
Proc. 7th Int. Workshop on Program Comprehension, May 5-7, 1999, Pittsburgh, USA. c�1999 IEEE Computer Society Press.

The SPARAMAT Approach to Automatic
Comprehension of Sparse Matrix Computations�

Christoph W. Keßler Craig H. Smith
Fachbereich IV - Informatik, Universität Trier, 54286 Trier, Germany

e-mail: fkessler,smithg@psi.uni-trier.de

Abstract
Automatic program comprehension is particularly useful
when applied to sparse matrix codes, since it allows to ab-
stract e.g. from specific sparse matrix storage formats used
in the code. In this paper we describe SPARAMAT, a system
for speculative automatic program comprehension suitable
for sparse matrix codes, and its implementation.

1 Introduction

Matrix computations constitute the core of many scientific
numerical programs. A matrix is called sparse if so many
of its entries are zero that it seems worthwhile to use a
more space–efficient data structure to store it than a sim-
ple two–dimensional array; otherwise the matrix is called
dense. Space–efficient data structures for sparse matrices
try to store only the nonzero elements. This results in con-
siderable savings in space for the matrix elements and time
for operations on them, at the cost of some space and time
overhead to keep the data structure consistent. If the spatial
arrangement of the nonzero matrix elements (the sparsity
pattern) is statically known to be regular (e.g., a blocked or
band matrix), the matrix is typically stored in a way directly
following this sparsity pattern; e.g., each diagonal may be
stored as a one–dimensional array.

Irregular sparsity patterns are usually defined by run-
time data. Here we have only this case in mind when us-
ing the term “sparse matrix”. Typical data structures used
for the representation of sparse matrices in Fortran77 pro-
grams are, beyond a data array containing the nonzero ele-
ments themselves, several organizational variables, e.g. ar-
rays with suitable row and/or column index information for
each data array element. Linked lists are, if at all, simu-
lated by index vectors, as Fortran77 supports no pointers nor
structures. C implementations may also use explicit linked
list data structures to store the nonzero elements, which sup-
ports dynamic insertion and deletion of elements. How-
ever, on several architectures, a pointer variable needs more
space than an integer index variable. As space is often criti-
cal in sparse matrix computations, explicit linked lists occur
rather rarely in practice. Also, many numerical C programs
are written in a near–Fortran77 style because they were ei-

�Research partially funded by DFG, project SPARAMAT

ther directly transposed from existing Fortran77 code, or
because the programming style is influenced by former For-
tran77 projects or Fortran77–based numerics textbooks.

Matrix computations on these data structures are com-
mon in practice and often parallelizable. Consequently, nu-
merous parallel algorithms have been invented or adapted
for sparse matrix computations over the last decades for var-
ious parallel architectures.

[4] suggests the programmer to express, in the source
code, parallel (sparse) matrix computations in terms of
dense matrix data structures, which are more elegant to par-
allelize and distribute, and let the compiler select a suitable
data structure for the matrices automatically. Clearly this is
not applicable to (existing) programs that use hard–coded
data structures for sparse matrices.

While the problems of automatic parallelization for
dense matrix computations are, meanwhile, well under-
stood and sufficiently solved, these problems have been at-
tacked for sparse matrix computations only in a very con-
servative way, e.g., by run–time parallelization techniques
such as the inspector–executor method [25] or run–time
analysis of sparsity patterns for load–balanced array distri-
bution [36]. This is not astonishing because such code looks
quite awful to the compiler, consisting of indirect array in-
dexing or pointer dereferencing which makes exact static
access analysis impossible.

In this paper we describe SPARAMAT, a system for con-
cept comprehension that is particularly suitable to sparse
matrix codes. We started by studying several representa-
tive source codes for implementations of basic linear alge-
bra operations like dot product, matrix–vector multiplica-
tion, matrix–matrix multiplication, or LU factorization for
sparse matrices [13, 15, 22, 34, 32, 39] and recorded a list
of basic computational kernels for sparse matrix computa-
tions, together with their frequently occurring syntactical
and algorithmic variations.
Basic terminology. A concept is an abstraction of an ex-
ternally defined procedure. It represents the (generally infi-
nite) set of concrete procedures coded in a given program-
ming language that have the same type and that we consider
to be equivalent in all occurring calling contexts. Typically
we give a concept a name that we associate with the type
and the operation that we consider to be implemented by
these procedures. An idiom of a concept c is such a concrete

procedure, coded in a specific programming language, that
has the same type as c and that we consider to implement
the operation of c. An occurrence of an idiom i of a concept
c (or short: an occurrence of c) in a given source program is
a fragment of the source program that matches this idiom i
by unification of program variables with the procedure pa-
rameters of i. Thus it is legal to replace this fragment by a
call to c, where the program objects are bound to the for-
mal parameters of c. The (compiler) data structure repre-
senting this call is called an instance I of c; the fields in I
that hold the program objects passed as parameters to c are
called the slots of I . Beyond the Fortran77 parameter pass-
ing, SPARAMAT allows procedure–valued parameters as
well as higher–dimensional and composite data structures
to occur as slot entries.

