 

This chapter has described the prototype implementation of the CCG system. The input C pro

grams are translated to a Prolog fact base representation which is then enhanced via control and 

data dependence algorithms implemented as Prolog meta programs. The resulting fact base can 

then be queried using further Prolog meta programs to construct programming level views. These 

queries are both flexible and simple to construct and provide a variety of views including definition-

use pairs, control dependencies, call relationships, parameter information, program slices, ripple 

analysis and program component and type information. 
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I 
33 

Figure 5.2: Graphical display of CCG. 
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Chapter 6 

Applicat ion 

This chapter describes the results achieved using the prototype CCG system outlined in chapter 5. 

A number of C programs of diflferent sizes and involving different features of the C language were 

analysed using the system. Section 6.1 discusses the analysis of four small programs of up to 121 

lines of code in length. Listings of these four programs are contained in appendix C. Section 6.2 

describes the application of the CCG system to two larger programs of up to one thousand lines 

of code. Section 6.3 gives empirical results on the space requirements of the CCGs created in 

the previous sections and the time taken in the construction of these representations. Section 6.4 

provides examples of the program views and information made available to maintainers by the 

CCG system. Finally an outline of the use of the system in various program understanding and 

maintenance tasks is given in section 6.5. 

6.1 Analysis of Small C programs Using the C C G System 

The prototype CCG system has been used to analyse a variety of C programs of diflFerent sizes 

and involving different C language features. This section describes the analysis of four small C 

programs of up to 121 lines of code. The programs are derived from a number of different sources 

and are chosen to illustrate the capabilities of the CCG in terms of the language coverage offered 

by the representation. 

Table 6.1 describes the relative sizes of the programs analysed, ordered to reflect the number of 

lines of code and the relative 'complexity' of the programs in terms of the language features used. 

The columns represent the number of lines of code of the program, the number of functions making 

up the program, the number of standard library routines called, the total number of function calls, 

the total number of external, static and local variables and the number of assignments, both in 
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Lines Number Number of Number Number Nu mber of 
Program of of Std Library of of Assigns 

Code Functions Routines Calls Variables all pointer 
trityp 30 1 2 14 4 12 0 
sum 25 3 0 2 5 10 1 
linked Jist 60 3 2 8 8 16 3 
lines 121 7 4 15 26 38 7 

Table 6.1: Sizes of subject programs. 

total and through pointer dereferences. This final figure represents assignments such as *p = 10 

and q->x = 20, where the location defined is determined through a pointer value. 

The C features of each subject program are described in table 6.2. The features listed are 

some of those provided by the CCG representation to extend earlier IPRs; value-returning func

tions, embedded side effects, embedded control flows, external variables, pointer variables, structure 

variables, array variables, value parameters, pointer parameters, dynamic memory allocation and 

standard library function calls. 

A discussion of the results achieved with each of the four subject programs follows. 

6.1.1 T r i t y p 

This program implements 'Ramamoorthy's triangle', a simple algorithm to determine from the 

lengths of the three sides of a triangle, whether the triangle is isosceles, equilateral, right-angled, 

acute or obtuse. The lengths of the sides must be input in descending order. The program is thirty 

lines long and is a single function program calling only two standard library routines. Only external 

integer variables are involved. 

The CCG for t r i t y p contained refined vertices to model the embedded control flows caused by 

the short circuit evaluation of the logical 'and' and 'or' operators. Vertices were created for each 

sub-expression of the logical operator. For example, the statement: 

(a >= b && b >= c) 

produced two CCG vertices a >= b and b >= c. Control dependencies were created to reflect the 

control structure arising from the short circuit evaluation. 
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Features trityp sum linked Jist lines 
Value-returning functions • • • 
Embedded side effects • • • 
Embedded control flows • • 
External variables • • • 
Pointer variables • • • 
Structure variables • 
Array variables • 
Value parameters • • • • 
Pointer parameters • • 
Dynamic allocation/ 
Recursive structures 

• 
Standard library calls • • • 

Table 6.2: C features of subject programs. 

'Stub' routines were created for the two standard library routines sceinf and p r i n t f reflecting 

the external interface of the routines. Call and binding edges were created connecting the FCCGs 

for the two functions to the CCG for t r i t y p . 

6.1.2 S u m 

This program is the example program shown in section 4.6 and equivalent to that in section 3.2.7. 

The program is similar to those used as examples by Horwitz et al[45], Harrold and Malloy[38][39] 

and Livadas and Croll[62] to illustrate other IPRs. Each of these authors includes a short program 

involving pass by reference parameters to increment a 'counter' variable. Sum calculates the sum 

of the series of the positive integers from 1 up to a maximum total of 100. The program conforms 

to ANSI C, is 25 lines long and comprises three functions. Sum makes use of value returning 

functions, pointer variables, pointer parameters and side effects within expressions. 

The CalcSum function returns an integer value which is assigned to the sum variable within the 

main function. The CCG contained a return-expression-use edge to reflect this relationship. An 

expression-use edge was also produced connecting refined vertices sum = 0 and i = created from 

the statement i = sum = 0. 

Data dependence analysis of pointer variables was achieved successfully with variables * j and 

*x being decomposed to the pointer and referenced objects. Pointer parameters were also handled 
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successfully with formal parameter vertices created for the value parameters j and x and these 

variables updated to point to the objects referenced by the corresponding actual parameters &i 

and j . A number of interprocedural flow dependencies were created, reflecting the effects of the 

use of pointer parameters in the program. 

6.1.3 L i n k e d J i s t 

This program is an example program taken from an ANSI C programming guide published by 

the Cambridge University Engineering Department [64]. The program creates a singly linked list 

structure, maintaining pointers to the head and tail of the list. New items are added to the tail of the 

list and the list traversed to print each item. The program comprises sixty lines of code and is made . 

up of three functions, involving pointer variables, pointer parameters, structure variables, recursive 

structures, dynamic memory allocation, side effects within expressions and standard library calls. 

The linked J is t program contains many of the C features which may be represented using 

the CCG. 'Stub' routines were created for the standard library routines p r i n t f and malloc. The 

FCCGs for these routines were correctly connected to the CCG for linked Jist . 

Side effects within expressions occur in the following statements: 

t a i l = a d d _ l i s t _ i t e m ( t a i l , 5) 

t a i l = a d d _ l i s t _ i t e m ( t a i l , 7) 

t a i l = a d d _ l i s t _ i t e m ( t a i l , 2) : 

new_l is t_ i tem = ( l i s t _ i t e m * ) m a l l o c ( s i z e o f ( l i s t _ i t e m ) ) ; 

Call vertices were created to model the calls of add j . i s t_ i t em and malloc. Refined vertices were 

created for the assignments t a i l = and new_list_item =. Return-expression-use edges connected 

the return vertices of addJ.ist_item and malloc to the corresponding vertices. 

Pointer parameters were modelled successfully with formal parameter vertices created for the 

value parameters argvC] and entry. Data dependence analysis of linked Jist was complicated by 

the presence of external pointer variables, structure variables and a dynamic allocation statement. 

The program's pointer variables were correctly decomposed to the pointer and referenced object 

parts, whilst the program's structure variables of type l i s t _ i t e m : 

typedef s t r u c t _ l i s t _ i t e m { 

i n t v a l ; 

s t r u c t _ l i s t _ i t e m *next; 

} l i s t _ i t e m ; 
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were broken down and analysed in terms of the fields va l and next. The program's dynamic 

allocation statement: 

new_l is t_ i tem = ( l i s t _ i t e m * ) m a l l o c ( s i z e o f ( l i s t _ i t e m ) ) ; 

presented greater difficulties as user interaction was required to indicate the 'shape' of the allocated 

structure. The user must input the fields making up the structure as the prototype system is unable 

to determine this information from an allocation statement. However, data dependence analysis 

proceeded successfully and produced a correct representation of the program's flow dependencies, 

both intraprocedural and interprocedural. 

6.1.4 L i n e s 

This program is taken from Kernighan and Ritchie's standard text on C, The C Programming 

Language[bQi\. The program is not contained explicitly in the book but is given as a series of 

examples to illustrate the use of pointers and functions. An input routine reads lines of character 

input, allocating space from a character array. A pointer array accesses each individual line. A 

quicksort routine then sorts the pointer array alphabetically and the lines are finally printed in 

order. The program is 120 lines of K & R C and is made up of seven functions. Simple arrays, 

arrays of pointers, array parameters, pointer variables, side effects within expressions, control flow 

within expressions and standard library calls are each used. 

Lines contains a number of side effects and control flows embedded within expressions. The 

CCG system successfully detected nine embedded side effects and in each case created refined ver

tices and connecting expression-use edges. The side effects found were both embedded a.ssignments 

and postfix increments, for example s [ i + + ] . The use of logical 'and' and 'or' operators produces 

a number of embedded control flows. These were analysed successfully and control dependencies 

created accordingly. 

Lines makes use of an external character array a l locbuf and an external array of pointers 

l i n e p t r . Data dependence analysis proceeded successfully in the presence of these array variables, 

correctly analysing the use of the arrays as actual parameters of both functions of lines and 

standard library routines. However, the accuracy of the resulting flow dependencies was limited 

as arrays are treated a.s 'aggregate' variables and no attempt is made to analyse specifically the 

individual elements of the array. For example, the statement: 

l i n e p t r [ n l i n e s + + ] = p; 
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is considered to define the entire l i n e p t r array rather than the individual element concerned. The 

aggregate information is still of use in presenting a maintainer with a more general view of the use 

of an array throughout the subject program. 

Lines contains a number of standard library calls and 'stub' routines were created for each of 

getchar, p r i n t f , strcmp and strcpy. Appropriate call and binding edges were created connecting 

these FCCGs to the CCG for lines. 

6.1.5 S u m m a r y 

For each of the small C programs analysed, trityp, sum, linkedJist and lines, correct CCG 

representations were constructed. The test prograjns exhibited many C language features, najnely. 

value-returning functions, embedded side effects, embedded control flows, external variables, pointer 

variables, structure variables, array variables, value parameters, pointer parameters, dynamic mem

ory allocation and standard library calls. Each of these features WEIS analysed correctly by the pro

totype system. However, user interaction is required to produce stub routines for standard library 

functions and to describe the 'shape' of any dynamically allocated variables. 

6.2 Analysis of Larger C Programs Using the C C G System 

Any practical software maintenance IPR must allow large programs to be represented. This section 

describes the analysis of two larger C programs of up to one thousand lines of code. The analy

sis attempts to demonstrate the applicability of the CCG representation to large industrial-sized 

systems. 

Table 6.3 shows the relative size of the two programs, the number of functions in each program, 

the number of standard library routines, the total number of function calls and the total number 

of external, static and local variables. 

A discussion of the two programs and the results achieved with each follows. 

6.2.1 K n a p 

The knap program solves the classic knapsack problem, as described by Aho et al[2]. Given a 

collection of positive integers representing the weights of items, is there a selection of weights which 

totals a given target t? The weights may also be given utility values and the selection chosen to 

maximise the utility of the items carried, subject to a weight constraint. The program contains 

twelve functions and over five hundred lines of ANSI C code. The program uses 21 standard library 

119 



Lines Number Number of Number Number Number 
Program of of Std Library of of of 

Code Functions Routines Calls Variables Conditionals 
knap 562 12 21 74 74 70 
migrate 1006 15 16 294 231 172 

Table 6.3: Sizes of subject programs. 

routines from the s t d l i b and s t r i n g modules. Knap makes extensive use of pointers, arrays and 

recursive structures, with four cal loc memory allocation calls. 

The CCG system analysed the knap program statements successfully, creating 692 refined ver

tices. Expressions with embedded side effects were detected correctly, producing 43 expression-use 

edges. Interprocedural control analysis produced call, parameter binding and return-expression-use 

edges correctly modelling the 74 function calls. Control dependencies were constructed successfully 

for each function of the knap program. This task involved the analysis of seventy conditionals, 

including switch statements and embedded control flows produced by twelve logical 'and' and 'or' 

operators. Stub routines were created for each standard library function called. 

Disappointing results were obtained from the data dependence analysis of the knap program. 

The Prolog data dependence program was unable to complete the analysis, producing local stack 

space errors. This result is due to the simple implementation of the data dependence construction 

algorithm. The implementation attempts to analyse the data flow effects on all paths through the 

subject program, halting the analysis on each path only when a store graph is repeated at the 

current CCG vertex, i.e. the current abstract memory layout exactly matches a previous memory 

layout at the same program vertex. Whilst this simple approach was successful when analysing the 

small programs described in section 6.1, the number of function calls and conditionals of the knap 

program make the number of possible paths large. The presence of dynamic memory allocation 

statements further complicates the problem as store graphs may differ in both 'shape' as well 

as 'content' as new dynamic variables are added to the store graph. The fixed point solution is 

therefore more difficult to achieve. 

The degree of user interaction required also caused some problems. The user must describe the 

fields of the allocated data structure whenever the data dependence analysis reaches a dynamic 

memory allocation statement. The user may alternatively specify that no further variables are to 
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be allocated on the current path, ensuring that the depth of a recursive data structure is bounded. 

Since an allocation statement may be reached on many paths through the program, the user is 

frequently required to provide input. The current path being analysed is also not clear and hence 

it becomes difficult for the user to determine at which point to cease the allocation of new dynamic 

structures. 

6.2.2 Migrate 

The migrate program is taken from a biology research project, and simulates the spread of of. 

an invading species through an environment. The program has 1006 lines of K & R C code, and is 

made up of fifteen functions calling a further sixteen standard library routines from the s td io and-

math modules. Whilst the migrate program is approximately twice as long as the knap program, 

the code involved is simpler. Pointer usage is limited and the code contains no dynamic memory 

allocation statements. However, the program makes extensive use of multi-dimensional arrays and 

external variables. 

Over 1800 CCG vertices were created from the source statements with 68 expression-use edges 

to connect the refined vertices modelling embedded side effects. Again interprocedural control anal

ysis was achieved successfully producing call, parameter binding and return-expression-use edges 

to represent the 294 function calls. The migrate program contains 172 conditional statements, 

predominantly i f and for structures, and fifteen logical 'and' and 'or' operators giving embed

ded control flows. Control dependence edges were constructed for each function of the program, 

correctly analysing these conditionals and boolean operators. Stub routines were created for each 

standard library routine. 

Like the knap program, problems were found only during the data dependence analysis stage. 

Again the Prolog data dependence program produced local stack space errors. The number of 

conditionals in the program gives rise to a large number of possible paths through the program, 

although the absence of dynamic memory allocation statements simplifies the achievement of a 

fixed point solution. 

6.2.3 S u m m a r y 

Both knap and migrate produced similar results when analysed with the prototype CCG system. 

In each case the analysis produced correctly the CCG vertices, expression-use, call, binding and 

return-expression-use edges. Control dependence edges were constructed successfully, despite the 

large numbers of conditional statements and boolean operators in both programs. 
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However, data dependence analysis was in both cases unsuccessful, producing local stack space 

errors from the Prolog system. This result is due to the simplistic prototype implementation which 

requires analysis of the subject program on all paths to produce successful results. The number 

of conditional statements in both programs, combined with the further complication of dynamic 

memory allocation in the case of the knap program, produced too many possible paths and lead to 

the run time error observed. The user interaction required to analyse dynamic memory allocation 

was also unsatisfactory. 

