
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Rapid System Understanding: Two COBOL Case Studies

A. van Deursen, T. Kuipers

Software Engineering (SEN)

SEN-R9805 May 31, 1998

Report SEN-R9805
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Rapid System Understanding: Two COBOL Case Studies

Arie van Deursen, Tobias Kuipers�

CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/�farie,kuipersg/, farie,kuipersg@cwi.nl

ABSTRACT

Rapid system understanding is required in the planning,
feasibility assessment and cost estimating phases of a sys-
tem renovation project. In this paper, we apply a number
of analyses on two large legacy COBOL systems from the
banking field. We describe the analyses performed, and
discuss possible interpretations of these analyses. Lessons
learned include: (1) The open architecture adopted is sat-
isfactory, and can take advantage of a wide range of un-
derstanding tools available; and (2) To handle inter-system
variability effectively, the flexibility of lexical analysis is
required.

1991 Computing Reviews Classification System: D.2.2,
D.2.7., D.3.4.

Keywords and Phrases: Software visualization, lexical
analysis, software reuse.

Note: To appear inProceedings of the 6th IEEE Interna-
tional Workshop on Program Comprehension, June, 1998,
Ischia.

Note: Work carried out under project SEN-1.1,Software
Renovation.

1 Introduction

Rapid system understanding is the process of acquiring
understanding of a legacy software system in a short period
of time. Typical tasks that require rapid system understand-
ing are:

� Assessing the costs involved in carrying out a Euro-
pean Single Currency or year 2000 conversion;

�This work was sponsored in part by bank ABN AMRO, software
house Roccade, and the DutchMinisterie van Economische Zaken(De-
partment of Commerce) via SENTER Project #ITU95017 “SOS Resolver”.
The authors would like to thank the members of theMigrating COBOL to
Object-Oriented COBOLResolver task group: Hans Bosma, Erwin Fielt,
Jan-Willem Hubbers, and Theo Wiggerts.

� Estimating the maintainability of a system, for exam-
ple when deciding about accepting or issuing a main-
tenance outsourcing contract;

� Investigating the costs and benefits of migrating a sys-
tem to an object-oriented language, in order to increase
its flexibility and maintainability;

� Determining whether legacy code contains potentially
reusable code or functionality.

Performing these tasks should be cheap: one expects a
cost estimate of, say, a year 2000 conversion to be signifi-
cantly less expensive than carrying out that conversion. This
is where rapid system understanding differs from more tra-
ditional system understanding. Accepting a less detailed
understanding and slightly inaccurate results, a first assess-
ment can be made quickly.

We assume that the engineer who needs to acquire un-
derstanding of a legacy system has negligible previous ex-
perience with it. He may be unfamiliar with some of the
languages or dialects used in the legacy code. The systems
involved are typically large, multi language, over 10 years
old, and written by different programmers.

In this paper, we take two 100 KLOC COBOL systems
from the banking area as our starting point. We address a
number of related questions: What tools or techniques can
be used in rapid system understanding? How well do they
work for our case studies? What information can be ex-
tracted from legacy source code, and how should this infor-
mation be interpreted?

The paper is organized as follows. In Section 2 we ex-
plain what tools and techniques can be used, and how these
cooperate. In Section 3 we list the characteristics of the
two COBOL systems under study. In Section 4 we describe
the kind of information we extracted from the legacy code,
while in Section 5 we discuss the possible interpretation of
this data. In Sections 6, 7 and 8 we summarize related work,
conclusions and future work.

Lexical Analysis

Relational DatabaseSyntax Analysis

Dataflow Analysis

Report Generation

Cross Referencing
Metrics, Style,
Comments, ...

Cluster Analysis
Groups of Data/
Functionality, ...

Visualization Call Graph
Perform Graph

Database Usage, ...

Program Sources

Figure 1. Architecture of tool set used

2 Tool Architecture

Rapid system understanding implies summarizing of
data. In order to understand a large legacy system, it is nec-
essary to quickly find the “essence” of such a system. What
constitutes this essence largely depends on the reasons for
trying to understand the system.