After suitable preprocessing transformations (inlining all
procedures) and normalizations (constant propagation), the
intermediate program representation — abstract syntax tree
and/or program dependence graph — is submitted to the
concept recognizer. The concept recognizer, described in
Section 4, identifies code fragments as concept occurrences
and annotates them by concept instances.

When applied to parallelization, we are primarily inter-
ested in recognizing concepts for which there are particular
parallel routines available, tailored to the target machine. In
the back–end phase, the concept instances can be replaced
by suitable parallel implementations. The information de-
rived in the recognition phase also supports automatic data
layout and performance prediction.
Problems with sparse matrix computations. One prob-
lem we were faced with is that there is no standard data
structure to store a sparse matrix. Rather, there is a set of
about 15 competing formats in use that vary in their ad-
vantages and disadvantages, in comparison to the two–di-
mensional array which is the “natural” storage scheme for a
dense matrix.

The other main difference is that space–efficient data
structures for sparse matrices use either indirect array ref-
erences or (if available) pointer data structures. Thus the
array access information required for safe concept recog-
nition and code replacement is no longer completely avail-
able at compile time. Regarding program comprehension,
this means that it is no longer sufficient to consider only the
declaration of the matrix and the code of the computation
itself, in order to safely determine the semantics of the com-
putation. Code can only be recognized as an occurrence of,
say, sparse matrix–vector multiplication, subject to the con-
dition that the data structures occurring in the code really
implement a sparse matrix. As it is generally not possible
to statically evaluate this condition, a concept recognition
engine can only suspect, based on its observations of the
code while tracking the live ranges of program objects, that
a certain set of program objects implements a sparse ma-
trix; the final proof of this hypothesis must either be sup-
plied by the user in an interactive program understanding
framework, or equivalent run-time tests must be generated
by the code generator. Unfortunately, such run–time tests,
even if parallelizable, incur some overhead. Nevertheless,

static program flow analysis [18] can substantially support
such a speculative comprehension and parallelization. Only
at program points where insufficient static information is
available, run–time tests or user prompting is required to
confirm (or reject) the speculative comprehension.
Application areas. The expected benefit from success-
ful recognition is large. For automatic parallelization, the
back-end should generate two variants of parallel code for
the recognized program fragments: (1) an optimized par-
allel library routine that is executed speculatively, and (2)
a conservative parallelization, maybe using the inspector–
executor technique [25], or just sequential code, which is
executed non–speculatively. These two code variants may
even be executed concurrently and overlapped with the eval-
uation of run-time tests: If the testing processors find out
during execution that the hypothesis allowing speculative
execution was wrong, they abort and wait for the sequen-
tial variant to complete. Otherwise, they abort the sequen-
tial variant and return the computed results. Nevertheless,
if the sparsity pattern is static, it may be more profitable
to execute the run-time test once at the beginning and then
branching to the suitable code variant.

Beyond automatic parallelization, the abstraction from
specific data structures for the sparse matrices also sup-
ports program maintenance and debugging, and could help
with the exchange of one data structure for a sparse matrix
against another, more suitable one. For instance, recognized
operations on sparse matrices could be replaced by their
counterparts on dense matrices, and thus, program compre-
hension may serve as a front end to [4]. Or, the information
derived by concept recognition may just be emitted as math-
ematical formulas e.g. in LATEX format, typeset in a mathe-
matical textbook style, and shown in a graphical editor as
annotations to the source code, in order to improve human
program understanding.

The SPARAMAT implementation focuses on sparse ma-
trix computations coded by indirect array accesses. This is
because, in order to maintain an achievable goal in a uni-
versity project, it is necessary to limit oneself to a language
that is rather easy to analyze (Fortran), to only a handful of
sparse matrix formats (see Section 2), and to a limited set of
most important concepts [19]. For this reason, pointer alias
analysis of C programs, as well as concepts and matching
rules for pointer–based linked list data structures, are be-
yond the scope of this project. Due to the flexibility of the
generative approach, more concepts and templates may be
easily added by any SPARAMAT user. Furthermore, it ap-
pears that we can reuse some techniques from our earlier
PARAMAT project [17] more straightforwardly for indirect
array accesses than for pointer accesses.