These results demonstrate the feasibility of the CCG in representing large programs. CCG 

vertex, control dependence and interprocedural control information computation each scaled up 

successfully from the small programs analysed in the previous section. However, a more sophisti-. 

cated implementation is required for the data dependence analysis step. Automation of the analysis 

of dynamic allocation statements is also required. 

6.3 Empirical Results 

The prototype system comprises four programs which together produce a CCG for a subject C 

program. These are: 

• The CCG translator ccgJrans. 

• Interprocedural control flow analysis programs build.ccg. 

• Control dependence analysis program controLdep. 

• Data dependence analysis program data^dep. 

A fifth program trans_graph_tool converts a complete CCG into the input form required by the 

graphical display tool. 

Each of the subject programs trityp, sum, linkedJist, lines, knap and migrate was analysed 

and empirical results obtained for the time taken for each step and the space requirements of the 

resulting CCG. In each case these results were achieved running on a SUN 670. 

6.3.1 C C G Cons truc t ion T i m e 

Empirical results for the construction of the CCG are shown in table 6.4 The ccgdrans figure 

represents the elapsed system time in seconds given by the UNIX time command. Al l other figures 

represent cpu time in seconds determined using the Prolog time command. 
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Program ccg_trans 
(s) 

huild.ccg 
(s) 

controLdep 
(s) 

data_dep 
(s) 

trans.graph_tool 
(s) 

Total 
(s) 

trityp 0.90 0.15 4.90 1.00 0.53 7.48 
sum 0.60 0.02 0.80 0.62 0.15 2.19 
linkedJist 0.60 0.17 4.87 5.57 0.62 11.83 
lines 1.00 0.75 16.28 25.15 2.90 46.08 
knap 1.50 12.77 708.30 - 35.12* -
migrate 2.60 106.42 4748.20 - 243.53* -
* CCGs for knap and migrate do not include flow dependencies. 

Table 6.4: CCG construction times. 

The CCG translation step ccgJrans, producing the 'partial' CCG, was completed in all cases 

within three seconds of system time, and increased only slowly as the size of the subject program 

increased. The two largest C programs, knap and migrate were analysed on average at a rate 

of 12kb of C source per second by the ccg.trans program. The time taken by ccg.trans was not 

affected seriously by the C features used in the subject code. These results are encouraging for the 

analysis of large programs. 

The interprocedural control flow dependence analysis step build_ccg took up to 106 seconds of 

cpu time for the migrate program. The time taken on this step increased approximately linearly 

as the number of functions, function calls, parameters and value-returning functions of the subject 

program increased. 

The time taken in the control dependence analysis step controLdep increased up to around 4750 

seconds of cpu time for the migrate program. The control dependence algorithm is executed on 

the control flow graph of every function and on the control flow subgraph of each actual parameter 

list of every function call. The time spent in control dependence analysis increased with the number 

of functions and as the length of each function and the number of conditional statements increased. 

The number of function calls and the number and 'complexity' of the subject program's actual 

parameters also affected the time taken in this step. The results obtained from control dependence 

analysis were not encouraging but can be explained. The first-step of the control dependence 

calculation is to determine the program control flow graph's post-dominators. This is achieved 

using a simple but comparatively inefficient algorithm. More efficient methods are available and 

should considerably reduce the time taken. 

123 



Program C file(s) CCG representation 
lines of code space (kb) no. of facts space (kb) 

trityp 30 0.8 156 6.1 
sum 25 0.3 81 3.4 
linkedJist 60 1.1 179 8.9 
lines 121 1.9 462 19.1 
knap 562 13.9 1516* 73.5* 
migrate 1006 37.8 4068* 234.7* 
* CCGs for knap and migrate do not include flow dependencies. 

Table 6.5: CCG space requirements. 

The time required by the data dependence analysis step data.dep similarly increased with pro

gram size, and for the smaller subject programs up to around 25 seconds for the lines program. 

No results were achieved for the larger programs knap and migrate. The increase in analysis time 

was related to the number of lines of code of the subject program, the number of variables in the 

program, the number of assignments in the program and the number of paths through the program. 

As described in section 6.2, the data dependence implementation employed was a simplistic one 

and a more efficient technique will be required to analyse larger programs. 

The trans_graph-tool program required time related to the size of the CCG representation. On 

average around 20 facts per second are processed for the larger knap and migrate programs. 

The total real time taken to construct the CCG ranges from around two seconds for the sum 

program to 46 cpu seconds for the lines program. For each program analysed the main contributors 

to this figure are the controLdep and data.dep steps, which together contribute up to 75% of the total 

time. Complete CCG construction was not achieved for the larger knap and migrate programs. 

6.3.2 C C G Space Requirements 

Empirical results for the space requirements of the CCG representation are shown in table 6.5. This 

table describes the number of lines of code and the space requirements of the subject programs, 

together with the number of facts and the space requirements of the corresponding CCG represen

tations. Figures for the CCGs representing knap and migrate do not include flow dependencies. 

On average the number of facts making up the complete CCG for each subject program was 

around three to four times the number of lines of code of the program. This figure was dependent 
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on the actual statements making up the subject program. For example, expressions with embedded 

side effects or control flows produce additional refined CCG vertices and corresponding expression-

use, lvalue-definition and control dependence edges. 

The space requirements of the CCG were up to an order of magnitude larger than the subject 

program. Whilst this was not particularly encouraging, the space requirements of the CCG can be 

reduced by producing less verbose Prolog facts. 

6.4 Program Views 

This section presents the program views and information that are made available to a maintainer 

using the prototype CCG system. The examples given are each taken from the programs trityp, 

sum, linkedJist and lines listed in appendix C and described in section 6.1. The views are 

divided into five types - call graphs views, control dependence views, definition-use views, program 

slice and ripple analysis views and finally program components. Each view-forming program is 

implemented as a Prolog meta program. The output produced by the prototype system is in text 

form but in many cases may be translated and viewed using a graphical display tool. 

6.4.1 C a l l G r a p h V i e w s 

A maintainer can construct views of the program call graph using the fun_call command. The 

following example uses wildcards to list all the call relations of the linkedJist program. 

?- f u n _ c a l l ( _ , _ ) . 

Function C a l l Graph 

f c ( a d d _ l i s t _ i t e m , malloc) 
f c ( a d d _ l i s t _ i t e i n , p r i n t f ) 
f c (ma in , p r i n t _ l i s t _ i t e i n s ) 
f c (main , add_l i s t_ i te in) 
f c ( p r i n t _ l i s t _ i t e m s , p r i n t f ) 

The former function of each pair will contain a call to the latter. This call graph may be viewed 

using a graphical display tool, producing the output shown in figure 6.1. 

The fun_call_chain command can also be used to give specific call chains. The following example 

lists call chains between the functions main and I n c of the sums program. 
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Figure 6.1: Call graph for linkedJist. 
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? - f u n _ c a l l _ c h a i n ( m a i n , ' I n c ' ) . 

The C h a i n L i s t 

From main t o I n c : [ m a i n - > C a l c S u m - > I n c ] 

1 c h a i n s have been f o u n d 

6.4.2 C o n t r o l Dependence V i e w s 

U s i n g the list_cont_dep c o m m a n d a maintainer can view the control dependence subgraph of a 

funct ion of the subject program or can construct a more specific view showing the control subgraph 

below a given statement. T h e following query constructs a control dependence subgraph for the 

m a i n funct ion of l i n k e d J i s t . 

? - l i s t _ c o n t _ d e p ( 1 , m a i n , _ , _ ) . 

C o n t r o l D e p e n d e n c i e s : -

c o n t r o l d , m a i n , 0 , 2 0 . t r u e ) 

c o n t r o l d , m a i n , 0 , 1 9 . t r u e ) 

c o n t r o l d , m a i n , 0 , 1 5 , t r u e ) 

c o n t r o l d , m a i n , 0 , 14 , t r u e ) 

c o n t r o l d , m a i n , 0 . 10 , t r u e ) 

c o n t r o l d , m a i n , 0 . 9 , t r u e ) 

c o n t r o l ( l , m a i n , 0 , 5 , t r u e ) 

c o n t r o l d , m a i n . 0 . 4 . t r u e ) 
c o n t r o l d , m a i n , 0 , 3 , t r u e ) 

c o n t r o l d , m a i n , 0 , 2 , t r u e ) 

c o n t r o l d , m a i n , 0 , 1, t r u e ) 

c o n t r o l d , m a i n , 10 . 12 , t r u e ) 

c o n t r o l d , m a i n , 10 , 11 , t r u e ) 

c o n t r o l d , m a i n , 15 , 1 7 , t r u e ) 

c o n t r o l ( l , m a i n , 1 5 . 16 , t r u e ) 

c o n t r o l d , m a i n , 5 , 7 , t r u e ) 
c o n t r o l d , m a i n , 5 . 6 , t r u e ) 

T h i s subgraph m a y be viewed as shown in figure 6.2. 

T h e user c a n also determine cal l dependence chains between two statements using the cont.chain 

c o m m a n d . T h e following shows the cal l dependence chain between vertex 7 ( a >= b) and vertex 

40 ("Acute") of main wi th in the t r i t y p program. 

? - c o n t _ c h a i n ( l , m a i n , 7 , 4 0 ) . 
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n3 

Figure 6.2: Control dependence subgraph for main in linkedJist. 
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C o n t r o l dependence c h a i n s 

f i l e d , m a i n ) : f r o m node 7 to 40 : [ 7 - t r u e - > 8 - f a l s e - > 3 9 - t r u e - > 4 0 ] 

f i l e d , m a i n ) : f r o m node 7 to 4 0 : [ 7 - f a l s e - > 3 9 - t r u e - > 4 0 ] 

2 c h a i n s have been f o u n d 

These chains represent the control dependencies arising from the short circuit evaluation of the 

boolean expression ((a >= b) && (b >= c ) ) . 

6.4.3 Definition-use V i e w s 

A maintainer is able to view definition-use information, making use of wildcards to provide more or 

less specific information. The def.use command lists definition-use pairs between the specified CCG 

vertices. For example, the following query lists definition-use pairs from vertex 6 (newJ.ist_item 

=) of add_list_item within l inkedJ i s t . 

?- d e f _ u s e d , ' a d d _ l i s t _ i t e m ' , 6 , _, _, _ ) . 

D e f - u s e p a i r s : -

f l o w d , add_ l i s t_ i t em, 6 , 1, add_ l i s t_ i t em, 12) 
f l o w C l , add_ l i s t_ i t em, 6 , 1, add_ l i s t_ i t em, 18) 
f l o w d , add_ l i s t_ i t em, 6 , 1, add_ l i s t_ i t em, 19) 
f l o w d , add_ l i s t_ i t em, 6 , 1, add_ l i s t_ i t em, 20) 
f l o w d , add_ l i s t_ i t em, 6 , 1, add_ l i s t_ i t em, 8 ) 

The result shows definition-use pairs to vertices 12, 18, 19, 20 and 8, which represent the uses: 

entry->next = new_l i s t_ i tem; 
new_l i s t_ i tem->val = value; 
new_list_i tem->next = NULL; 
r e tu rn new_l is t_ i tem; 
head = new_l is t_ i tem; 

Variables used before defined can be found be specifying only a use site. The result will list all 

the corresponding definition-use associations. An empty solution indicates a previously undefined 

variable. 

The command inter_def_use shows only interprocedural definition-use pairs. The following query 

shows all interprocedural definition-use associations within the lines program. 
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? - i n t e r _ d e f _ u s e ( _ , _ , _ , _ , _ , _ ) . 

I n t e r p r o c e d u r a l d e f - u s e p a i r s : -

f l o w d , m a i n , 1, 1, a l l o c , 2 ) 

f l o w C l , m a i n , 1, 1, a l l o c , 3 ) 

f l o w d , m a i n , 1, 1, a l l o c , 4 ) 

f l o w d , swap , 6 , 1, q s o r t , 15) 

f l o w d , swap , 6 , 1, q s o r t , 16) 

f l o w d , r e a d l i n e s , 2 4 , 1 , swap , 4 ) 

f l o w d , r e a d l i n e s , 2 4 , 1, swap, 5) 

f l o w d , r e a d l i n e s , 2 4 , 1, w r i t e l i n e s , 7 ) 

f l o w d , r e a d l i n e s , 18 , 2 , s t r c p y , 3) 

T h e s e results represent the dependencies: 

(allocp = allocbuf) ^/(allocbuf + A L L O C S I Z E - allocp >= n) 
(allocp = allocbuf)-+^(allocp += n) 
(allocp = allocbuf)-^/(return allocp - n) 
(temp = v[i])—)-y:(vCi]) 
(temp = v [ i ] ) ^ / ( v [ l e f t ] ) 
(lineptrG = p)—>^(temp = v [ i ] ) 
(lineptrG = p ) - ^ / ( v [ i ] = v [ j ] ) 
( l i n e p t r [ ] = p)-+y: (*lineptr++) 
( l i n e [ l e n - 1] = ' 0 ' ) — > /(strcpy) 

The corresponding command intra_def_use lists only intraprocedural definition-use associations. 

The following command lists only intraprocedural definition-use associations within the main func

tion of the sum program. 

? - i n t r a _ d e f _ u s e ( 1 , m a i n , _ , _ ) . 

I n t r a p r o c e d u r a l d e f - u s e p a i r s : -

f l o w d , m a i n , 8 , 10) 

f l o w d , m a i n , 1, 10) 

f l o w d , m a i n , 2 , 3 ) 

f l o w d , m a i n , 1, 5 ) 

f l o w d , m a i n , 8 , 5 ) 

f l o w d , m a i n , 2 , 9 ) 

These results represent the dependencies: 
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(sum =) —if(.sum = sum) 

(siun = 0) —*y:(sum = sum) 

( i =) ^ ^ ( w h i l e ( i < 2 0 ) ) 

(sum = 0 ) ^ / ( s u m ) 

(sum =) —+y^(sum) 

( i =) - ^ f i i = i ) 

6.4.4 P r o g r a m Slices and R i p p l e Analys i s 

A program slice at a given CCG vertex can be created using the slice command. A slice can only, 

be taken at a CCG vertex rather than more specifically on a given variable at a given program 

statement. The resulting slice comprises slices on each variable used at the selected CCG vertex.. 

The slice indicates those statements potentially affecting the value of each variable used.. The 

program slice is given in terms of the CCG vertices involved; the present CCG system is unable to 

produce output in terms of the actual source code. The examples below are manually translated 

to give the actual source code of the resulting slice. 

A slice on formal parameter x of Inc within the program sum is achieved using the following 

query. 