Our approach is to analyze the code using generic tools
that have no a-priori knowledge of the system. The results
of this analysis are then fed into a central repository. In turn,
this repository can then be queried, printed, visualized, etc.
The querying of the repository leads to a certain degree of
understanding of the system. We can exploit this under-
standing by creating analysis techniques that do contain (a
degree of) specific knowledge of the system. This will lead
to data in the repository that is more suited for our specific
goals. Again, this data can be visualized, queried, etc., to
gain a greater understanding of the system. This process
is repeated until the engineer who tries to understand the
system has gained sufficient knowledge of it.

The general architecture of our tool set consists of three
main parts, as shown in Figure 1. The first part is the code
analysis part, the second the repository, and the third the
tools that manipulate and present data from the repository.

For the code analysis part lexical, syntactic or other
forms of analysis can be used. The figure distinguishes lexi-
cal, syntactic [2], and data flow analysis. For the purpose of
rapid system understanding, it will generally suffice to use
lexical analysis. It can be performed faster than syntactic
analysis, and is much more flexible [16].

To extract a number of relations from COBOL legacy
systems, we have developed a simple Perl [18] script called
recover . It knows about COBOL’s comment conven-
tions, keywords, sectioning, etc. It can be used to search
the sources for certain regular expressions, and to fill tables
with various relations, for example pertaining to the usage
of databases, call structure, variable usage, etc. The data ex-
tracted for COBOL is discussed in full detail in Section 4.

We store the analysis results as comma-separated-value
(CSV) files. Such files can be easily queried and manipu-
lated by Unix tools such asawk [1] and join , and can be

read by arbitrary relational database packages enabling us to
use SQL for querying the data extracted from the sources.
These tools can also be used to generate reports, for exam-
ple on the usage frequency of certain variables, or contain-
ing the fan-in/fan-out metric of sections of code.

Many relations stored in the repository are graphs. We
use the graph drawing packagedot [9] for visualizing these
relations.

3 Cases Investigated

Central in our research are two COBOL systems from
the banking area, which in this paper we will refer to as
Mortgage andShare. The respective owners of these sys-
tems are in general satisfied with their functionality, but less
satisfied with their platform dependency. They are inter-
ested in extracting the essential functionality of these sys-
tems, in order to incorporate it into a more flexible, object-
oriented, architecture. Thus, questions of interest include:
Do these systems contain reusable code? What fraction of
the code is platform specific? Which data fields represent
business entities? Which procedures or statements describe
business rules?

The sizes of the two systems are summarized in Figure 2.
Mortgage is a COBOL/CICS1 application using VSAM2

files. It is partly on-line (interactive), partly batch-oriented,
and in fact only a subsystem of a larger (1 MLOC) system.
Share is an IMS3 application which uses both DL/I4 (for
accessing an IMS hierarchical database) and SQL (for ac-
cessing DB2 databases).

For Mortgage, we had system-specific documentation
available, explaining the architecture and the main function-
ality of the programs. The documentation marked several
programs as “obsolete”: some of these were included in the

1CICS is Customer Information Control System, a user interface and
communications layer

2VSAM is Virtual Storage Access Method, an access method for
records

3IMS is Information Management System, a database and data com-
munication system

4DL/I is Data Language 1, a database management language

2

Mortgage no LOC avg

copybooks 1103 49385 44
programs 184 58595 318
total 1288 107980 83

Share no LOC avg

copybooks 391 16728 42
programs 87 104507 1201
total 479 121235 253

Figure 2. System inventory.

version distributed to us, however. ForShare, no specific
documentation was available: we only had a general “style
guide” explaining, for example, the naming conventions to
be used for all software developed at the owner’s site.

4 Collected Data

In this section, we discuss how we used the tool set of
Section 2 to extract data from theMortgage and Share
sources, and how we displayed this data in a comprehensi-
ble manner. The results of the analysis will be discussed in
Section 5.

System inventory The system inventory table summa-
rizes available files, sizes, types (copybook, program), and
languages used (COBOL, CICS, SQL, DL/I, ...). The copy-
book table indicates how copybooks are included by pro-
grams (a simple lexical search for the arguments of the
COPYcommand). If appropriate, for certain files (copy-
books) it can be detected that they were generated, for ex-
ample if they contain certain types of comment or key-
words. The system inventory derived forMortgage and
Share was used to obtain Figure 2.