The remainder of this paper is organized as follows: Sec-
tion 2 deals with vectors and sparse matrix storage schemes;
Section 3 summarizes concepts for (sparse) matrix compu-
tations. Section 4 discusses concept recognition and de-
scribes our implementation. We close with related work and
conclusions. A larger example for a neural network simula-
tion code is given in [19].

2 Vectors and (sparse) matrices

Vectors. A vector is an object in the intermediate pro-
gram representation that summarizes a one–dimensional
view of some elements of an array. For instance, a vec-
tor of reals accessing the first 5 elements in column 7
of a two–dimensional array a of reals is represented as
V(a,1,5,1,7,7,0). For ease of notation we assume
that the “elements” of the vector itself are consecutively
numbered starting at 1. IV(...) denotes integer vectors.

An indexed vector summarizes a one–dimensional view
of some elements of an array whose indices are specified in
a second (integer) vector, e.g. VX(a,IV(x,1,n,2)).
(Sparse) Matrices. A matrix summarizes a two–dimen-
sional view of an array according to the conventions of a
specific storage format. Dense matrices appear as a special
case of sparse matrices:

The dense storage format (DNS) uses a two–dimensio-
nal array a(1:n,1:m) to store all elements. A DNS ma-
trix access to the full array a would be summarized as

DNS(a, 1,n,1, 1,m,1, 0)

where the last entry specifies that the matrix access to a
is not transposed. — In Fortran, multiplication of a DNS
matrix by a vector typically looks like

DO i = 1, n
b(i) = 0.0
DO j = 1, m

b(i) = b(i) + a(i,j) * x(j)
ENDDO

ENDDO

As an example data structure that uses index vectors to
represent sparse matrices we describe the row–compressed
sorted storage format (CSR): A data array a(1:nz) stores
the nz nonzero matrix elements aij in row–major or-
der, where within each row the elements appear in the
same order as in the dense equivalent. An integer ar-
ray col(1:nz) gives the column index for each ele-
ment in a, and an integer array firstinrow(1:n+1)
gives indices to a such that firstinrow(i) denotes
the position in a where row i starts, i � �� ����n and
firstinrow(n+1) always contains nz+1 (see Fig-
ure 1). Thus, firstinrow(i � �)-firstinrow(i)
gives the number of nonzero elements in row i. A full CSR
matrix access could be summarized as

CSR(V(a,1,nz,1), IV(firstinrow,1,n+1,1),
IV(col,1,nz,1), n, nz)

Such storage formats are typical for Fortran77 implementa-
tions. CSR is used e.g. in the SLAP package [34].
Multiplication of a CSR matrix by a vector may look like

DO i = 1, n
b(i) = 0.0
DO k = firstinrow(i), firstinrow(i+1)-1

b(i) = b(i) + a(k) * x(col(k))
ENDDO

ENDDO

1

3

2

1

4

Row

0

0 0

0 0

0 0

22

11 13

31

43

13

11

31

22

43

1 3 64FirstInCol

A

1 3 4

11 2213 31 43

Col 1 3 2 1 3

65FirstInRow

uncompressed row-compressed column-compressed

A

Figure 1: Row–compressed (CSR) and column–compres-
sed (CSC) storage formats for sparse matrices.

Further formats, like COO (coordinate format), MSR (a
CSR extension), CUR (unsorted CSR variant), XSR/XUR
(sorted/unsorted CSR extension), CSC (column–compres-
sed format), JAD (jagged diagonal format) and LNK (linked
list format) are explained in [19]. The format names are par-
tially adapted from [32]. See also [2] and [38].

There are also many possibilities for slight modifica-
tions and extensions of these data structures. For instance,
a flag may indicate symmetry of a matrix. Such changes
are quite ad–hoc, and it seems generally not sensible to de-
fine a new family of concepts for each such modification.
For instance, in the Harwell routines MA30, the sign bit
of the row resp. column indices is “misused” to indicate
whether a new column or row has just started, thus saving
the FirstInRow resp. FirstInCol array when sequen-
tially scanning through the matrix. Clearly such dirty tricks
make program comprehension more difficult.