?- s l i c e d , ' I n c ' ,1) • 

Sl ice : -

node(1 
node(l 
noded 
node(l 
node(1 
node(1 
noded 
node(l 
noded 
noded 
node(l 
node(l 
noded 

C a l c S u m , 0 ) 

C a l c S u m , 3) 

I n c , 0 ) 

I n c , 2 ) 

m a i n , 1) 

m a m , 

m a i n , 

m a i n , 

m a i n , 

m a i n , 

C a l c S u m , 2 ) 

C a l c S u m , 4) 

I n c , 1) 

0) 

2) 

3) 
4) 
6) 

13 nodes i n the s l i c e 

The resulting slice is listed in table 6.6 and shown in figure 6.3. A second slicing example, showing 

a slice on p t r_ to_ l i s t _ i t em = head of function p r in t_ l i s t_ i t ems in linkedJist produces the 

result contained in table 6.7 and figure 6.4. 
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graph-tool 

F i l e Graph Arc Comnands 

l/Min/O 

t ~ e frve - ̂ expuse 
l/Min/2 

l/nain/3 

CalcSun 

1/nain/G 

l/CalcSun/O 
entry 

CalcSun 

lAalcSun/2 
Fornal 

j 

l/CalcSijiii/3 

c a l l s 

Vinc/0 
entry 

1 / I n c / l f l o u 
f o r n a l 

X 

l/I n c / 2 
expr 

c h i l d r e n managed.. 

Figure 6.3: Program slice on formal parameter x of Inc function. 
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vo id mainO i n t CalcSum(int * j ) void I n c ( i n t *x) 
{ { 

i n t sum; I n c ( j ) ; *x = *x + 1; 
i n t i ; } } 

{ 
i = sum = 0; 
whi le (1 < 20) { 

CalcSuin(&i) ; 
} 

} 

Table 6.6: Program slice on formal parameter x of Inc function. 

A slice on p t r _ t o J . i s t _ i t e m = head of function p r i n t J . i s t _ i t e m in l i n k e d J i s t produces the 

result shown in table 6.7 and figure 6.4. 

A ripple analysis view can be created using the ripple command. Like the slice command, the 

maintainer must specify a CCG vertex. Again the ripple output is translated manually to show 

the actual source code affected. 

The following query constructs a ripple analysis for the s = s + * j statement in function 

CalcSum of the s u m program. 

?- r i p p l e d , ' C a l c S u m ' , 7 ) . 

Ripple (forward s l i c e ) : -

n o d e d , CalcSum, 6) 
n o d e d , CalcSum, i ) 
n o d e d , main, 5) 
n o d e d , main, 10) 
n o d e d , main, 8) 
n o d e d , CalcSum, 8) 
n o d e d , CalcSuin, 7) 

7 nodes i n t h e forward s l i c e 

The impacted statements are shown in table 6.8 and figure 6.5. 

133 



mainO 
{ 

t a i l = NULL; 

t a i l = a d d _ l i s t _ i t e m ( t a i l ) 
t a i l = a d d _ l i s t _ i t e m ( t a i l ) 
t a i l = a d d _ l i s t _ i t e m ( t a i l ) 
p r i n t _ l i s t _ i t e m s ( ) ; 

> 

void * p r i n t _ l i s t _ i t e m s ( ) 
{ 

l i s t _ i t e m * p t r _ t o _ l i s t _ i t e m ; 

p t r _ t o _ l i s t _ i t e m = head; 

l i s t _ i t e m * a d d _ l i s t _ i t e m ( l i s t _ i t e m *entry) 
{ 

l i s t _ i t e m *new_l is t_ i tem; 

new_l is t_ i tem = ( l i s t _ i t e m * ) m a l l o c ( s i z e o f ( l i s t _ i t e m ) ) ; 

i f (ent ry == NULL) { 
head = new_l i s t_ i tem 

} 
r e tu rn new_l i s t_ i t em; 

Table 6.7: Program slice on p t r_ to J . i s t_ i tem = head of p r i n t J . is t_i tem function. 

vo id mainO 
{ 

i n t sum; 

sum = C a l c S u m ( s u m ) ; 

sum = sum; 

i n t C a l c S u m d n t s) 

{ 
i f (s < 100) { 

s = s + * j ; 
{ 
r e tu rn s; 

> 

Table 6.8: Ripple analysis on s = s + * j of C a l c S u m function. 
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Figure 6.4: Program slice on p t r _ t o _ l i s t _ i t e i n = head of p r i n t _ l i s t _ i t e m function. 
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Figure 6.5: Ripple analysis on s = s + * j of CalcSum. 
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6.4 .5 P r o g r a m C o m p o n e n t s 

Al though not an integral part of the CCG representation, the prototype tool allows a maintainer 

to construct views of the functions and components comprising the subject system. 

The user can list the files making up the subject system using the list command. The following 

example lists all C files of the subject system, in this case s u m . 

?- l i s t ( _ ) . 

L i s t of F i l e s : 

f i l e d , . . /examples/sum. c) 

In format ion on the component definitions w i t h i n the subject program is constructed using the 

find_def command. The types and scopes of functions and variables are listed, as shown for the 

program s u m below. 

?- f i n d _ d e f ( _ ) . 

CalcSum : f u n r e t Q in t ( f u n : Q e x t e r n a l ; B l o c k : [ ] ; f i l e : . . / examples / sum.c ) 
Inc : f u n r e t Qvoid ( f u n : O e x t e r n a l ; B l o c k : • ; f i l e : . . / examples / sum.c ) 
main : f u n r e t @void ( f u n : Q e x t e r n a l ; B l o c k : [ ] ; f i l e : . . / examples / sum.c ) 

J 
s 
x 
i 

p t r t o i n t ( f u n : CalcSum; B l o c k : • ; f i l e : . . / examples / sum.c ) 
i n t ( f u n : CalcSum; B l o c k : [ ] ; f i l e : . . / example s / sum.c ) 
p t r t o i n t ( f u n : I n c ; B l o c k : [ ] ; f i l e : . . / examples / sum.c ) 
i n t ( f u n : main ; B l o c k : [ 1 ] ; f i l e : . . / example s / sum.c ) 

sum : i n t ( f u n : main ; B l o c k : [ 1 ] ; f i l e : . . / example s / sum.c ) 

In fo rmat ion on a specific component can be gathered by using a more precise query. The following 

example w i l l list definitions of the variable a l l o c p . 

?- f i n d _ d e f ( a l l o c p ) . 

a l l o c p : p t r t o char ( f u n : Q e x t e r n a l ; B l o c k : [ ] ; ( s t a t i c ) ; 
f i l e : . . / e x a m p l e s / l i n e s . c ) 

Type informat ion is constructed using the list(types) query. 

?- l i s t ( t y p e s ) . 

Type D e f i n i t i o n s i n : . . / e x a m p l e s / l i n k e d _ l i s t . c 
l i s t _ i t e m : [ s t r u c t , _ l i s t _ i t e m ] 
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The list of functions contained in the subject system is created w i t h the list(fu notions) command. 

The functions of the l i n k e d J i s t program are shown below. 

?- l i s t ( f u n c t i o n s ) . 

L i s t o f F u n c t i o n s : 

f u n d , a d d _ l i s t _ i t e m ) 
f u n d , main) 
f u n d , p r i n t _ l i s t _ i t e m s ) 
f u n ( 2 , m a l i c e ) 
f u n ( 2 , p r i n t f ) 

In fo rmat ion on the subject program's external variables may be similarly constructed using the 

list(globals) command. 

?- l i s t ( g l o b a l s ) . 

G l o b a l s i n : . . / e x a m p l e s / l i n k e d _ l i s t . c 
head : p t r t o l i s t _ i t e m ( f i l e : . . / e x a m p l e s / l i n k e d _ l i s t . c ) 
t a i l : p t r t o l i s t _ i t e m ( f i l e : . . / e x a m p l e s / l i n k e d _ l i s t . c ) 

References to external variables may be listed using the globaLcall query. The following com

mand lists all functions of l ines which reference the a l l o c p external variable. 

?- g l o b a l _ c a l l ( _ , _ , a l l o c p ) . 

G l o b a l C a l l s ( g c ( F i l e N r , Fun, G l o b a l ) : 

g c ( l , a l l o c , a l l o c p ) 
g c ( l , ma in , a l l o c p ) 

The types and names of the formal parameters of a subject program can be found wi th the 

formals command. The user can provide a more general or specific query to generate information 

on all or only given functions. The fol lowing command lists the names, types and scopes of all 

fo rmal parameters of the s u m program. 

?- f o r m a l s ( _ , _ ) ; 

Formal parameters : 
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J 

X 

i n t ( f u n : CalcSum; B l o c k : • ; f i l e : . . / examples /s iun .c ) 
p t r t o i n t ( f u n : CalcSum; B l o c k : [ ] ; f i l e : . . / examples / sum.c ) 
p t r t o i n t ( f u n : I n c ; B l o c k : [ ] ; f i l e : . . / examples / sum.c ) 

A maintainer can view parameter binding informat ion in two ways. A formal parameter vertex 

can be specified using the list.bind command or a formal parameter name using the list_bind_name 

command. I n either case a list is produced of C C G binding edges incident on the given formal-

parameter. 

The fol lowing examples demonstrate binding informat ion for the parameter x at vertex 1 of 

Inc w i t h i n s u m . The results of each query show tha t vertex 4 of CalcSum is an actual parameter 

bound to X . 

?- l i s t _ b i n d ( _ , ' I n c ' , _ ) . 

B i n d i n g edges : -

b i n d ( l , CalcSum, 4 , 1 , I n c , 1) 

?- l i s t _ b i n d _ n a m e ( l , ' I n c ' , x ) . 

B i n d i n g edges : -

b i n d d , CalcSum, 4 , 1 , I n c , 1) 

6.5 Software Maintenance Scenarios 

Whi l s t the C C G has been shown to provide a software maintainer w i t h many diflferent views of a 

subject system, i t is impor tan t that this informat ion can be used to help the maintainer perform 

maintenance tasks. A maintainer may wish to gain an understanding of the code to correct an 

error in the software - corrective maintenance. Another task could be to modi fy the software in 

some way to improve its funct ional i ty - perfective maintenance. 

This section outlines two scenarios showing the use of the C C G system in each of these activities. 

The examples indicate the aim of the maintenance task and describe the views which may be 

constructed by the maintainer to help achieve the given task. 

In bo th case the l i n k e d J i s t program is used as an example. The l i n k e d J i s t is a small program 

but contains a number of ' d i f f i cu l t ' features, for example recursive structures, dynamic allocation, 

external variables and pointer parameters. 
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6.5.1 Corrective Maintenance 

Many maintenance tasks involve correcting problems w i t h the software or 'bug fixing'. For example, 

ini t ia l is ing p t r _ t o J . i s t _ i t e m to t a i l rather than head in the funct ion p r i n t _ l i s t _ i t e m s gives 

the fol lowing. 

v o i d p r i n t _ l i s t _ i t e m s ( v o i d ) 

{ 

l i s t _ i t e m * p t r _ t o _ l i s t _ i t e m ; 

f o r ( p t r _ t o _ l i s t _ i t e m = t a i l ; p t r _ t o _ l i s t _ i t e m != NULL; 

p t r _ t o _ l i s t _ i t e m = p t r _ t o _ l i s t _ i t e m - > n e x t ) { 

p r i n t f ("Value i s */.d \ n " , p t r _ t o _ l i s t _ i t e m - > v a l ) ; 

} 

} 

This func t ion now outputs only the final i tem of the linked list structure rather than each i tem. 

The fol lowing scenario describes how a maintainer may detect this problem. 

A maintainer may first wish to determine the funct ion in which the problem is occurring. The 

list(functions) command w i l l list each func t ion of the program. 

?- l i s t ( f u n c t i o n s ) . 

L i s t o f F u n c t i o n s : 

f u n ( l , a d d _ l i s t _ i t e m ) 
f u n ( l , main) 
f u n ( l , p r i n t _ l i s t _ i t e m s ) 
f u n ( 2 , m a l l o c ) 
f u n ( 2 , p r i n t f ) 

Producing a call graph view w i l l indicate how these functions are used. The fun.call command 

outputs the program's call graph. 

?- f u n _ c a l l ( _ , _ ) . 

F u n c t i o n C a l l Graph 

f c ( a d d _ l i s t _ i t e m , m a l l o c ) 
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f c ( a d d _ l i s t _ i t e m , p r i n t f ) 
f c ( m a i n , p r i n t _ l i s t _ i t e m s ) 
f c ( m a i n , a d d _ l i s t _ i t e m ) 
f c ( p r i n t _ l i s t _ i t e m s , p r i n t f ) 

Given tha t the problem surfaces as the linked list is printed, the maintainer may conjecture two 

possible sources. 

1. There is a problem w i t h i n p r i n t _ l i s t _ i t e m s . The list is not printed correctly. 

2. There is a problem w i t h i n a d d _ l i s t _ i t e m s . Items are not added to the list correctly. 

Investigating the former, the maintainer w i l l find the pr in t statement: 

p r i n t f ("Value i s '/.d \ n " , p t r _ t o _ l i s t _ i t e m - > v a l ) ; 

A useful technique when searching for the cause of an error is to construct a program slice on the 

statement at which the error is observed. A slice on the p t r _ t o _ l i s t _ i t e m - > v a l actual parameter 

of the p r i n t f call: 

?- s l i c e d , p r i n t _ l i s t _ i t e m s , 6) 

w i l l produce a reduced program containing any statement potential ly affecting this variable. This 

slice should contain the statement causing the problem. The resulting slice is shown in table 6.9. 

This view may be useful i n locating the source of the error but the maintainer may st i l l require 

fur ther in format ion . A definition-use view on p t r _ t o _ l i s t _ i t e m - > v a l created using the def-use 

command produces the ou tpu t shown below. 

?- d e f _ u s e ( _ , _ , _ , l , p r i n t _ l i s t _ i t e m s , 6 ) . 

Def -use p a i r s : -

f l o w d , p r i n t _ l i s t _ i t e m s , 2 , 1 , p r i n t _ l i s t _ i t e m s , 6) 
f l o w ( l , a d d _ l i s t _ i t e m , 18, 1 , p r i n t _ l i s t _ i t e m s , 6) 
f l o w ( l , p r i n t _ l i s t _ i t e m s , 8, 1 , p r i n t _ l i s t _ i t e m s , 6) 

This represents the definitions: 

p t r _ t o _ l i s t _ i t e m = t a i l ; 
t a i l = a d d _ l i s t _ i t e m ( t a i l , 2 ) ; 
p t r _ t o _ l i s t _ i t e m = p t r _ t o _ l i s t _ i t e m - > n e x t ; 
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m a i n O 
{ 

a d d _ l i s t _ i t e m ( 5 ) ; 
a d d _ l i s t _ i t e m ( 7 ) ; 
t a i l = a d d _ l i s t _ i t e m ( 2 ) ; 

p r i n t _ l i s t _ i t e m s ( ) ; 
> 

v o i d * p r i n t _ l i s t _ i t e m s ( ) 

{ 
l i s t _ i t e m * p t r _ t o _ l i s t _ i t e m ; 

f o r ( p t r _ t o _ l i s t _ i t e m = t a i l ; p t r _ t o _ l i s t _ i t e m != NULL 
p t r _ t o _ l i s t _ i t e m = p t r _ t o _ l i s t _ i t e m - > n e x t ) { 

p r i n t f ( p t r _ t o _ l i s t _ i t e m - > v a l ) ; 

> 

> 

l i s t _ i t e m * a d d _ l i s t _ i t e m ( i n t v a l u e ) 
{ 

l i s t _ i t e m * n e w _ l i s t _ i t e m ; 

n e w _ l i s t _ i t e m = ( l i s t _ i t e m * ) m a l l o c ( s i z e o f ( l i s t _ i t e m ) ) ; 
n e w _ l i s t _ i t e m - > v a l = v a l u e ; 
n e w _ l i s t _ i t e m - > n e x t = NULL; 
r e t u r n n e w _ l i s t _ i t e m ; 

> 

Table 6.9: Program slice on p t r _ t o _ l i s t _ i t e m - > v a l of modified p r i n t _ l i s t _ i t e m s funct ion. 
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Inspecting the program slice and definition-use view, the maintainer should observe that the tem

porary pointer p t r _ t o _ l i s t _ i t e m is initialised to t a i l , the end of the list and tha t as a result the 

list is never traversed. 