Program call graph The call relation is a first step in
understanding the dependencies between the programs in
Mortgage andShare. Deriving the call graph for COBOL
programs (see Figure 3 for the batch call graph ofMort-
gage) is not entirely trivial. First of all, the argument of a
CALL statement can be a variable holding a string value,
i.e., it can be dynamically computed. The most desirable
solution to this problem is to have some form of constant
propagation. In our case, forMortgage it was sufficient to
search for the values of certain variables or, inShare, for
strings matching a certain lexical pattern.

In Share, we encountered further complications. Rather
than a regular CALL statement, each call is in fact a call to
some assembler utility. One of the arguments is a string en-
coding the name of the program to be called, as well as the
way in which that program is to be loaded. The assembler
routine subsequently takes care of loading the most recent

R
A

09

A
A

04
A

A
05

R
A

10

A
A

02

R
A

12

R
A

20

H
A

03

R
A

22

R
A

36
R

A
41

R
A

24

R
A

40
R

A
25

R
A

26
R

A
27

R
A

31

H
A

02
R

A
37

R
A

38
R

A
39

R
A

42
R

A
80

R
A

81

R
A

83

R
A

89
R

A
90

Figure 3. CALL graph for the batch part of
Mortgage.

version of this program. Once we understood this mecha-
nism, it was relatively easy to derive the call graph using
lexical pattern matching.

In Mortgage, the use of CICS provides further possibil-
ities of calling programs. The first is the CICS LINK state-
ment, which is similar to a CALL statement. The second
is the CICS XCTL statement. This takes care of invoking a
program just before or after an end-user has filled in a screen
as presented in an on-line session. InMortgage, the XCTL
calls could be extracted by tracing the value of a specific
variable.

Observe that these special call conventions imply that
commercial reengineering tools should be sufficiently flexi-
ble to allow such organization-specific extensions. We have
looked at two of the most advanced COBOL reengineering
tools, Reasoning/COBOL [11] and MicroFocus/Revolve
[14]. Both support call graph extraction from abstract syn-
tax trees, but neither is able to produce the on-line call graph
of Mortgage or the batch call graph ofShare. They can be
adapted to produce these graphs, but that will be more time
consuming than specifying a simple lexical search, making
the latter option more attractive in a rapid system under-
standing setting.

Database usage A viable starting point for locating data
entities of interest is the data that the system reads from or
stores in persistent databases. InMortgage, VSAM files
are used, and both COBOL as well as CICS constructs to
access them. InShare, VSAM, hierarchical IMS and re-
lational DB2 tables are used, and COBOL I/O statements,

3

R
E

A
D

PR
O

G
R

A
M

W
R

IT
E

H
A

R
00

3

R
A

05
01

0R
R

A
32

01
0R

H
A

R
00

6

R
A

01
23

0U
R

A
33

01
0R

H
A

R
00

6
R

A
R

00
1

R
A

R
00

2

R
A

R
00

1

R
A

01
01

0R
R

A
01

33
0U

R
A

01
41

0U
R

A
10

C
R

A
31

C
R

A
35

03
0U

R
A

R
00

4
R

A
R

00
9

R
A

R
01

3

R
A

R
00

2
R

A
R

00
4

R
A

09
C

R
A

R
00

5
R

A
R

00
7

R
A

03
01

0R

R
A

R
00

9
R

A
R

01
1

R
A

82
01

0R
R

A
82

02
0R

R
A

89
C

R
A

90
C

R
A

R
01

2
R

A
R

01
3

H
A

R
00

3
R

A
R

00
5

R
A

R
00

7
R

A
R

01
1

R
A

R
01

2

R
A

03
02

0U
R

A
12

C

Figure 4. Graphical representation of the
CRUD matrix of Mortgage.

SQL and DL/I to access them.
In an SQL system, a datamodel listing all tables with

their field names and types is explicitly available. There-
cover tool can be used to extract this model from the
source. In a non-SQL application such asMortgage, this
datamodel is not available. What can be derived, though, is
the COBOL record definition used when writing to or read-
ing from files.