3 Concepts

This section gives a survey of concepts that are frequently
encountered in sparse matrix codes. Although this list is
surely not exhaustive, it should at least illustrate the appli-
cation domain. The extension of this list by more concepts
to cover an even larger part of numerical software is the
subject of on-going research.

We have developed a concept specification language,
CSL [19], that allows one to describe concepts and match-
ing rules on a level that is (more or less) independent from
a particular source language or compiler. A concept spec-
ification consists of the following components: its name
(naming conventions are discussed below), an ordered and
typed list of its parameters, and a set of matching rules
(called templates). A matching rule has several fields: a
field for structural pattern matching, specified in terms of
intermediate representation constructs (loop headers, condi-
tions, assignments, and instances of the corresponding sub-
concepts), fields specifying auxiliary predicates (e.g., struc-
tural properties or dataflow relations), fields for the speci-
fication of pre- and postconditions for the slot entries im-
plied by this concept (see Section 4), and a field creating a
concept instance after successful matching. For an example
specification see Figure 2.

Our naming conventions for concepts are as follows: The
shape of operands is denoted by shorthands S (scalar), V
(vector), VX (indexed vector), and YYY (matrix in storage

concept SDOTVV {
param(out) @r: real;
param(none) @L: range;
param(in) @u: vector;
param(in) @v: vector;
param(in) @init: real;

templateVertical {
pattern {

node DO_STMT($i,$lb,$ub,$st)
child INCR($s,MUL($e1,$e2))

}
where { $e1.isSimpleArrayAccess($i)

&& $e2.isSimpleArrayAccess($i)
&& $s.isVar()
&& $i.notOccurIn($s)

}
instance SDOTVV($s, newRange($i, $lb, $ub, $st),

newVector($e1, $i, $lb, $ub, $st),
newVector($e2, $i, $lb, $ub, $st),
$s)

}
templateHorizontal {

pattern {
node(s): SINIT($x,$c)
fill(f)
node(n): SDOTVV($r1,$L1,$u1,$v1,$init1)

}
where(s) { $x.isEqual($init1) }
where(f) {

f.isEmpty() || f.notMayOut($x) && f.notMayIn($x)
}
instance(s) EMPTY()
instance(n) SDOTVV($L1, $u1, $v1, $r1, $c)

} }

Figure 2: A CSL specification for the SDOTVV concept (sim-
ple dot product) with two templates.

format YYY). The result shape is given first, followed by a
mnemonic for the type of computation denoted by the con-
cept, and the shorthands of the operands. The default type
is real; integer concepts and objects are prefixed with an I.

We extend our earlier approach [17] to representing con-
cepts and concept instances in several aspects.
Operator parameters. Some concepts like VMAPVV (ele-
mentwise application of a binary operator to two operand
vectors) take an operator (i.e., a function pointer) as a pa-
rameter. This makes hierarchical program comprehension
slightly more complicated, but greatly reduces the number
of different concepts, and allows for a more lean code gen-
eration interface.
Functional composition. We are still discussing arbi-
trary functional composition of concepts to form new con-
cepts. This idea is inspired by the work of Cole on algo-
rithmic skeletons [11]. Nevertheless, there should remain at
least some “flat” concepts for important special cases, e.g.
SDOTVV for dot product, VMATVECMV for matrix–vector
multiplication, etc. These may be regarded as “syntactic
sugar” but are to be preferred as they enhance readability
and speed up the program comprehension process.
No in–place computations. Most of our concepts represent
not–in–place computations. In general, recognized in–place
computations are represented by using temporary variables,
vectors, or matrices. This abstracts even further from the
particular implementation. It is the job of the back-end
to reuse (temporary array) space where possible. In other
words, we try to track values of objects rather than mem-
ory locations. Where it is unavoidable to have accumulat-
ing concepts, they can be specified using accumulative basic
operations like INCR (increment) or SCAL (scaling).