6.5.2 Perfective Maintenance 

The most common category of software maintenance is perfective maintenance where changes are 

made to improve the func t iona l i ty of the software. The fol lowing example describes a maintenance 

scenario in which the linked list of items is modified to become a list of character pointers rather. 

than a list of integers. 

The in i t i a l site for this modif icat ion w i l l be the type defini t ion of l i s t _ i t e m . The v a l field, 

must be altered to char* to reflect the new list contents. The maintainer can use the CCG system 

to determine the possible effects of the change and other code tha t may require .modifications. 

The commands list(globals), globaLcall and find.def can be used to find functions or variables 

which may also require modif icat ion. External variables are found using the list(globals) query. 

?- l i s t ( g l o b a l s ) . 

G loba l s i n : . . / e x a m p l e s / l i n k e d _ l i s t . c 
head : p t r t o l i s t _ i t e m ( f i l e : . . / e x a m p l e s / l i n k e d _ l i s t . c ) 
t a i l : p t r t o l i s t _ i t e m ( f i l e : . . / e x a m p l e s / l i n k e d _ l i s t . c ) 

Two external variables head and t a i l are listed, each of type p t r _ t o _ l i s t _ i t e m . Functions ac

cessing these globals are found using globaLcall. 

?- g l o b a l _ c a l l ( _ , _ , _ ) . 

G l o b a l C a l l s ( g c ( F i l e N r , Fun, G l o b a l ) : 

g c ( l , a d d _ l i s t _ i t e m , head) 

g c ( l , ma in , head) 
g c ( l , ma in , t a i l ) 
g c ( l , p r i n t _ l i s t _ i t e m s , head) 

Further informat ion on the functions accessing head and t a i l is found using the f i n d . d e f 

query. 

?- f i n d . d e f ( a d d _ l i s t _ i t e m ) . 
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a d d _ l i s t _ i t e m : f u n r e t p t r t o l i s t _ i t e m ( f u n : © e x t e r n a l ; B l o c k : [ ] ; 
f i l e : . . / e x a m p l e s / l i n k e d _ l i s t . c ) 

?- f i n d _ d e f ( p r i n t _ l i s t _ i t e m s ) . 
p r i n t _ l i s t _ i t e m s : f u n r e t Qvoid ( f u n : Q e x t e r n a l ; B l o c k : [ ] ; 

f i l e : . . / e x a m p l e s / l i n k e d _ l i s t . c ) 

The external variables head and t a i l are accessed in the functions main, a d d _ l i s t _ i t e m and 

p r i n t _ l i s t _ i t e m which may require modifications. The funct ion a d d _ l i s t _ i t e m also returns a 

pointer to l i s t _ i t e m and is therefore a strong candidate for fur ther inspection. 

The formal parameters of a d d _ l i s t _ i t e m can be inspected using the formals command. 

?- f o r m a l s d , a d d _ l i s t _ i t e m ) . 

Formal parameters : 
e n t r y : p t r t o l i s t _ i t e m ( f u n : a d d _ l i s t _ i t e m ; B l o c k : [ ] ; 

f i l e : . . / e x a m p l e s / 1 i n k e d _ l i s t . c ) 
v a l u e : i n t ( f u n : a d d _ l i s t _ i t e m ; B l o c k : [ ] ; 

f i l e : . . / e x a m p l e s / 1 i n k e d _ l i s t . c ) 

The parameter va lue is of interest since this represents the modif ied field of the linked list 

structure. The parameter should be changed to type char*. 

A ripple analysis on this parameter w i l l show the potential effects of this modificat ion. The 

ripple analysis query: 

?- r i p p l e ( 1 , a d d _ l i s t _ i t e m , 2) 

produces the fol lowing output : 

l i s t _ i t e m * a d d _ l i s t _ i t e m ( i n t v a l u e ) 

{ 
p r i n t f ( v a l u e , e n t r y - > v a l ) ; 
n e w _ l i s t _ i t e m - > v a l = v a l u e ; 

> 

v o i d p r i n t _ l i s t _ i t e m s ( ) 

{ 
p r i n t f ( p t r _ t o _ l i s t _ i t e m - > v a l ) ; 

} 

Each of these statements w i l l require modif icat ion to reflect the changed type of the v a l field. 

A program slice on the formal parameter va lue : 
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?- s l i c e d , a d d _ l i s t _ i t e m , 2) 

may provide the maintainer w i t h fur ther areas of the code to investigate. The resulting slice is: 

m a i n O 
{ 

a d d _ l i s t _ i t e m ( 5 ) 
a d d _ l i s t _ i t e m ( 7 ) 
a d d _ l i s t _ i t e m ( 2 ) 

} 

l i s t _ i t e m * a d d _ l i s t _ i t e m ( i n t v a l u e ) 
{ 
} 

The statements i n this slice are each calls to add J . i s t _ i t e m . The actual parameters of these 

calls must be altered to the new type. 

6.6 Summary 

This chapter has described the results achieved using the prototype C C G system. Firstly, a group 

of four small C programs of up to 121 lines of code were analysed. Correct CCG representations 

were constructed for each of these.subject programs. Secondly, two larger programs of up to one 

thousand lines of code were analysed. C C G vertices, control dependencies and interprocedural 

control in format ion were each computed successfully for these two larger programs. However, the 

implemented data dependence analysis a lgori thm was found to be inadequate for programs of this 

size. 

Empir ica l results of the t ime taken in construction and space requirements of each of the 

CCGs were outl ined. Most encouraging was the t ime spent during the in i t i a l CCG translation 

step, producing the 'par t ia l ' C C G . Less encouraging was the inefficiencies of the control and data 

dependence analysis algorithms. Space analysis of the CCGs showed tha t on average the ratio of 

CCG facts to lines of code was approximately three or four to one. Space requirements for the 

C C G approached an order of magnitude greater than the subject C code. 

The views and informat ion made available to a maintainer were demonstrated. These views 

include call graphs, control dependencies, definition-use informat ion, program slices and ripple 

analyses. 

F ina l ly scenarios describing the use of the CCG system in two maintenance tasks were outlined. 
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The examples showed how a maintainer can use the CCG system to produce program views to aid 

program comprehension and help w i t h maintenance activities. 
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Chapter 7 

Evaluation of the Combined C Graph 

This chapter presents an evaluation of the Combined C Graph (CCG) . The representation is first 

evaluated in terms of the C language coverage provided both by the theoretical CCG and by the 

prototype implementat ion. The program views made available to the maintainer are then discussed. 

The algorithms used to bui ld the CCG are evaluated in terms of the success in constructing the 

representation and their theoretical complexity. Final ly the space requirements of the CCG are 

analysed. 

7.1 C Language Coverage 

This section presents an evaluation of the C language coverage provided by the CCG program 

representation. The theoretical CCG defined in chapter 4 is first discussed and this is followed by 

an analysis of the coverage given by the current prototype system. 

7.1.1 Theoretical C C G Representation 

This section assesses the C features tha t may be represented by the CCG. The features provided 

by the language are divided into two categories. The first of these categories of features are those 

represented by the C C G vertices and analysed to determine their data and control fiow effects, 

which i f any are modelled by the CCG's edges. Other C features are described which are permitted 

in a subject program but do not create any dependencies and consequently have no effect wi th in 

the CCG. The second category of C features are those which cannot be represented by the vertices 

of the CCG and have data and control flow effects which cannot be modelled by the CCG. 
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Permitted C features 

Assignment expressions are a common feature of most C programs. A n assignment expression 

wi thou t embedded side effects is represented simply by a CCG vertex. More complex assign

ment expressions w i t h embedded side effects are analysed and represented by refined CCG vertices 

connected by expression-use or lvalue-definition edges. This gives a more intui t ive program rep

resentation and improved program slicing, discussed later in section 7.2. The data fiow effects of 

assignment expressions are modelled successfully by determining the variables defined and used 

w i t h i n the expression to construct flow dependencies. 

The operators involved w i t h i n the sub-expressions of an assignment expression are modelled by 

the C C G but the specific effects of the operators are not distinguished. For example, arithmetic-

operators, increment and decrement operators, relational operators and bitwise operators are all 

analysed in the same way; the variables and referenced objects operated on are considered to be 

used w i t h i n the expression. This approach is adequate for a dependence-based representation since 

i t is the actual use or def ini t ion of a variable w i t h i n an expression tha t is important and not the 

actual values involved. For the same reason, the values of any constants in the code, or the specific 

types of any ordinal variables involved in an expression are not important . 

Operators w i t h control fiow effects such as logical operators or conditional operators are mod

elled by producing refined CCG vertices. The control effects of the operators are represented by 

constructing control dependencies between the refined vertices. Again the advantage of a more 

in tu i t ive program representation results. 

The CCG is able to represent each of the control structures provided by the C language. The 

control effects of i f . . t h e n , . e l s e , w h i l e , f o r , do . . w h i l e , break, con t i nue and goto are each 

modelled by the control dependence edges of the CCG. The s w i t c h statement is modelled accurately 

using bo th control dependencies and the new switch dependence edge. 

The C C G represents the individual functions of a subject C program by creating CCG sub

graphs, FCCGs, for each func t ion . Cal l and entry vertices connected by call edges successfully 

model the call relationships of the C programs. The value parameters of the C language are rep

resented by formal and actual parameter vertices, and parameter binding effects modelled by the 

CCG's binding edges. Function calls of the f o r m f ( g O ) where the actual parameter is not ex

p l ic i t ly known but is a value returned f r o m another funct ion call are represented by introducing 

' dummy' CCG vertices. This new vertex provides consistency in the CCG representation by giving 

a common 'shape' for the func t ion call interface. 
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The use of pointer parameters is allowed by the CCG but the objects referenced by the pointer 

do not appear as vertices in the call interface. The actual pointer parameter and corresponding for

mal pointer parameter, like other value parameters, are represented by actual and formal vertices. 

The data flow effects of the referenced objects w i t h i n the called funct ion are represented by explicit 

interprocedural data dependencies. This means tha t the C C G does not present an encapsulated 

interface between functions, but instead contains interprocedural edges connecting arbi t rary CCG 

vertices. The CCG representation is more explicit in its characterisation of data dependence and 

removes the need for interprocedural propagation algorithms such as those used by the I F G / U I G . 

representations to calculate the interprocedural data dependencies. The disadvantage of this ap

proach is an absence of calling context informat ion and consequently less accurate program slices. 

This issue is discussed in detail i n section 7.2. 

The approach taken is selected because of the difficulties of representing the referenced objects 

adequately as par t of the call interface. A referenced object such as a recursive data structure may 

be unbounded in size or may vary on different paths to the call site or at different calls of the 

same func t ion . Representing the referenced object by explicit actual and formal parameter vertices 

would therefore require an approximation of the structures tha t could be referenced by the actual 

parameter. The task of selecting an approximation providing a conservative and useful solution is 

a difllicult one. 

The return value of a func t ion is represented by the new return-expression-use edge. Again the 

specific value returned is not required by a dependence based representation but the relationship 

between the re turn vertex and the vertex referencing the returned value is important . 

The pointer variables, structure variables and recursive structures of the C language are each 

represented in the CCG by decomposing them into their component objects and analysing these 

objects. The data flow eflFects of a pointer variable are represented in terms of the pointer and 

any referenced objects. The data flow effects of a structure variable are represented in terms of 

the component fields. This solution improves the accuracy of the data dependence information 

contained in the CCG and consequently presented to the maintainer. 

The representation of array variables is less accurate. Array variables are treated as 'aggregates', 

or a single structure, and unlike pointers or structure variables are not decomposed fur ther into 

the indiv idual component elements. This approach is a common one in the field of static analysis 

because of the d i f f icu l ty of evaluating subscript values given by a variable. For example, the specific 

array element referred to by the expression a [ i ] cannot be determined f r o m static analysis of the 

source code. 
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The rat ionalisation for the use of 'aggregates' is t ha t individual elements of an array are often 

treated in the same way in a program and consequently generate the same data dependence effects. 

For example a loop structure may be used to initialise each element of the array, using a counter 

to access subsequent array elements on successive iterations. A second loop structure may then 

p r in t out each ind iv idua l element. Each element is defined at the same CCG vertex and used at 

the same C C G vertex and w i l l produce the same data dependencies. Analysis of pointer arithmetic 

is also simplif ied as an increment or decrement of an array pointer maintains a pointer to the same 

'aggregate' structure. However, the data dependence informat ion contained in a CCG representa

t ion of programs involving arrays w i l l inevitably become less precise as array usage increases. This 

is par t icular ly impor tan t for more complex data structures involving arrays where the accuracy of 

analysis of the entire structure can be l imi ted by the imprecise array analysis as information on 

the shape of the structure is lost. 

Standard library routines are represented i n the CCG using 'stub' routines representing only 

the interprocedural control and data flow effects. Since the standard l ibrary is provided by any 

environment support ing C, only these interprocedural effects should be of interest to a maintainer. 

The approach provides a complete CCG representation for a given subject program and enables a 

maintainer to construct complete program slices and views of the program call graph. 

The C C G representation does not contain any explicit informat ion on the component declara

tions of the subject C program or the scoping rules of the variables involved. The block structure of 

the C language is represented impl ic i t ly i n the CCG only through the data flow effects of the local 

and external variables. Like pointer parameters, external variables may give rise to interprocedural 

data dependencies. Static variables are similarly distinguished f r o m local variables only through 

their data flow effects. 

The CCG could be enhanced to contain 'declaration vertices' describing the external, static 

and local variable declarations, type definitions and typedefs. Scoping rules may be represented by 

locat ing these vertices at the entry point of the relevant C block. Thus a local declaration could 

become control dependent on the entry vertex of an F C C G or on the expression controlling the 

entry to a new compound statement. For example, the declaration of i after the i f expression: 

i f (n > 0) { 
i n t i ; 

} 

would produce a declaration vertex control dependent on the expression n > 0. 
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No mechanism currently exists to represent initialisation of variables as they are defined. The 

introduction of declaration vertices would also allow for the representation of these initiaJisations. 

Other C language features which may occur in a subject C program but which do not create 

dependencies in the CCG are register variables, type conversions and the sizeof operator. The 

r eg i s t e r declaration informs the C compiler to place the specified variables in machine registers. 

This request can be ignored and is not an issue for a program comprehension environment. The' 

s izeof operator computes the size of an object but has no data or control flow effects. Type 

conversions or casts convert a value of one type to a vaJue of another type. Since specific expression, 

values are not used in the CCG, the type conversion of a value has no effect and is not part of the 

representation. 

Unrepresented C features 

The most important feature of the C language not represented by the CCG is •pointers to functions. 