Share uses 36 different tables, with in all 146 different
field names. The number of fields per table varies from 1
to 40 – suggesting that many tables share certain fields. To
make this visible we generated a 60-page LATEX document.
For each table we have one section listing the fields and
their types, as well as the programs in which the table was
declared. We then usedmakeindex to generate an index,
indicating at what pages the tables, fields, types, and pro-
grams were used.

The CRUD — create, read, update, delete — matrix indi-
cates how databases are manipulated by programs. As view-
ing a CRUD matrix of a large system is cumbersome, we
use the graphical representation of Figure 4. The left-hand
column contains records read, the right-hand one records
written, and the middle column lists the programs involved.
An arrow from a record to a program indicates a read, and
an arrow from a program to a record indicates a write.

Field usage The database usage and datamodel provide a
rough overview of the database operations per program. In
many cases, it is useful to look at the table field level as
well.

Program Section # vars
RA01330U B200-UPDATE-UIT-FIB 35
RA01230U B200-UPDATE-UIT-FIB 35
RA01010R C100-VUL-FIB 34
RA31C R300-MBV-RELATIENR 32
RA31 R300-MBV-RELATIENR 32
RA20 R220-VERWERK-30-31 26
RA20 R210-VERWERK-20-21 25
RA20 R200-VERWERK10 25
RA35010R B300-VALIDATIE 16
RA33010R B300-VALIDATIE 16
RA20 R500-SPAARHYPOTHEEK 13
...

Figure 5. Number of record fields used per
section.

In order to expose shared use of database fields, we col-
lect all occurrences of database field identifiers per section
per program. From this table, we derive a list as shown
in Figure 5. InMortgage essentially 35 datafields are con-
tained in one large table. Figure 5 shows how many of these
datafields are used in each section. Of particular interest are
those sections dealing with a small number (less than, say,
10) of data fields only.

We extracted the field usage relation using lexical anal-
ysis only. From the database declarations we extracted the
field names. We then matched on section declarations to
find section boundaries, and identified a field usage if one
of the lines in a section contains a field name as substring.
Clearly, this is an approximative method, relying on system-
atic naming conventions: the more accurate way would be
to parse the source and do dataflow analysis to follow field
usage through the code. For the two cases studied, though,
the results obtained by lexical analysis were sufficiently ac-
curate, at least for rapid system understanding purposes.

Section call graph A last relation we experimented with
was the call graph at the section and paragraph level (the
PERFORM graph). The perform relation can be used to
visualize the calling structure of sections in individual pro-
grams. Since there are many programs, this is only useful if
a selection of interesting programs is made beforehand (e.g.
using the CALL graph).

Apart from visualizing the perform graph per program,
all sections of the system can also be listed and sorted ac-
cording to some metric. Figure 6 shows all sections with a
fan-in of at least 3, and a fan-out of at most 3. It can be used
to search for sections with an attractive fan-in/fan-out ratio.

At the system level, the sections included in copybooks
are of particular interest. These sections were designed to
be reusable, and therefore are natural candidates for further
reuse. Figure 7 lists some of these sections forMortgage,
together with the number of other programs and sections
containing a call to that section (fan-in).

4

Program Section Fan-in Fan-out
RA20 R320-LEES-HAB006 23 1
RA20 R330-DATUM 16 2
RA83 R995-CLOSE-FILES 12 0
RA22 R995-CLOSE-FILES 12 0
RA80 R30-PRINT-REGEL 10 0
RA23 R995-CLOSE-FILES 9 0
RA20 R995-CLOSE-FILES 8 0
RA24 R995-CLOSE-FILES 7 0
RA80 R70-WRITE-RAB011S 5 0
RA38 R300-VERTAAL-GROOT-KLEIN 5 0
...
RA26 R995-CLOSE-FILES 3 0
RA23 R60-REDSEQ-RAB008 3 1
RA20 R212-VUL-OUD 3 3

Figure 6. Sections sorted by fan-in and fan-
out.