Concept instances as parameters. Nesting of concept in-
stances is a natural way to represent a tree–like computation
without having to specify temporary variables. As an exam-
ple, we may denote a DAXPY–like computation as

VMAPVS(V(tmp,1,N,1), MUL, V(c,1,N,1), 3.14)
VINCRV(V(b,1,N,1), V(tmp,1,N,1))

which is closer to the internal representation in the compiler,
or as

VINCR(V(b,1,N,1), VMAPVS(MUL,V(c,1,N,1),3.14))

which is more readable for humans. If the computation
structure is a directed acyclic graph (DAG), then we may
also obtain a DAG of concept instances, using temporary
variables and arrays for values used multiple times. In or-
der to support nesting, our notation of concept instances al-
lows to have the result parameter (if there is exactly one)
of a concept instance appear as the “return value” of a con-
cept instance, rather than as its first parameter, following the
analogy to a call to a function returning a value.
Concepts for scalar computations. There are concepts
for binary expression operators, like ADD, MUL, MAX, EQ
etc., for unary expression operators like NEG (negation),
ABS (absolute value), INV (reciprocal), SQR (squaring)
etc., The commutative and associative operators, ADD, MUL,
MAX etc., may also have more than two operands. STAR
is a special version of a multi–operand ADD denoting dif-
ference stencils [17]. The increment operators INCR (for
accumulating addition) and SCAL (for accumulating prod-
uct) are used instead of ADD or MUL where the result vari-
able is identical to one of the arguments. Assignments to
scalars are either SCOPY where the assignee is a variable,
or SINIT where the assignee is a constant, or an expres-
sion operator where the assignee is a recognized expression.
For technical reasons there are some auxiliary concepts like
EMPTY (no operation) and RANGE (to summarize a loop
header). For more details, see [19].
Vector and matrix computations. We give here an in-
formal description of some concepts. See [19] for a more
complete list. v, v�, v� denote (real) vectors, a a real array,
iv an integer vector, m, m�, m� matrices in some format.
VMAPVV�v��� v�� v�� elementwise appl. of binary operator �
VMAPV�v��� v�� elementwise appl. of unary operator �
VMAPVS�v��� v�� r� elementwise appl. with a scalar operand r
VINCRV�v� v�� v�i� � v�i� � v��i�� i � �� ���� jv�j
VCOPYV�v� v�� copy vector elements
VINIT�v� c� initialize vector elements by a constant c
SREDV�r��� v� reduction r �

Njvj

j��
v�j�

VGATHERVX�v� VX�a� v��� v�i� � a�v��i��� i � �� ���� jv�j
VXSCATTERV�VX�a� iv�� v�� a�iv�i�� � v��i�� i � �� ���� jv�j
MMAPMM�m���m��m�� elementwise appl. of binary operator �

For similar concepts like matrix format conversion, matrix
copy, matrix initialization, matrix transpose etc., see [19].
VMATVECMV�v�m�� v�� matrix-vector product v � m� � v�.
VVECMATMV�v�m�� v�� vector-matrix product v � mT

� � v�.
MMATMULMM�m�m��m�� matrix-matrix-product m � m� �m�

More concepts, e.g. searching and sorting on vectors
and matrices, prefix calculations, Givens rotation, for-

ward/backward substitution, LU decomposition and their
subconcepts, submatrix extraction etc. are listed in [19].
I/O concepts. READ and WRITE are the concepts for read-
ing and writing a scalar value to a file.
VREAD�v� F � read a vector v from file F
VWRITE�v� F � write a vector v to file F
MREAD�m�F� f� read m from file F in file storage format f
MWRITE�m�F� f� write m to file F in file storage format f

There are various file storage formats in use for sparse
matrices, e.g. the Harwell–Boeing file format, the array for-
mat, or coordinate format [7].

4 Speculative concept recognition

Safe identification of a sparse matrix operation consists of
(1) a test for the syntactical properties of this operation,
which can be performed by concept recognition at com-
pile time, and (2) a test for the dynamic properties which
may partially have to be performed at run time. Regarding
(parallel) code generation, this implies that two versions of
code for the corresponding program fragment must be gen-
erated: one version branching to an optimized sparse matrix
library routine if the test is positive, and a conservative ver-
sion (maybe using the inspector–executor technique, or just
sequential) that is executed otherwise.

4.1 Compile–time concept matching

The static part of our concept matching method is based on
a bottom–up rewriting approach using a deterministic finite
bottom–up� tree–automaton that works on the program’s
intermediate representation (IR) as an abstract syntax tree
or control flow graph, augmented by concept instances and
data–flow edges computed during the recognition. Normal-
izing transformations, such as loop distribution or rerolling
of unrolled loops, are done whenever applicable.