I t is possible within C to define pointers to functions which can then be used in the same way as 

other variables. For example, pointers to functions may be assigned to, placed in arrays, passed to 

functions as parameters or returned by functions. 

The use of pointers to functions as parameters is equivalent to the use of procedure parameters 

in other programming languages. Procedure parameters complicate the construction of the program 

call graph since a reference to a formal parameter may represent invocations of distinct procedures. 

Ryder[80] reports an algorithm for the construction of a call graph for programs with procedure 

parameters, which could be applied to the pointers to functions of C. Using this algorithm it may 

be possible to approximate the set of functions that could be invoked at any call site which is a 

dereference of a pointer to a function. 

Union variables are single variables which may hold at different times objects of different sizes 

and types. The C compiler provides enough space for the 'largest' object. For example, given the 

following union declaration: 

union u_tag { 
i n t i v a l ; 
f l o a t f v a l ; 
char *cval ; 

> u ; 

the variable u may hold either an integer value, a float value or a character pointer. 
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The problem presented by a union variable is in representing the data flow effects of the variable. 

The approach of analysing the components used in structure and pointer analysis cannot be applied 

since the components of the union variable effectively change as the type of the stored value changes. 

A conservative approach would be to treat the entire union variable as an 'aggregate' and not to 

attempt any more detailed analysis. 

The final component of the C language which is not represented by the CCG is the C pre

processor. The preprocessor provides features such as conditional compilation, macro substitution 

and file inclusion. The C preprocessor is difficult to analyse for a number of reasons. Conditional 

compilation produces multiple versions of the same program. A program representation would 

ideally model each of the possible versions of the code. Macro substitution presents two main, 

problems. The first of these is that a macro definition is not necessarily a complete syntactic unit. 

Consequently the code surrounding the macro use will not be syntactically legal C, making analysis 

a difficult task. The second problem is that a maintainer would benefit from information on both 

the unexpanded macro form and the expanded code form. An IPR must therefore represent each 

form. This problem is related to that of file inclusion, particularly standard library headers. In 

addition to function declarations, these files include many macro definitions. Substitution of these 

macros can complicate the source code, for example the easily understood s t d i n is replaced by the 

less intuitive (&_iob[0] ) . 

Summary of Theoretical C Coverage 

The CCG covers a large part of the C language. In addition to the language features modelled 

by representations such as the UIG, the CCG permits expressions with embedded side effects, 

embedded control flows, value returning functions, value parameters, pointer variables, pointer 

parameters, structure variables, recursive structures, C control structures and standard library 

routines. Approximate information is contained to represent the use of array variables. Compo

nent declaration and scoping information is not specifically represented in-the CCG but could be 

introduced by the addition of declaration vertices. C features which cannot currently be represented 

by the CCG are pointers to functions, union variables and the C preprocessor. 

7.1.2 Prototype C C G Representation 

This section discusses the C language coverage provided by the prototype system described in 

chapter 5. The prototype system constructs an accurate CCG for subject C programs involving 

the language features permitted by the theoretical CCG representation with only two further re-
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strictions. Each restriction is a limitation of the prototype coding, rather than a theoretically more 

difficult problem. 

• Where an array variable such as a [ i ] is represented using the pointer notation *(a + i ) , i t 

is assumed that the left hand side operand of the + operator represents the pointer variable, 

and that the right hand side operand represents the array offset. Therefore an expression 

written as * ( i + a) would be misinterpreted. 

• Side eflPects are not permitted within a 'pointer notation' array reference. For example, an 

expression such as *(a++ + i ) which includes a side effect whereby the pointer variable a is 

incremented to point to the next array element, is not permitted. 

Each of these features causes problems during the C translation stage ccg.trans. 

CcgJrans is able to analyse a larger class of C programs than may be modelled by the CCG 

representation. The analyser covers the complete C language but does not provide information on 

the following features. 

• Constant values are represented only with a generic constant or string value. 

• Operators, with the exception of side effect or control flow inducing operators, are represented 

with a generic operator. 

• Case labels are represented with a generic case-label. 

• Initialisation of variables within declarations is ignored. 

• Type casts are not analysed. 

However, with the exception of initialisation of variables, these features do not create any control 

or data flow effects and more detailed information is not required to construct the CCG. Initiali

sation of variables must be achieved by modifying the source code to contain explicit initialisation 

statements. 

The prototype translator could be used as the basis for an enhanced CCG with declaration 

vertices, since the information required on both component types and scopes is already generated 

by the system. Union variables and pointers to functions which must be added to produce a 

complete C representation are also analysed by the translator. 

The remaining phases of the prototype CCG system each adequately deal with the language 

features permitted by the theoretical CCG representation. The interprocedural control analysis 
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routines build.ccg and control dependence analysis routines controLdep can each be applied to any 

C code not involving the use of pointers to functions. 

To summarise, the prototype CCG system is able to construct the CCG with the exception 

of only two restrictions, each concerning pointer/array relationships. The current CCG translator 

in fact offers a more complete language coverage than the CCG itself and may be of use in the 

construction of an enhanced CCG. 

7.2 Program Views 

This section discusses the achievements of the CCG in providing a variety of program views to a 

maintainer. This issue is described in two sections, firstly the information made available by the 

theoretical CCG representation and secondly the views provided by the prototype system. 

7.2.1 Theoretical C C G Views 

The CCG representation makes a number of programming level views available to a maintainer. 

The majority of the views .are integrated directly into the CCG and the construction algorithms 

necessary to make the view available are trivial. This is the case for call graph, control dependence 

and definition-use views. In each case the view is constructed simply by extracting a CCG subgraph 

comprising the appropriate graph edges. The presence of explicit interprocedural flow edges in the 

CCG trivialises the construction of the definition-use information. Other IPRs require a more 

complex propagation algorithm to create this view. The CCG presents a more useful control 

dependence view due to the refined analysis of expressions with embedded side effects. 

Flow sensitive data flow views created during data dependence analysis are provided by the 

CCG and are represented as graph annotations attached to each function. These views provide 

useful information and are simple to provide to a maintainer. However the information stored in 

the representation is somewhat at odds with the other components of the CCG. The annotations 

are in eflFect 'tagged on' to the CCG rather than an integral part of the representation. 

The CCG can be used as a basis for the construction of program slices which are computed 

using a simple backwards traversal of the edges of the representation, starting from the selected 

CCG vertex. A slice is therefore constructed in linear time. 

The refined vertices of the CCG were found in certain cases to produce more accurate program 

slices. Refined vertices ensure that only a single program object is defined at any single CCG 

vertex and that any flow dependencies incident on that vertex involve variables contributing to the 
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defined object. Traversing any flow dependence does not introduce any spurious vertices into the 

slice. Expression-use, lvalue-definition and return-expression-use edges ensure that a slice reaching 

a refined vertex also includes vertices contributing values to the expression at the refined vertex. 

However, a limitation of this approach is that a slice can only be performed on a variable 

defined at a given vertex, or on each variable defined or used at the vertex. For example, given the 

statement: 

a = X + y + z; 

a slice on variable a will include any vertices which contribute to the values of x, y or z. This slice 

is correct since each of x, y and z do contribute to a. However a slice on variable z is not possible 

since the result will include vertices also contributing to a, x and y, none of which contribute to 

the value z. This problem could be overcome by annotating each flow dependence with a label 

indicating the program object creating the dependence. A more sophisticated traversal algorithm 

must then use these annotations to determine whether to traverse a given flow dependence. 

The accuracy of program slices constructed using the CCG is also limited by the lack of call

ing context information in the graph and the presence of interprocedural data dependencies and 

return-expression-use edges. The need for calling context information during program slicing was 

recognised by Weiser[89]. A slice descending into a function must return to the calling function 

from which the function was entered, and not to any other calling function. I f this does not occur, 

an inaccurate overly-conservative slice may result. 

Horwitz et al[45] developed a two-phase traversal algorithm to overcome this problem, based on 

the SDG representation. The SDG restricts interprocedural edges to the call interface, therefore a 

graph traversal can only pass from one procedure to another via the edges of these encapsulated 

interprocedural edges. The SDG also contains the interprocedural transitive flow dependence repre

senting transitive dependencies between a procedure's reference parameters across a call site. The 

two-phase graph traversal algorithm makes use of these new edges to 'step across' a call site rather 

than descend into the called function. Each phase traverses only a subset of the SDG's edges to 

prevent 'ascending' or 'descending' call sites respectively. 

The presence of explicit data dependence edges and return-expression-use edges in the CCG 

prevents the application of a similar traversal algorithm to counter the lack of calling context infor

mation. A program slice may proceed throughout the CCG representation via these interprocedural 

edges and cannot be restricted by an encapsulated interprocedural interface. The absence of calling 

context information in the CCG will in some cases lead to excessively pessimistic program slices. 

155 



A program slice can propagate along any interprocedural edges from a given function, returning to 

out of context call sites along these edges. 

A simple solution, in the absence of recursive functions, is to introduce separate copies of each 

FCCG for each individual call site. In this way calling context problems are eliminated completely 

but the space requirements of multiple FCCG representations are prohibitive. A more acceptable 

solution would be to eliminate the unconstrained interprocedural edges to give an encapsulated 

interprocedural interface similar to the SDG. A two-phase traversal algorithm based on that de

scribed by Horwitz et al could then be employed. As discussed in section 7.1.1, this solution would 

require a new representation for pointer parameters to explicitly model the referenced objects by 

formal and actual parameter vertices. 

The CCG also makes available a ripple analysis view. A ripple analysis view is constructed at a 

specified CCG vertex, traversing the CCG along all edges in the forward direction from that vertex. 

Like the program slicing view discussed above, the accuracy of the ripple analysis is enhanced by 

the refined CCG vertices and expression-use, lvalue-definition and return-expression-use edges but 

inaccuracies will also be introduced by the absence of calling context information. 

The CCG provides a wide range of programming level views covering the control dependence, 

data dependence and interprocedural effects of the subject C program. Program slicing and ripple 

analysis provide further information for program comprehension and software maintenance. How

ever, other program views not presented by the CCG would further help program comprehension. 

A software maintainer can gather useful information from cross reference information. For ex

ample, a maintainer may wish to view the type declarations or variable declarations of the subject 

program and then determine all future references to these components. In its present form the CCG 

does not allow the maintainer to create this view. Adding cross reference information to the repre

sentation in the form of declaration vertices proposed earlier would help a maintainer understand 

in particular the use of externally defined components which may be referenced throughout the 

program. Declaration edges could be added to the CCG to relate the declaration vertices to other 

CCG vertices referencing the defined component. In this way a cross reference view is integrated 

into the CCG representation. 

In addition to the existing control dependence view, a maintainer may also benefit from a control 

flow view. Control flow information is required to compute the control dependencies of the CCG 

and hence is already available. Control flow edges may be introduced into the CCG, connecting 

each vertex with its control flow successors. A control flow view is then trivial to construct. I t is 

also possible to compute control flow information from the existing control dependencies, thereby 
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reducing the space requirements of the CCG. However the algorithms to perform this task are 

non-trivial. 

Another program view which could be made available is code quality or metrics information. 

Information may be derived from the CCG on problems such as unused variables or missing pa

rameters. Unclear C such as order of evaluation dependent code may also be detected. Metrics 

could be derived using the representation's interprocedural edges to indicate the level of coupling 

between functions or to describe the complexity of the subject program's control flow. 

7.2.2 Prototype System Views 

The prototype CCG implementation provides many of the views made available by the theoretical. 

CCG. By constructing Prolog meta programs a maintainer is able to create call graph views, control 

dependence views, definition-use views, program slices and ripple analyses. These views are each 

constructed quickly, with response times within a few seconds. The prototype system is unable to 

provide flow-sensitive data flow analysis views since this information is not collected by the data 

dependence analysis step. 

The CCG is also able to provide information on the components and types of the subject 

C program. This information is not part of the CCG representation but is gathered during the 

initial translation step ccgJrans. Control flow views also not part of the CCG may additionally be 

constructed. 

The major drawback of the prototype system in its present form is that the views presented to 

a maintainer are given in terms of the vertices and edges of the CCG and not the original C source 

code. Whilst for a small program it is simple to interpret the output and to relate the information 

to the source statements, as program size increases this quickly becomes impossible. A usable CCG 

system must present the maintainer with information relating to the actual C statements, not the 

intermediate CCG vertices. 

A second problem with the current views is that information constructed using the Prolog meta-

programs is presented textually. Graphical representations may only be produced for the complete 

CCG representation, program slices and ripple analysis views by translating the Prolog output and 

loading the resulting file into a graphical display tool. The user is able to position and move the 

vertices and edges of the displayed graph but is unable to generate further views. 

Whilst for information on program components a textual interface is sufficient, views such 

as program slices or definition-use pairs become more useful if presented in a graphical form. 

An improved front end is therefore required to improve the presentation of the information to a 
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maintainer. Views may be presented graphically with links to the source code. A maintainer must 

be able to create views either textually or by clicking on the program component or statement 

which is of interest. The use of colour may also help comprehension, particularly in the display of 

program slices or ripple analyses where the results can be highlighted both graphically and within 

the source text. 

7.3 C C G Construction Algorithms 

This section evaluates the algorithms used in the construction of the CCG. The theoretical com

plexity of each algorithm is discussed. The algorithms are also appraised in terms of the results 

achieved by and the time requirements of the implemented prototype system. Each phase of the 

CCG construction is addressed in turn. 

7.3.1 Partial F C C G Construction 

This section discusses the algorithms employed in the construction of the partial CCG. This involves 

an initial CCG translation step followed by control dependence analysis of each function. 

C C G Translation 

The first step in the construction of the CCG is to parse the source code and to construct an 

abstract syntax tree representation. The parse of the source code and construction of the of the 

syntax tree are each well known algorithms used in compiler construction and are therefore not 

addressed in detail in this thesis. 

The resulting abstract syntax tree is then traversed and CCG vertices created, taking into 

account any embedded side effects or control flows. Expression-use edges and lvalue-definition 

edges are created together with a control flow graph for each C function. 

The theoretical complexity of the traversal of the abstract syntax tree for a single function is 

determined as follows. For a graph with E edges and V vertices, where V < E, the depth first 

traversal is achieved in 0{E). This result is given by Aho et al[2]. For a function with N statements, 

the expression subgraph of the abstract syntax tree for each statement must be traversed. Therefore 

the traversal of the complete abstract syntax tree for a single function is achieved in 0{N.E). 

The prototype ccgJrans program successfully implements the CCG translation algorithm. The 

lex and t/acc derived parser constructs the abstract syntax tree representation. C routines then 

perform a depth first traversal of this tree, creating refined CCG vertices, expression-use edges, 
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lvalue-definition edges and a Prolog representation of each function's control flow graph. 

The time requirements of the translation step were found to be encouraging. The prototype 

implementation running on a SUN 670 analysed on average 12kb of C source code per second and 

processed programs up to 1000 lines of code in only 2.6 seconds of system time. The algorithms 

are simple to implement and the time requirements suggest that the current translation process is 

suitable for the analysis of large programs. 