Section Performed Sections Programs
Y800-PRINT 145 17 12
Y998-HANDLE-ERROR 92 92 92
Y010-40-AIB 89 89 89
Y010-00-AIB 81 81 81
Y502-MASKER 80 25 25
Y020-00-FIB 79 79 79
Y020-40-FIB 66 66 66
...
Z610-82-RAB011 7 5 4
Z610-80-RAB011 7 6 5
Y675-STD-STRAAT 7 4 2
Y625-ELF-PROEF 7 6 6
Y415-INFO-SCHONEN-NIT 7 3 3
Z610-03-RAB011 6 4 4
Y750-STD-NAAM 6 5 3

Figure 7. Sections performed by different sec-
tions and programs.

Further experiments While finding out how to extract
the various relations from the sources, we also usedre-
cover as an enhanced COBOL lexer. Therecover
script contains several functions to ignore COBOL com-
ment columns and lines, to split lines into strings, numbers,
identifiers, keywords, and other tokens, to search for argu-
ments of keywords, to expand copybooks, to record infor-
mation encountered in earlier lines, and to store results into
tables. These functions were fruitfully used to acquire an
understanding of conventions used, relevant data, etc.

5 Interpreting Analysis Results

In this section, we discuss how the graphs and reports
derived in the previous section helped us to actually under-
stand the two COBOL systems under study.

Understanding copybooks Rapid system understanding
is a mixture between looking at global system information
like the call graph and looking in more detail at a specific
program in order to obtain a feeling of its particularities.
One of the aims during rapid system understanding is to re-
duce the number of programs that need to be studied in de-
tail. Having the copybook relation explicitly available will
help to avoid looking at copybooks that are in fact never
included.

For Share, 136 of the 391 (35%) copybooks were not
used; forMortgage 673 of the 1103 (61%) were not used.
These large numbers can partly be explained asMortgage
is part of a larger system: for safety, all copybooks were
included. Likewise,Share relies on general utilities used
at the owner’s site; to be safe many of these were included.
We have not yet looked at other forms of dead code, such as
sections or programs never called. To detect the latter, one
should also have all JCL5 scripts available, which we did
not have for our case studies.

Another use of the copybook relation is to identify pat-
terns in the copybook inclusions. It turned out, for example,
that the batch and the on-line part ofMortgage use two al-
most disjoint sets of copybooks.

Call graph and reusability The batch call graph for a
part ofMortgage is shown in Figure 3. This graph shows
particularly well that we can identify:

� Programs with a high fan-out. From inspection we
know that these are typically “control” modules. They
invoke a number of other programs in the appropriate
order. In Figure 3, they are mostly grouped in the left-
hand column.

5JCL is Job Control Language, a shell-like system for MVS.

5

� Programs with a very high fan-in, i.e., called by most
other programs. These typically deal with technical
issues, such as error handling. From inspection it is
clear that they are tightly connected to legacy architec-
ture, and are not likely to contain reusable code. In
Figure 3, they are grouped in the right-hand column.

� Programs with a fan-in higher than their fan-out, yet
below a certain threshold. These programs can be ex-
pected to contain code that is reusable by different pro-
grams. In Figure 3, they are mostly in the middle col-
umn. These programs form the starting point when
searching for candidate methods when trying to extract
an object-oriented redesign from legacy code.

For the batch part ofMortgage, this categorization
worked remarkably well.

The call graph based on CICS LINK commands (not
shown) contains the remaining calls. Due to the presence
of error handling modules, this call graph was difficult to
understand. Removing all modules with fan-in higher than
a certain threshold (say 10), we obtained a comprehensible
layout.

For Mortgage, this analysis of the call graph led to the
identification of 20 potentially reusable programs that per-
formed a well-defined, relatively small task.

ForShare, only 50% of the programs were contained in
the call graph; the remaining programs are called by JCL
scripts, which we did not have available. Therefore, for
Share further ways of identifying reusable code will be re-
quired.

At a finer granularity, analysis of thePERFORMgraph
will be an option. In principle, the same categorization
in control, technical, and potentially reusable code can be
made. The derived table of Figure 6 can help to find sec-
tions of an acceptable fan-in. Clearly, this list is rather large,
and not all sections will be relevant: we decide to inspect
the code of a section based on its name. For example, we
could probably ignoreCLOSE-FILES, but should take a look
at VERTAAL-GROOT-KLEIN6, especially since this section
occurs in three different programs.

Analysis of the sections included in copybooks as shown
in Figure 7 will proceed along the same lines: based on
the number of perform statements and the name of the sec-
tion (for example,STD-STRAAT, indicating processing of a
STRAAT, i.e., street), we will inspect code of interest. Sur-
prisingly,Share does not use any sections defined in copy-
books.

Understanding data usage The tools provide three ways
to understand the data usage. The first is the index of tables,
attributes, types and programs derived from SQL data defi-
nitions. This index can be used to detect, for example, sets

6Dutch formap-upper-lower

of attributes that occur in several different tables and hence
may be (foreign) keys.

The second aid is the CRUD matrix, which shows which
programs read or write certain tables. We used Figure 4,
which shows the database usage forMortgage, to identify
databases that are only read from (for example the “zip-code
book”, shown in the top-left corner of Figure 4) or only writ-
ten to (logging, shown in in the top-right corner), databases
used by many programs, or programs using many databases.
We also used this figure to identify those databases that are
used by most other programs. ForMortgage, there are only
three such databases. The tools indicate which (level 01
COBOL) record definitions are used to access these, and
the fields in these records we considered as the essential
business data ofMortgage.

The third possibility aims at finding out how these data
fields are used throughout the system, using Figure 5. It can
help to group data fields based on their shared use, or to
locate sections of interest, potentially containing core busi-
ness functionality. Again, we will use this list to select
sections of interest manually. Examples are sections called
VALIDATIE , which contain code for checking the validity of
fields entered via screens.

Reusability assessment In the preceding sections, we
have discussed how certain information can be extracted
from COBOL sources using lexical analysis methods (Sec-
tion 4) and how we can use this information to understand
the legacy system at hand (Section 5). Does this acquired
understanding help us to answer the questions posed in Sec-
tion 3?

� Do the systems contain reusable code?Based on the
call graph several programs and sections were identi-
fied which, after inspection, turned out to contain well-
isolated reusable functionality.

� Which data fields represent business entities?The
tools help to identify those data fields that are written
to file and used by most programs: the indexed rep-
resentation helps to browse these fields and filter out
certain fields that are perceived as “non-business”.

� Which statements describe business rules?An in-
ventory of the data fields used is made per section:
those dealing with several fields are likely to describe
business-oriented procedures.

� What fraction of code is platform-specific?Of the 340
sections ofShare 177 (approximately 50%), refer to at
least one data field. Thus, an initial estimate is that the
other 50% is likely to contain platform-specific code.
For Mortgage, 510 of the 2841 sections (only 18%)

6

refer to the data items stored on file. Thus, 82% ap-
pears to be platform-oriented rather than business ori-
ented. Inspection of the functionality shows that this is
the case: a large part ofMortgage deals with CICS-
specific details (implementing a layer on top of CICS).

Evidently the answers to these questions are approxima-
tive. If a full reuse, reengineering, or re-implementation
project is to be started, this project will require a more de-
tailed answer to these questions. In order to decide to em-
bark upon such a project, fast answers, such as those dis-
cussed in this section, obtained at minimal costs, are re-
quired.

6 Related Work

Lexical analysis of legacy systems Murphy and Notkin
describe an approach for the fast extraction of source mod-
els using lexical analysis [16]. This approach can be used
for the “analysis” phase (as showed in Figure 1), in stead of
recover . Murphy and Notkin define an intermediate lan-
guage to express lexical queries. Queries composed in this
language are generally short and concise. Unfortunately,
the tool was not available, so we were not able to use this
tool for our COBOL experiments.

An interesting mixture between the lexical approach of
AWK and matching in the abstract syntax tree is provided
by the TAWK language [10]. Since TAWK is not (yet) in-
stantiated with a COBOL grammar, however, we could not
use it for our experiments.

Reengineering tools There are a number of commer-
cial reengineering tools that can analyze legacy systems,
e.g. [14, 11]. They are either language-specific (mainly
COBOL), or otherwise based on lexical analysis. Lexical
analysis provides a level of language independence here,
and makes the system easier to adapt to new languages and
dialects.

The COBOL specific reengineering tools have built-in
knowledge of COBOL: They work well if the application
at hand conforms to the specific syntax supported by tool,
usually the union of several COBOL dialects.