Control Dependence Analysis 

The control dependence edges of each FCCG are constructed using an algorithm described in 

section 4.5.1. The algorithm modifies that of Ferrante et al[25], using a simpler method to construct, 

the flow graph's post-dominator tree. The algorithm employed allows the construction of control 

dependencies from an arbitrary control flow graph. Programs involving loops or unstructured 

control flow may be analysed. Consequently, control dependencies for C programs using any of the 

language's control structures, including break, continue or goto may be constructed. The proof 

of correctness of the algorithm is given by Ferrante at al. 

The theoretical complexity of the control dependence algorithm is as follows. Using bit vectors, 

set operations member, insert and delete are achieved in complexity 0(1) . Set union, difference 

and intersection are achieved in time 0{N). For a control flow graph with N vertices, the initial 

post-dominator set for each vertex N may change at most N times, giving iV^ possible changes. 

The update following each change requires the computation of a post-dominator set for each vertex, 

each computation requiring time O(N^). Total complexity is therefore 0(N'^.{N).N'^), i.e. 0{N^). 

Both computation of the post-dominator tree and the edge set 5 each require set operation with 

complexity 0{N). Calculation of the control dependencies is finally achieved in time 0{N.E), where 

E is the number of edges in S. The least common parent for each edge in the post-dominator tree 

is found in time 0{N), where A'' is the worst case height of the tree. Overall complexity for the 

complete algorithm is therefore: 

0(iV5) + o(̂ ) + O ( ^ ) + OiNE) ^ 0{N'^) 

The most inefficient step in the algorithm occurs in the computation of the reverse control flow 

graph's post-dominators. A simple algorithm taken from Aho et al[3] is used by the prototype 

system, replacing the conceptually more difficult algorithm reported by Ferrante et al. However, 

the theoretical complexity of this simple algorithm is 0{N^), in contrast to the 0{Na{N)) for the 

more difficult algorithm. 

The control dependence algorithm is simple to implement and correctly computes dependencies 
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for C programs including any of the language's control structures. However, the Prolog implemen

tation was found to be inefficient, taking up to 4750 seconds of cpu time for the largest program 

analysed (1000 lines of code). The algorithm is applied on the control flow graph of each of the 

subject program's FCCGs and also on the control flow subgraph of each actual parameter list. 

Therefore any inefficiencies in the algorithm are repeated as the number of functions and function 

calls increases. 

A practical CCG system would therefore require implementation of this more efficient algorithm. 

Another improvement could be achieved by detecting functions which involve only structured con

trol flow statements. In this case, the corresponding control dependencies can be determined simply 

by examining the syntax of the function. The control dependencies reflect the nesting structure of 

the function's control flow statements and are trivial to compute. 

7.3.2 Interprocedural Control Flow Analysis 

Interprocedural control flow analysis is performed to connect the partial FCCG subgraphs. Call 

edges, parameter binding edges and return expression-use edges are each constructed. 

The interprocedural control flow analysis algorithms have theoretical complexity as follows. 

Each function call requires time 0(P + R), where P represents the number of actual parameters 

and R the number of return statements in the called functions. For a program with C call sites, 

overall complexity is 0(C.P + R). 

The algorithms are simple to implement in Prolog and the prototype system successfully con

nects the FCCGs. Efl^ciency was adequate with the largest subject program migrate with 294 

function calls requiring 106 seconds. This suggests that interprocedural control flow analysis of 

larger programs will not be prohibitively expensive. 

7.3.3 Data Dependence Analysis 

The data dependence analysis phase uses the algorithm described in section 4.5.3, which is based 

on that described by Horwitz et al[42]. The algorithm has two phases, the reaching stores phase 

computes at each CCG vertex a set of store graphs representing the possible memory layouts that 

could arise during execution; the inference phase examines the set of store graphs at each CCG 

vertex to create the program's data dependencies. 

The reaching stores phase iterates an initial store graph throughout the program's control flow 

graph, updating the store graph to represent the semantic effects of each program vertex, until 

achieving a fixed point result. Each update at a vertex is achieved in time 0{VO.N), where VO 
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represents the number of program objects accessed and A'̂  the cost of updating the last.def and 

points-to fields to represent the semantic effects. The inference phase requires time 0{T0), where 

TO represents the total number of objects accessed at each vertex of the program. Construction 

of flow dependencies for each object is achieved in constant time. 

The results achieved using the prototype system demonstrate that where the number of paths is 

small, the data dependencies are constructed successfully. As the number of paths becomes large, 

for example with the knap and migrate programs, a fixed-point solution could not be achieved 

with the current system. 

The reasons why a fixed-point was not reached can be explained. For programs with nested 

loop structures, the number of possible paths through the program quickly becomes large. For 

example, a nested while loop structure gives rise to seven paths, assuming each loop has zero, one 

or two iterations. The number of paths is further increased by the need to detect loop carried 

dependencies. Such dependencies occur whenever a variable is defined on one iteration of a loop 

and is then used on a subsequent iteration. Detection of these dependencies will require that the 

loop involved is analysed on sufficient iterations to uncover the dependence. For ordinal variables, 

two complete iterations will suffice. For programs involving pointers and recursive structures, the 

number of iterations required may be unbounded as dynamic allocation introduces new program 

objects on each subsequent iteration. 

The prototype implementation makes use of only simple user intervention to limit the analysis 

required in these situations. The user is prompted on reaching a dynamic allocation statement 

whether to introduce a new dynamic object. I f the user wishes not to introduce a new variable, 

analysis of the current path ceases. No other techniques are used to help reduce the number of 

paths to be analysed. 

Whilst this approach is acceptable for the small examples, the knap and migrate programs 

showed that additional approximations are necessary if an algorithm of this type is to be successful 

with larger programs. Horwitz et al[42] make use of two techniques, condensation and collapsing. 

The condense operation limits the size of a store representing a recursive structure to a depth k. In 

this way the number of iterations associated with the recursive structure is bounded. The collapse 

operation limits the size of a set of states at a program vertex by applying an equivalence relation 

between different store graphs. Use of this equivalence relation means that a fixed point is achieved 

more quickly in certain cases. 

An improved implementation making use of the condense and collapse operation would reduce 

the number of paths to be analysed. However i t is not clear whether this reduction is sufficient to 
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overcome the problem of the large number of paths arising from the program's control structures. 

Other techniques may also be required, for example limiting the number of loop iterations to a 

specified maximum. For example a common approach in program testing is to consider zero, one 

or two iterations. Another approach could be to combine the static data dependence analysis with 

dynamic analysis techniques. In this way, run time information can be used to reduce the analysis. 

Information such as the value of input variables will help to reduce the number of paths as the 

outcome of some or all of the program's conditionals is known. 

7.4 C C G Space Requirements 

The space requirements of the CCG representation were found to be up to an order of magnitude 

larger than that of the original source code. Adding further dependence types such as declaration 

dependencies, or introducing multiple representations of single functions to help program slicing 

would further increase the size of the CCG. Nevertheless in its present form, the CCG is not 

prohibitively expensive in terms of space and could be reduced further by producing less verbose 

Prolog facts. At present the actual fact names make up a large proportion of the space taken. 

The number of facts making up the CCG was found to be around three to four times the number 

of lines of source code analysed. The fine-grained approach taken in the CCG has not prohibitively 

increased the size of the representation from a statement based graph such as the UIG, whilst 

savings are made over parse tree based representations. 

7.5 Summary 

This chapter has evaluated the CCG. The chapter first addressed the language coverage provided 

by the CCG. The theoretical CCG permits the representation of expressions having embedded side 

effects or embedded control flows, value-returning functions, value parameters, pointer variables, 

array variables, pointer parameters, structure variables, recursive structures, C control structures 

and standard library routines. The CCG can easily be extended to represent component declaration 

and scoping information. Only pointers to functions, union variables and C preprocessor constructs 

are not permitted. The prototype system enables the construction of a CCG with only two main 

limitations. Extra program information provided by the prototype translator may be of use in the 

development of an enhanced CCG. 

The CCG provides many different program views, covering intra and interprocedural control 

and data flow information, program slicing and ripple analysis. Each view is simple to construct. 
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The fine-grained approach taken in the CCG provides more accurate program slices and ripple anal

yses, however the explicit representation of interprocedural data dependencies and lack of context 

information can in certain cases lead to over-conservative solutions. Cross reference information 

can easily be added to the CCG. The prototype system allows construction of many of the possible 

views but requires further work to develop a better user interface. 

The algorithms used in the construction of the CCG were finally evaluated. The CCG trans

lation step produced encouraging results and could be used in the analysis of larger programs. 

Control dependence analysis was adequate but a time complexity of 0{N^) suggests problems with 

larger subject systems. However, more efficient algorithms are available. Interprocedural control 

analysis techniques were also found to be acceptable. Disappointing results were achieved in the. 

data dependence analysis steps. Techniques must be introduced to help reduce the number of 

program paths to be analysed i f a data dependence solution is to be achieved for large programs. 
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Chapter 8 

Conclusions 

This chapter first presents a summary of the research described in this thesis. The success of 

the research is then addressed in relation to the criteria outlined in chapter 1. Finally ideas for 

extending the research are detailed. 

8.1 Summary of Research 

Software maintenance environments have been created by grouping together sets of static analysis 

tools such as control flow analysers, data flow analysers, program slicers and call graph builders. 

These environments suflFer from the fact that each of the constituent tools rely on intermediate pro

gram representations. Consequently a maintenance environment will require a number of different 

program representations, giving repetition of information and inefficient use of storage space. 

This problem was identified by Harrold and Malloy[38][39], who proposed the Unified Inter

procedural Graph (UIG) dependence-based representation. The UIG incorporates a number of 

Intermediate Program Representations (IPRs), eliminating redundancies wherever possible and 

providing the maintainer with a number of different code views. However the UIG is able to 

represent only a small language. 

This research has extended the ideas of the UIG to allow the representation of programs written 

in the C Programming language. The new representation, the Combined C Graph (CCG), in 

addition to the language features addressed by the UIG is able to model C programs with expressions 

with embedded side effects or embedded control flows, value parameters, C control structures, 

pointer variables, array variables, pointer parameters, external and static variables and standard 

library routines. 

The CCG is a fine-grained dependence-based program representation. Each function of the 
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C program is represented by a Function CCG (FCCG). The vertices of the FCCG represent the 

statements and conditionals of the function. Expressions with embedded side effects and control 

flows are broken down to create 'fine-grained' vertices. The vertices of an FCCG are connected 

by a number of different edge types. Data and control dependence edges represent the program's 

data and control relationships. New expression-use and lvalue-definition edges connect the fine

grained vertices. Each FCCG is connected by a number of interprocedural edges. Call and binding 

edges represent the program's call and parameter binding relationships. Return expression-use 

edges represent value-returning functions. The CCG also contains an expHcit representation" of. 

the program's interprocedural data dependencies. This approach differs from earlier IPRs such as 

the SDG[45] and UIG which propagate intraprocedural definitions and uses via an encapsulated, 

interprocedural interface. The use of pointer parameters and recursive structures in C precludes 

this approach. Explicit representation of each object passed at a call site is not possible without 

introducing approximations. 

The CCG provides the software maintainer with a number of programming level views which 

are each simple to construct. Call graphs, intraprocedural and interprocedural data and control 

dependence information are each available as simple CCG subgraphs. Flow-sensitive data flow 

information is also presented as annotations to the CCG. Program slices and ripple analyses can 

be constructed by simple graph traversal algorithms. In some cases, the fine-grained approach used 

in the CCG can provide more accurate results than statement-based IPRs. However, the lack of 

context information caused by the interprocedural data dependence edges can also produce more 

conservative solutions. 

Construction algorithms for the CCG have been devised. Construction of the representation's 

vertices is achieved using well known parsing techniques. Control dependence information is also 

created using well known algorithms. Data dependence analysis for languages involving pointer 

variables and dynamically allocated memory is an ongoing area of research. This research modifies 

the algorithm described by Horwitz et al[42] to permit the additional computation of flow-sensitive 

data flow information. 

A prototype implementation was developed to demonstrate the feasibility of the CCG represen

tation. The prototype comprises a lex/yacc/C analyser to provide the partial CCG representation 

in the form of a Prolog fact base. Control dependence and data dependence analysis algorithms 

implemented as Prolog meta-programs complete the fact base representation. The maintainer is 

then able to query the CCG fact base, using simple Prolog meta-programs to produce different 

program views. The CCG representation or a subset of the CCG may also be viewed using a 

165 



graphical display tool. The system was evaluated with C programs of up to one thousand lines of 

code and fifteen functions. 

8.2 Success of Research 

The criteria for success described in section 1.4 are repeated followed by an evaluation of the success 

of the research. 

8.2.1 Criteria for Success 

1. Diflferent views of a C program are to be made available to a maintainer and these views 

should help the comprehension process. The interface presented to the maintainer should 

allow quick switching between views and should allow the maintainer to concentrate on areas 

of the program which are of particular interest. Views available should include call graphs, 

definition-use, data flow, control dependence and program slices. These views should be 

created quickly and should provide the maintainer with accurate and useful information. 

2. The level of coverage of the C language that is provided by the representation. Of particular 

importance are features such as pointers, embedded side-effects, embedded control flows and 

value-returning functions. 

3. The accuracy of the representation. Language features with dynamic effects, such as self-

referential structures and arrays will require approximations in order to be modelled statically. 

These approximations must still provide the maintainer with useful information. 

4. Practical application of any program comprehension tool requires that the tool be able to 

deal with large programs, since i t is precisely with such systems that the most significant 

problems in understanding occur. The new intermediate representation must enable large 

programs to be modelled, both in theory and in any practical implementation. Construction 

algorithms must not be prohibitively expensive whilst the resulting representation should be 

space efficient. 

8.2.2 Success of Research 

1. The CCG presents a variety of programming level views to a maintainer. Control dependence, 

call graph and intraprocedural and interprocedural data dependence are each formed as simple 

CCG subgraphs. Flow sensitive data flow information is available as graph annotations whilst 
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program slices and ripple analyses are constructed by simple traversals of the CCG. Each view 

is simple to construct. 

The scenarios outl ined in chapter 6 show how the use of the different views can help a 

maintainer gather in format ion on areas of code which are of interest and acquire a variety 

of different in format ion useful for program comprehension. However, the current prototype 

system presenting only a text-based Prolog interface w i t h a l imi ted graphical faci l i ty is i n 

sufficient for effective program comprehension. This problem is fur ther compounded as the 

in format ion is only made available in terms of CCG vertices and not the original C state- • 

ments. A n effective interface should present informat ion both graphically and textual ly and 

allow the maintainer to switch easily between different views and levels of informat ion. Other-

informat ion on program components or at higher levels of abstraction would also be beneficial. 

2. The CCG is successful i n modelling a large proport ion of the features of the C language. 

Expressions w i t h embedded side effects or embedded control flows are modelled using fine

grained graph vertices. Value-returning functions w i t h value or pointer parameters, pointer 

variables, structure variables, recursive structures and array variables may each be repre

sented by the CCG. Each of the C control constructs can be modelled, whilst the standard 

l ibrary routines are represented using simple stub routines. Component declarations and 

scoping informat ion may be introduced by the addit ion of declaration vertices. C features 

not represented by the CCG are pointers to functions, union variables and the C preprocessor 

constructs. 