Examples of language-independent tools are Rigi [15] or
Ciao [6].

Many papers report on tools and techniques for analyz-
ing C code. We found it difficult to transfer these to the
COBOL domain and to apply them to our case studies.
COBOL lacks many C features, such as types, functions,
and parameters for procedures. Moreover, approaches de-
veloped for C tend not to take advantage of typical COBOL
issues, such as the database usage for business applications.

Finding reusable modules Part of our work is similar in
aims to the RE2 project, in which candidature criteria have
been defined to search for functional abstractions, data ab-
stractions, and control abstractions [7]. The RE2 approach
has been applied to COBOL systems by Burdet al. [5, 4].

Neighbors [17] analyzes large Pascal, C, assembly, and
Fortran systems consisting of more than a million lines of
code. One of his conclusions is that in large systems, mod-
ule names are not functional descriptions, but “architectural
markers”. This agrees with our observation that we could
not use module names to locate reusable code, while sec-
tion names proved helpful in many cases.

7 Conclusions

Rapid system understanding, in which fast comprehen-
sion is more important than highly accurate or detailed un-
derstanding, plays an important role in the planning, feasi-
bility assessment and cost estimating phases of system ren-
ovation projects.

System understanding tools require an architecture in
which it is easy to exploit a wide range of techniques. The
architecture discussed in Section 2 distinguishes analysis of
source code, a central relational database to store analysis
results, and various forms of presenting these results such
as report generation and graph visualization.

The datamodel used by the relational database, and the
analysis and visualization techniques used, depend on the
rapid system understanding problem at hand. The paper
discusses an instantiation for identifying reusable business
logic from legacy code.

Lexical analysis, using only superficial knowledge of the
language used in the sources to be analyzed, is sufficiently
powerful forrapid system understanding. An important ad-
vantage is its flexibility, making it possible to adapt easily
to particularities of the system under consideration. (See,
for example, the derivation of the call graph ofShare as
discussed in Section 4).

In order to assess the validity of the architecture pro-
posed, the emphasis on lexical analysis, and the instanti-
ation used for identifying business logic from legacy code,
we studied two COBOL case studies from the banking area.
The two case studies show that (1) lexical methods are well-
suited to extract the desired data from legacy code; (2)
the presentation forms chosen help us to quickly identify
business data fields and chunks of code manipulating these
fields; (3) the proposed approach is capable of finding an-
swers to the reusability questions posed in Section 3.

We consider the results of this case study to be encour-
aging, and believe the approach to be viable for a range of
system understanding and reusability assessment problems.
The limitations of our approach are:

7

� Lexical analysis cannot take advantage of the syntactic
structure of the sources. In our cases, for example, it is
difficult to extract those variables that are used in, say,
conditions of if-then-else statements.

� Identification of business data is based on the assump-
tion that this data is stored in databases.

� Identification of data field usage is based on textual
searches for the field names. This works on the as-
sumption of systematic variable naming. A more ac-
curate, yet also much more involved, method would be
to follow the database field usage through the dataflow.

The latter two assumptions are reasonable and will gener-
ally hold, but certainly not for all systems.

8 Future Work

While developing the rapid system understanding tools
and techniques, and while applying them, several further
research questions emerged. We are in the process of inves-
tigating the following topics.

Use of metrics Our work bears a close relationship with
the area of metrics. A question of interest is what metrics
are indicative for reusability in the two COBOL systems we
studied. Another relevant question is which metrics can be
computed sufficiently easily, in order to make them appli-
cable in a rapid system understanding setting.

Code cloning While analyzingMortgage we observed
a high degree of duplicated code. We intend to investi-
gate whether lexical methods are suitable for detecting the
clones present inMortgage.

Restructuring and modularization We are currently ex-
perimenting with applying cluster analysis methods to re-
modularization of legacy code [8].

Comprehension models Searching through code using
lexical analysis can be viewed as browsing in order to an-
swer questions and verify hypotheses. Recent studies in
system and program understanding have identified code
cognition models emphasizing this hypothesis verification
aspect [3, 12, 13]. From our experience with the two
COBOL cases we observed that many of our actions were
aimed atreducing the search space. Thus, rather than veri-
fying hypothesis immediately, we started by organizing the
set of programs such that the chance of looking at less rele-
vant programs was minimized. It seems interesting to study
how this search space reduction fits in some of the existing
code cognition models.

As a last remark, the present year 2000 crisis may be
an ideal opportunity to experimentally verify the validity
of cognition models for rapid system understanding. Many
“year 2000 solution providers” start by performing a “quick
scan” in order to determine the costs of the year 2000 con-
version project, and almost all of these scans are based on
lexical analysis. A successful cognition model should be
able to describe most of the methods used by these solu-
tion providers, and might be able provide hints for improve-
ments for methods not taking advantage of this model.

References

[1] A. V. Aho, B. W. Kernighan, and P. J. Weinberger.The AWK
Programming Language. Addison-Wesley, 1988.

[2] M. G. J. van den Brand, A. Sellink, and C. Verhoef. Gener-
ation of components for software renovation factories from
context-free grammars. InWorking Conference on Reverse
Engineering; WCRE97, pages 144–155. IEEE Computer
Society, 1997.

[3] R. Brooks. Towards a theory of the comprehension of
computer programs.Int. Journal of Man-Machine Studies,
18:543–554, 1983.

[4] E. Burd and M. Munro. Enriching program comprehension
for software reuse. InInternational Workshop on Program
Comprehension; IWCP’97. IEEE Computer Society, 1997.

[5] E. Burd, M. Munro, and C. Wezeman. Extracting reusable
modules from legacy code: Considering the issues of mod-
ule granularity. In3rd Working Conference on Reverse En-
gineering; WCRE’96, pages 189–196. IEEE Computer So-
ciety, 1996.

[6] Y.-F. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wal-
lach. Ciao: A graphical navigator for software and docu-
ment repositories. InInternational Conference on Software
Maintenance; ICSM 95, pages 66–75. IEEE Computer So-
ciety, 1995.

[7] A. Cimitile and G. Visaggio. Software salvaging and the call
dominance tree.Journal of Systems Software, 28:117–127,
1995.

[8] A. van Deursen and T. Kuipers. Finding classes in legacy
code using cluster analysis. In S. Demeyer and H. Gall, edi-
tors,Proceedings of the ESEC/FSE’97 Workshop on Object-
Oriented Reengineering. Report TUV-1841-97-10, Techni-
cal University of Vienna, 1997.

[9] E. R. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A
technique for drawing directed graphs.IEEE Transactions
on Software Engineering, 19(3):214–230, 1993.

[10] W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flex-
ible syntactic pattern matching and processing. InFourth
Workshop on Program Comprehension; IWPC’96. IEEE
Computer Society, 1996.

[11] L. Markosian, P. Newcomb, R. Brand, S. Burson, and
T. Kitzmiller. Using an enabling technology to reengineer
legacy systems.Communications of the ACM, 37(5):58–70,
1994. Special issue on reverse engineering.

8

[12] A. von Mayrhauser and A. M. Vans. Identification of dy-
namic comprehension processes during large scale main-
tenance. IEEE Transactions on Software Engineering,
22(6):424–438, 1996.

[13] A. von Mayrhauser and A. M. Vans. Hypothesis-driven
understanding processes during corrective maintenance of
large scale software. InInternational Conference on Soft-
ware Maintenance; ICSM’97, pages 12–20. IEEE Computer
Society, 1997.

[14] Micro Focus Revolve user guide. Burl Software Laborato-
ries Inc., USA, 1996.

[15] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A
reverse engineering approach to subsystem structure identi-
fication. Journal of Software Maintenance, 5(4):181–204,
Dec. 1993.

[16] G. C. Murphy and D. Notkin. Lightweight lexical source
model extraction.ACM Transactions on Software Engineer-
ing Methodology, 5(3):262–292, 1996.

[17] J. M. Neighbors. Finding reusable software components in
large systems. In3rd Working Conference on Reverse En-
gineering; WCRE’96, pages 2–10. IEEE Computer Society,
1996.

[18] L. Wall and R. L. Schwarz.Programming Perl. O’Reilly &
Associates, Inc., 1991.

9