3. Approximations in the construction of the CCG are introduced in the computation of the 

program's data dependencies. Ar r ay variables are represented as aggregates and hence more 

refined informat ion on the individual elements is not provided. Pointer and structure variables 

are decomposed to calculate in format ion on their pr imit ive components. However, recursive 

structures may only be analysed to a depth k. Informat ion beyond this depth is lost. Whils t 

the data dependence informat ion of the CCG is only approximate, useful information was 

constructed for each of the test programs analysed. 

4. The CCG representation is able to model subject programs of any size. W i t h the exception of 

the CCG's data dependence informat ion , the prototype implementation was able to demon

strate tha t the representation is able in practice to deal w i t h large programs. The in i t i a l CCG 

translation step analysed around 12kb of source code per second, whilst the intraprocedural 
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and interprocedural control dependence analysis, although relatively slower, were s t i l l able to 

analyse successfully the larger test programs. 

The space requirements of the CCG representation were demonstrated to be an order of 

magnitude greater than that of the subject program. This result is not prohibitive and 

suggests tha t a C C G representation for large C programs is feasible. 

8.3 Further Work 

A number of improvements and extensions are possible to the research described in this thesis. Of 

pr imary importance is tha t a representation is developed that is able to model the C language in 

its entirety. The current CCG omits pointers to functions and union variables. Representations 

must be found for each of these features. The standard library, currently modelled by simple stub 

CCGs also requires fur ther analysis to construct a complete and accurate representation. 

A method to incorporate the language primitives of the C preprocessor also requires investiga

t ion . As described in chapter 7, the preprocessor can lead to mult iple versions of the same program 

and problems in analysing incomplete syntactic units. A maintainer w i l l benefit f rom information 

on bo th un-preprocessed and preprocessed code. 

A second area of fur ther work is the development of improved algorithms for the construction of 

the C C G . The present a lgori thm used to create the representation's data dependencies Wcis found to 

be inadequate when applied to larger subject programs, due to the large number of paths which must 

be analysed. One possible approach t o solving this problem would be t o addit ionally incorporate 

dynamic program informat ion to help constrain the number of paths through the program. By 

fixing the values of some or al l inputs, the number of paths may be reduced significantly. Symbolic 

execution methods may also be a useful way of reducing paths or of el iminating the need for 

user intervention at dynamic allocation statements. Another solution is to employ a knowledge-

ba^ed approach using techniques such program plans in addit ion to programmer guidance to 

constrain the analysis to particular code areas. Improved algorithms are also required to improve 

the construction of the CCG's control dependencies. 

Another area of fur ther research is to extend the range of informat ion provided to the main

tenance programmer. A t the programming level, declarations of program components may be 

incorporated into the representation. Improved program slicing algorithms introducing context 

in fo rmat ion w i l l in certain cases provide smaller and hence more useful results. Other research, 

for example by von Mayrhauser and Vans[86] has shown the benefits of introducing information at 
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higher levels of abstraction. A n extended representation could incorporate design and requirements 

in format ion w i t h links between the different levels, giving f u l l traceability of informat ion through

out the life-cycle. New techniques for program slicing and impact analysis would traverse these 

different abstraction levels to provide a maintainer w i t h a f u l l range of domain and programming 

in format ion . 

Presentation of informat ion to a maintainer is also an impor tant area of research. Mul t ip le 

window environments together w i t h the use of colour and hypertext links to aJlow switching between 

between different views and levels of abstraction are commonly used techniques. The CCG' is 

ideally suited to these k ind of presentation methods. More advanced research into visualisation has 

proposed the use of v i r tua l reality techniques[35]. 

As subject programs increase in size, the costs involved in construction and update wi l l increase. 

A final area of fur ther work is to investigate the incorporation of incremental approaches to the 

construction and update of the CCG. For large subject systems, in some cases incremental methods 

may allow the construction of a CCG representation for the l imi ted area of the system which is 

of interest. This w i l l reduce costs i n both space and time. Incremental updates of the CCG in 

response to program changes may fur ther reduce the costs involved and enable a maintainer to 

observe interactively the effects of program changes, even for large subject systems. 

8.4 Summary 

This chapter has presented a summary of the research described in this thesis in the development 

of the C C G representation. The cri teria for success of the research described in section 1.4 have 

each been addressed and a number of areas of fur ther research work outl ined. These areas include 

improved language coverage, construction algorithms, additional views, improved information pre

sentation and incremental construction and updates of the CCG. 
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Appendix A 

C C G Fact Base 

Program component facts 

F i l e f a c t 

S y n t a x : 

file(File-Name, C-File-ld). 

S e m a n t i c s : 

A file-fact is produced for every translat ion uni t , i.e. input C file. The file-fact contains a 

C-File-ld given by the ccg.trans linker and a File-Name, the name of the translated C file. 

E x a m p l e : 

file('main.c', 1). 

T y p e f a c t 

S y n t a x : 

type(C-File-ld, Function, sc(Stmt-Block, Storage-Specifier), Type-specifier, Name, Access-List). 

S e m a n t i c s : 

A type-fact is produced for every name defined as a type. The scope is determined f rom the 

C-File-ld, Function, Stmt-Block and the Storage-Specifier. Function is the name of the funct ion in 

which the type defini t ion is contained. Stmt-Block is the C block in which the type definition 

appears. Storage-Specifier can have the value e x t e r n , s t a t i c or @, representing 'not defined'. 

Type-Specifier and Access-List specify the type represented by Name. Where Type-Specifier is a 

s t r u c t , enum or u n i o n defini t ion w i t h a tag name, a tag fact is produced and the tag name is used 

instead of the complete type defini t ion. The Access-List represents the declarator. 
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E x a m p l e : 

t y p e d e f s t r u c t l i s t LIST, *LIST_PTR; 

becomes: 

type(0, 'Oexternal', sc([], '(§'), [struct, ' l is t ' ] , 'LIST', [ ] ) . 

type(0, '©external ' , sc([], '(§'), [struct, ' l is t ' ] , 'LIST_PTR', [ '©pointer ']). 

Tag fact 

SyntEix: 

tag(C-File-ld, Function, sc(Stmt-Block, Storage-Specifier), Tag-Type, Name, Member-List). 

S e m a n t i c s 

A tag fact is created for a s t r u c t , enum or u n i o n defini t ion i f a tag name is given. Tag^Type 

has the value s t r u c t , enum or u n i o n . Member-List contains mem(Type-Specifier, Name, Access-List) 

terms as elements. 

E x a m p l e s : 

s t r u c t l i s t { 

char *name; 

LIST.PTR n e x t ; 

>; 

becomes: 

tag(0, 'Qexternal', sc([], '(§'), struct, 'list', [mem(char, 'name', [ '©pointer']), mem('LIST_PTR', 

•next', [ ] ) ] ) . 

and: 

enum c o l o u r { b l u e , y e l l o w , r e d , b l a c k } b r u s h ; 

becomes: 

tag(0, '©external ' , sc([], '©') , enum, 'colour', ['blue', 'yellow', 'red', 'black']). 

O b j e c t f a c t 

S y n t a x : 

object(C-File-ld, Function, sc(Stmt-Block, Storage-Specifier), Type-Specifier, Name, Access-List). 

S e m a n t i c s 
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Each C component def ini t ion or declaration, including functions, produces an object fact. The 

enum example above produces: 

object(0, 'Oexternai', sc([], ' 0 ' ) , [enum, 'colour'], 'brush', [ ] ) . 

The example char ( * ( * x ( ) ) [ ] ) ( ) is translated into: 

object(0, 'Qexternal', sc([], '© ' ) , char, 'x', ['@fun', '©pointer ' , '@array', '©pointer ' , 'Ofun']) . 

N o d e f a c t 

S y n t a x : 

node(C-File-ld, Function, Node-Id, Node-Type, Label, Variable-List). 

S e m a n t i c s 

C-File-ld, Function and Node-Id uniquely ident i fy an individual CCG vertex. Node-Type is the 

kind of statement represented by the vertex. 

Node-Type E { expr, formal, call, entry, allocate, end, return, caseJabel, default, continue, goto, 

label, break } 

Label represents either a label associated w i t h a label vertex or goto vertex, or the name of the 

callee func t ion at a call vertex. W i t h other vertex types label is set to the null value Variable-list 

is a list representation of the semantic effects of an expression node and contains items f rom the 

set: 

{(ref, ©string), (ref, ©cons tan t ) , (ref, name), (ref, .fieldname), (ref, ' * ' ) , (ref, '© ' ) , (address, name), 

(address, '© ' ) , (address, ' * ' ) , (rval, '© ' ) , (def, name), (def, .fieldname), (def, ' * ' ) , (def, '© ' ) , 

(predef, '© ' ) , (postdef, '©') } 

The former of each pair, either ref, address, def, postdef or predef, indicates tha t the object given 

by the la t ter is either referenced, has its address taken, is defined, is post-defined or is pre-defined. 

The object involved is determined by applying i n sequence the operations given by the latter of 

each pair. Star t ing w i t h (_, name) the object involved is that referred to by name. The next tuple 

may then be (_, '© ' ) , indicat ing the object is s t i l l tha t given by name, (_, .fieldname) indicating that 

the new object is given by name.fieldname, or (_, ' * ' ) , indicating tha t the new object is '•'name. The 

values '©string' and '©constant ' indicate str ing and other constant values, whilst the tuple (rval, 

'©') serves as a separator between the expressions on the r ight and left hand sides of an assignment 

operator. 

E x a m p l e s : 

*x = y + z . f ; 

w i th in main becomes: 
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node(0, 'main', 12, expr, '©', [(ref, ' y ' ) , (ref, '2'), (ref, ' . f ' ) , (rval, '©') , (ref, 'x ' ) , (def, ' * ' ) ] ) . 

where 12 is a unique Node-Number w i t h i n main. 

s q O ; 

w i t h i n main becomes: 

node(0, 'main', 13, call, 'sq', [ ] ) . 

where 13 is a unique Node-Number w i t h i n main. 

Intraprocedural edge facts 

Edge fact 

S y n t a x : 

edge(C-File-ld, Function, From-Node-ld, To-Node-ld, Edge-Label). 

S e m a n t i c s : 

The edge fact represents an intraprocedural control flow edge between two CCG vertices From-

Node-ld and To-Node-ld. Edge-Label G { true, false, uncond } . 

E x a m p l e : 

edge(0, 'main', 12, 13, 'uncond'). 

represents an uncondit ional edge f r o m vertex 12 to vertex 13 wi th in main. 

Control fact 

Syntcix: 

control(C-File-ld, Function, From-Node-ld, To-Node-ld, Control-Label). 

S e m a n t i c s : 

The control fact represents an intraprocedural control dependence or intraprocedural switch 

dependence f r o m From-Node-ld to To-Node-ld. Control-Label 6 { true, false, switch } . 

E x a m p l e : 

control(0, 'main', 16, 21, ' true'), 

represents a control dependence f r o m vertex 16 to vertex 21 wi th in main. 

Expuse fact 

S y n t a x : 

expuse(C-File-ld, Function, From-Node-ld, To-Node-ld). 

S e m a n t i c s : 
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The expuse fact represents an expression-use edge f r o m From-Node-ld to To-Node-ld. 

E x a m p l e : 

expuse(0, 'main', 18, 19, ' true'), 

represents an expression-use edge f r o m vertex 18 to vertex 19 w i t h i n main. 

L v a l d e f fact 

S y n t a x : 

lvaldef(C-File-ld, Function, From-Node-ld, To-Node-ld). 

S e m a n t i c s : 

The Ivaldef fact vepTesents an lvalue-definition edge f r o m From-Node-ld to To-Node-ld. 

E x a m p l e : 

lvaidef(0, 'main', 22, 23, ' true'), 

represents an lvalue-definition edge f r o m vertex 22 to vertex 23 w i t h i n main. 

Call interface facts 

Call fact 

S y n t a x : 

call(From-C-File-ld, From-Function, From-Node-ld, To-C-File-ld, To-Function, To-Node-ld). 

S e m a n t i c s : 

The call fact represents a call edge between a CCG call vertex and a CCG entry vertex. 

E x a m p l e : 

call(0, 'main', 13, 0, 'sq', 0) 

represents a call edge f r o m call node 13 w i t h i n main to entry node 0 w i t h i n sq. 

B i n d fact 

S y n t a x : 

bind(From-C-File-ld, From-Function, From-Node-ld, To-C-File-ld, To-Function, To-Node-ld). 

S e m a n t i c s : 

The bind fact represents a binding edge between two unique CCG vertices. 

E x a m p l e : 

bind(0, 'main', 14, 0, 'sq', 1) 

represents a binding edge f r o m vertex 14 w i t h i n main to vertex 1 w i t h i n sq. 
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R e t u r n _ e x p u s e f a c t 

S y n t a x : 

return_expuse(From-C-File-ld, From-Function, From-Node-ld, To-C-File-ld, To-Function, 

To-Node-ld). 

S e m a n t i c s : 

The return^expuse fact represents a return-expression-use edge between two unique CCG ver

tices. 

E x a m p l e : 

return_expuse(0, 'sq', 7, 0, 'main', 24) 

represents an return-expression-use edge f r o m vertex 7 wi th in sq to vertex 24 wi th in main. 

Data dependence fact 

F l o w f a c t 

S y n t a x : 

flow(From-C-File-ld, From-Function, From-Node-ld, To-C-File-ld, To-Function, To-Node-ld). 

S e m a n t i c s : 

The flow fact represents an intraprocedural or interprocedural flow dependence between two 

unique CCG vertices. 

E x a m p l e : 

flow(0, 'main', 12, 0, 'sq', 5) 

represents an interprocedural flow dependence f r o m vertex 12 wi th in main to vertex 5 wi th in sq. 
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Appendix B 

Example C C G Fact Base 

The fol lowing is a l is t ing of the Prolog fact base produced by the CCG system fol lowing the analysis 

of the s u m program. 

b i n d d , 'CalcSum', 4, 1, 'Inc', 1) 
b i n d d , main, 5, 1, 'CalcSum', 1 ) . 
b i n d d , main, 6, 1, 'CalcSum', 2 ) . 

c a l l d , 'CalcSum', 3, 1, 'Inc', 0), 
c a l l d , main, 4, 1, 'CalcSum', 0 ) . 

c o n t r o l d 
c o n t r o l d 
c o n t r o K l 
c o n t r o l d 
c o n t r o l d 
c o n t r o l d 
c o n t r o l d 
c o n t r o l d 
c o n t r o l d 
c o n t r o K l 
c o n t r o K l 
c o n t r o l d 
c o n t r o K l 
c o n t r o l d 
c o n t r o l d 
c o n t r o K l 
c o n t r o l d 
c o n t r o l d 
c o n t r o l d 

'CalcSum', 6, 7, true) 
'CalcSum', 0, 8, tr u e ) , 
'CalcSum', 0, 6, tr u e ) , 
'CalcSum', 0, 3, t r u e ) , 
'CalcSum', 0, 2, t r u e ) , 
'CalcSum', 0, 1, t r u e ) , 
'Inc', 0, 2, t r u e ) . 
'Inc', 0, 1, t r u e ) , 
main, 3, 3, t r u e ) . 
main, 3, 8, t r u e ) , 
main, 3, 4, t r u e ) , 
main, 0, 10, t r u e ) , 
main, 0, 9, t r u e ) , 
main, 0, 3, t r u e ) , 
main, 0, 2, t r u e ) , 
main, 0, 1, t r u e ) . 
'CalcSum', 3, 4, t r u e ) , 
main, 4, 6, t r u e ) . 
main, 4, 5, t r u e ) . 
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edged, 'CalcSum 0, 1, t r u e ) . 
edged, 'CalcSum 0, 9, f a l s e ) . 
edged, 'CalcSum 1, 2, uncond) 
edge d , 'CalcSum 2, 3, uncond) 
edge d , 'CalcSum 3, 4, t r u e ) . 
edged, 'CalcSum 3, 5, f a l s e ) . 
edge(1, 'CalcSum 3, 6, uncond) 
edge(1, 'CalcSum 4, 5, uncond) 
edged, 'CalcSum 6, 7, t r u e ) . 
edged, 'CalcSum 6, 8, f a l s e ) . 
edged, 'CalcSum 7, 8, uncond) 
edge(1, 'CalcSum 8, 9, uncond) 
edged, 'Inc', 0 1, t r u e ) . 
edged, 'Inc', 0 3, f a l s e ) . 
edge(1, 'Inc', 1 2, uncond). 
edged, 'Inc', 2 3, uncond). 
edged > main, 0, 1. t r u e ) . 
edge(1, main, 0, 11, f a l s e ) . 
edged, main, 1, 2, uncond). 
edged, main, 10, 11, uncond). 
edge(1, main, 2, 3, uncond). 
edge d , main, 3, 4, t r u e ) . 
edge(1, main, 3, 9, f a l s e ) . 
edged, main, 4, 5. t r u e ) . 
edged, main, 4, 7, f a l s e ) . 
edged, main, 4, 8, uncond). 
edge(1, main, 5, 6, uncond). 
edge(1, main, 6, 7, uncond). 
edged, main, 8, 3. uncond). 
edged, main, 9, 10, uncond). 

expuse(1, main, 1, 2 ) . 

f i l e d . • / e x a m p l e s / t h e s i s _ c h 3 / t h e s i s _ c h 3 . c ' , 1) 

flowCl, 
flowCl, 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 
f l o w d , 

'CalcSum' 
'CalcSum' 
'CalcSum' 
'Inc', 2, 
'CalcSum' 
'CalcSum' 
'CalcSum' 
' I n C , 1, 
main, 2, 
'Inc', 2, 
main, 8, 
main, 1, 
main, 2, 
'Inc', 2, 

, 2, 1, 'CalcSum', 4) 
, 1, 1, 'CalcSum', 6) 
, 2, 1, 'CalcSum', 7) 
1, 'CalcSum', 7 ) . 

, 1, 1, 'CalcSum', 7) 
, 7, 1, 'CalcSmn', 8) 
, 1, 1, 'CalcSum', 8) 
1, 'Inc', 2 ) . 

1, 'Inc', 2 ) . 
1, 'Inc', 2 ) . 

1, main, 10). 
1, main, 10). 
1, main, 3 ) . 
1, main, 3 ) . 
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flowCl, main, 1, 1, main, 5 ) . 
flowCl, main, 8, 1, main, 5 ) . 
f l o w d , 'Inc', 2, 1, main, 9) 
f l o w d , main, 2, 1, main, 9 ) . 

node(l 
node (1 
noded 
noded 
noded 
node (1 
noded 
noded 
noded 
noded 
noded 
noded 
noded 

ex 
noded 
noded 
noded 
noded 
noded 
node(1 
noded 
noded 
noded 
node(l 
noded 
node(1 
noded 

'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'CalcSum 
'Inc', 0 
'Inc', 1 
'Inc'. 2 

0, entry, Q, [ ] ) . 
1, formal, @, [ex(def, s ) ] ) . 
2, formal, @, [ex(def, j ) ] ) . 
3, c a l l , 'Inc', • ) . 
4, expr, Q, [e x ( r e f , j ) ] ) . 
5, end_params, 0, [ ] ) . 
6, expr, 0, [e x ( r e f , 'Qconstant'),ex(ref, s ) ] ) . 
7, expr, @, [ex( r e f , j ) , e x ( r e f , * ) , e x ( r e f , s ) , e x ( r v a l , 
8, expr, 0, [ex( r e f , s ) ] ) . 
9, end, 0, [ ] ) . 

entry, ®, • ) . 
formal, 9, [ex(def, x ) ] ) . 
expr, 9, [ex( r e f , '9constant'),ex(ref, x ) , e x ( r e f , * ) , e x ( r v a l , 

( r e f , x),ex(def, * ) ] ) . 
'Inc', 3, end, 9, [ ] ) . 
main, 0, entry, 9, • ) . 
main, 1, expr, 9, [e x ( r e f , '9constant'),ex(rval, 9),ex(def, sum)]), 
main, 10, expr, @, [e x ( r e f , sum),ex(rval, 9),ex(def, sum)]), 
main, 11, end, 9, [ ] ) . 
main, 2, expr, 9, [ e x ( r v a l , 9),ex(def, i ) ] ) . 
main, 3, expr, 9, [e x ( r e f , '9constant'),ex(ref, i ) ] ) . 
main, 4, c a l l , 'CalcSum', [ ] ) . 
main, 5, expr, 9, [e x ( r e f , sum)]). 
main, 6, expr, 9, [ex(address, i ) ] ) . 
main, 7, end_params, 9, [ ] ) . 
main, 8, expr, 9, [e x ( r e f , 'CalcSum'),ex(rval, 9),ex(def, sum)]), 
main, 9, expr, 9, [e x ( r e f , i ) , e x ( r v a l , 9),ex(def, i ) ] ) . 

,ex(def, s ) ] ) 

objec t ( 1 , '9external', s c ( [ ] , 
o b j e c t d , '9external', s c ( [ ] , 
o b j e c t d , 'Qexternal', s c ( [ ] , 
o b j e c t d , '9external', s c ( [ ] , 
o b j e c t ( l , '9external', s c ( [ ] , 9 ) , void, main, ['9fun']) 
o b j e c t d , 'CalcSum', s c ( [ ] , 9 ) , i n t , j , ['9pointer']) . 
o b j e c t d , 'CalcSum', s c ( [ ] , 9 ) , i n t , s, [ ] ) . 
o b j e c t d , 'Inc', s c ( [ ] , 9 ) , i n t , x, ['9pointer']). 
o b j e c t d , main, s c ( [ l ] , 9 ) , i n t , i , [ ] ) . 
o b j e c t d , main, s c ( [ l ] , 9 ) , i n t , sum, [ ] ) . 

, i n t , 'CalcSum', ['9fun']). 
, i n t , 'CalcSum', ['9fun']). 
, void, 'Inc', ['9fun']). 
, void, 'Inc', ['9fun']). 

return_expused, 'CalcSum', 8, 1, main, 8 ) . 
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Appendix C 

Test Program Listings 

The fol lowing is a l is t ing of the four smaller programs analysed using the CCG system. 
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C . l Trityp.c 

/* Ramamoorthy's t r i a n g l e T r i t y p */ 
/* This program r e a d s i n 3 s i d e s of a t r i e O i g l e and outputs */ 
/* t h e type of the t r i a n g l e . */ 
/* */ 
/>tf,i::t:^:^:,):^^:t:,i:^l**^::tf:^f*>t:^:>t!***** ************* ************ 

#include <stdio.h> 

i n t a,b,c,d; 

mainO 
{ 
scanf ('"/.d'/.d'/.d", &a, &b, &c); 
i f (a >= b && b >= c) 

i f (a == b II b == c) 
{ 

i f (a == b && b == c) 
p r i n t f ('"/.sXn", " E q u i l a t e r a l " ) ; 

e l s e 
p r i n t f ("'/.sNn" , " I s o s c e l e s " ) ; 

> 
e l s e 

{ a = a * a; 
b = b * b; 
c = c * c; 
d = b + c; 
i f (a != d) 

{ 
i f (a < d) 

printf("'/.sXn", "Acute"); 
e l s e 

printf("'/.s\n", "Obtuse"); 
} 

e l s e 
printf("'/.sVn", "Right Angled T r i a n g l e " ) ; 

} 
> 

e l s e 
p r i n t f ("'/.s\n", "Triangle Sides not i n order"); 

} 
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C.2 Sum.c 

/^:i:,t:i^*:^^::t:^::t:^:^:************* *************************** ^iitH::^::^::^:^*/ 

I * l i n e s */ 
/* This program sums integers up to maximum t o t a l of 100. */ 
/* */ 
lifif-ifif***if.ifif)f*************************************************l 

#include <stdio.h> 

void I n c ( i n t * x ) ; 
i n t CalcSumdnt s, i n t * j ) ; 

void mainO 
{ 
i n t sum; 
i n t i ; 

i = sum = 0; 
while ( i < 20) { 

sum = CalcSum(sum, &i); 
> 
i = i ; 
sum = sum; 

} 

i n t CalcSumdnt s, i n t * j ) 
{ 
I n c ( j ) ; 
i f (s < 100) -C 

s = s + * j ; 
> 
return s; 

} 

void I n c ( i n t *x) 
{ 
*x = *x + 1; 

} 
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C.3 LinkedJist.c 

/* l i n k e d _ l i s t */ 
/* T.P. Love - 'ANSI C f o r Programmers on UNIX Systems' */ 
/* This program constructs a lin k e d l i s t of items and */ 
/* p r i n t s out the l i s t . */ 
/* */ 

#include <stdio.h> 

typedef s t r u c t _ l i s t _ i t e m { 
in t v a l ; 
s t r u c t _ l i s t _ i t e m *next; 

} l i s t _ i t e m ; 

/* prototypes */ 
l i s t _ i t e m * a d d _ l i s t _ i t e m ( l i s t _ i t e m *entry, i n t va l u e ) ; 
void p r i n t _ l i s t _ i t e m s ( v o i d ) ; 

l i s t _ i t e m *head; 
l i s t _ i t e m * t a i l ; 

main(int argc, char * a r g v [ ] ) 
{ 
head = NULL; 
t a i l = NULL; 

t a i l = a d d _ l i s t _ i t e m ( t a i l , 5) 
t a i l = a d d _ l i s t _ i t e m ( t a i l , 7) 
t a i l = a d d _ l i s t _ i t e m ( t a i l , 2) 

p r i n t _ l i s t _ i t e m s 0 ; 
} 

l i s t _ i t e m * a d d _ l i s t _ i t e m ( l i s t _ i t e m *entry, i n t value) 
{ 
l i s t _ i t e m *new_list_item; 

n e w _ l i s t _ i t e m = ( l i s t _ i t e m * ) m a l l o c ( s i z e o f ( l i s t _ i t e m ) ) ; 

i f (entry == NULL) { 
head = new_list_item; 
p r i n t f ( " F i r s t l i s t _ i t e m i n l i s t \ n " ) ; 
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> 
e l s e {. 

entry->next = new_list_item; 
p r i n t f ("Adding */.d to l i s t . Last value was '/.d \n", value, entry->val); 

> 
new_list_itein->val = value; 
new_list_item->next = NULL; 
return new_list_item; 

} 

void p r i n t _ l i s t _ i t e m s ( v o i d ) 
{ 
l i s t _ i t e m * p t r _ t o _ l i s t _ i t e m ; 

for ( p t r _ t o _ l i s t _ i t e m = head; p t r _ t o _ l i s t _ i t e m != NULL; 
p t r _ t o _ l i s t _ i t e m = ptr_to_list_item->next) { 

p r i n t f ("Value i s '/A \n", p t r _ t o _ l i s t _ i t e m - > v a l ) ; 
} 

> 
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C.4 Lines.c 

/* Kernighan & R i t c h i e - 'The C Programming Language' */ 
/* 2nd e d i t i o n Pages 108-110 */ 
/* This program reads i n l i n e s and outputs them i n sorted */ 
/* order. */ 
/* */ 

#include <stdio.h> 
#include <string.h> 

#define MAXLINES 10 /* meix # l i n e s to be sorted */ 
#define MAXLEN 30 /* length of input l i n e */ 
#define ALLOCSIZE 100 /* a v a i l a b l e space */ 

s t a t i c char allocbuf[ALLOCSIZE] ; 
s t a t i c char * a l l o c p ; 

char *lineptr[MAXLINES]; 

char * a l l o c ( n ) 
i n t n; 
{ 
i f (allocbuf + ALLOCSIZE - a l l o c p >= n) { 

al l o c p += n; 
return a l l o c p - n; 

} e l s e 
return 0; 

> 

i n t g e t l i n e ( s , lim) 
char s [] ; 
i n t lim; 
{ 

i n t c, i ; 

i = 0; 
while ( ~ l i m > 0 && (c = getcharO) != EOF && c != '\n') 

s[i++] = c; 
i f (c == '\n') 

s[i++] = c; 
s [ i ] = '\0'; 
return i ; 

} 
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i n t r e a d l i n e s ( l i n e p t r , maxlines) 
char * l i n e p t r [ ] ; 
i n t maxlines; 
{ 
in t l e n , n l i n e s ; 
char *p, line[MAXLEN]; 

n l i n e s = 0; 
while ( ( l e n = g e t l i n e ( l i n e , MAXLEN)) > 0) { 

i f ( n l i n e s >= maxlines) 
return -1; 

i f ((p = a l l o c ( l e n ) ) == NULL) 
return -1; 

l i n e [ l e n - l ] = '\0'; 
strcpy(p, l i n e ) ; 
l i n e p t r [ n l i n e s + + ] = p; 

} 
return n l i n e s ; 

} 

w r i t e l i n e s d i n e p t r , n l i n e s ) 
char * l i n e p t r • ; 
in t n l i n e s ; 
{ 
while ( n l i n e s — > 0) 

p r i n t f ("'/.sXn", *lineptr++); 
} 

swap(v, i , j ) 
char * v [ ] ; 
in t i , j ; 
{ 
char *temp; 
temp = v [ i ] ; 
v [ i ] = v [ j ] ; 
v [ j ] = temp; 

} 

qsort(v, l e f t , r i g h t ) 
char * v [ ] ; 
in t l e f t , r i g h t ; 
{ 
i n t i , l a s t ; 
i f ( l e f t >= r i g h t ) 

return; 
swap(v, l e f t , ( l e f t + r i g h t ) / 2 ) ; 
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l a s t = l e f t ; 
for ( i = l e f t + 1 ; i <= r i g h t ; i++) 

i f ( s t r c m p ( v [ i ] , v [ l e f t ] ) < 0) 
swap ( V , ++last, i ) ; 

swap(v, l e f t , l a s t ) ; 
q sort(v, l e f t , l a s t - 1 ) ; 
qsort(v, last+1, r i g h t ) ; 

> 

mainO 
{ 

in t n l i n e s ; 

a l l o c p = allocbuf; 
i f ( ( n l i n e s = r e a d l i n e s ( l i n e p t r , MAXLINES)) >= 0) { 

q s o r t d i n e p t r , 0, n l i n e s - 1 ) ; 
w r i t e l i n e s d i n e p t r , n l i n e s ) ; 
return 0; 

> e l s e { 
p r i n t f ( " e r r o r : input too big to sort\m"); 
return 1; 

> 
> 
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