The matching rules for the concept idioms to be rec-
ognized, called templates, are specified as far as possible
in terms of subconcept occurrences (see Fig. 2), follow-
ing the natural hierarchical composition of computations in
the given programming language, by applying loops and
sequencing to subcomputations. Since at most one tem-
plate may match an IR node, identification of concept oc-
currences is deterministic. For efficiency reasons the ap-
plicable templates are selected by a hashtable lookup: each
rule to match an occurrence of a concept c is indexed by the
most characteristic subconcept c� (called the trigger con-
cept) that occurs in a matching rule. The graph induced
by these edges �c�� c� is called the trigger graph. Hence,
concept recognition becomes a path finding problem in the
trigger graph. Matched IR nodes are annotated with concept
instances. If working on an abstract syntax tree, a concept
instance holds all information that would be required to re-
construct an equivalent of the subtree it annotates.

�To be precise, for the unification of objects within a matching rule
we apply a top–down traversal of (nested) concept instances for already
matched nodes.

Vertical matching proceeds along the hierarchical nest-
ing structure (statements, expressions) of the program’s IR,
starting with the leaf nodes. Matching a node is only pos-
sible when all its children have been matched. The trig-
ger concept used When applying vertical matching to an IR
node, the concept that has been matched for its first child is
used as the trigger concept.
As a running example, consider the following code excerpt:

DO i = 1, n
S1: b(i) = 0.0

DO j = first(i), first(i+1)-1
S2: b(i) = b(i) + a(j) * x(col(j))

ENDDO
ENDDO

The program’s IR (e.g. syntax tree) is traversed bottom–up
from the left to the right. Statement S1 is recognized as a
scalar initialization, summarized as SINIT(b(i),0.0).
Statement S2 is matched as a scalar update computation,
summarized as INCR(b(i), MUL(a(j),x(col(j)).
Now the loop around S2 is considered. The index expres-
sions of a and col are bound by the loop variable j which
ranges from some loop–invariant value first(i) to some
loop–invariant value first(i+1)-1. Thus the accesses
to arrays a and col during the j loop can be summa-
rized as vectors V(a,first(i),first(i+1)-1,1) and
IV(col,first(i),first(i+1)-1,1). By a template
similar to the first one in Fig. 2, the entire j loop is matched
as an occurrence of SDOTVVX (dot product with one in-
dexed operand vector); the unparsed program is now

DO i = 1, n
S1’: SINIT(b(i), 0.0);
S2’: INCR(b(i),

SDOTVVX(V(a,first(i),first(i+1)-1,1),
VX(x,IV(col,first(i),first(i+1)-1,1)));

ENDDO

Although all statements in the body of the i loop are
matched, there is no direct way to match the i loop at this
point. We must first address the dataflow relations between
S1’ and S2’:
Horizontal matching tries to merge several matched IR
nodes v�, v�, ... belonging to the body of the same parent
node (e.g., a loop body). If there is a common concept that
covers the functionality of, say, vi and vj , there is generally
some data flow relation between vi and vj that can be used
to guide the matching process. For each summary node we
consider the slot entries to be read or written, and compute
data flow edges (also called cross–edges) connecting slots
referring to the same value, e.g., Def–Use chains (“FLOW”
cross edges).

Continuing on the example above, we obtain that the
same value of b(i) is written (generated) by the SINIT
computation in S1’ and consumed (used and killed) by the
INCR computation in S2’. Note that it suffices to consider
the current loop level: regarding horizontal matching, the
values of outer loop variables can be considered as constant.
Horizontal matching, following the corresponding template

(similar to the second template in Fig. 2), “merges” � the
two nodes and generates a “shared” concept instance:

DO i = 1, n
S’’: SDOTVVX(b(i), V(a,first(i),first(i+1)-1,1),

VX(x,IV(col,first(i),first(i+1)-1,1)), 0.0)
ENDDO

Speculative concept matching. In order to continue with
this example, we now would like to apply vertical matching
to the i loop. The accesses to a and col are supposed
to be CSR matrix accesses because the range of the loop
variable j binding their index expressions is controlled by
expressions bound by the i loop. Unfortunately, the values
of the first elements are statically unknown. Thus it is
impossible to definitively conclude that this is an occurrence
of a CSR matrix vector product.

Nevertheless we continue, with assumptions based on
syntactic observations only, concept matching in a specu-
lative way. We obtain

<assume first(1)=1>
<assume monotonicity of V(first,1,n+1,1)>
<assume injectivity of V(col,first(i),

first(i+1)-1,1) forall i in 1:n>
S: VMATVECMV(V(b,1,n,1),

CSR(a, IV(first,1,n+1,1),
IV(col,first(1),first(n+1)-1,1),
n, first(n+1)-1), V(x,1,n,1));

where the first three lines summarize the assumptions guid-
ing our speculative concept recognition. If they cannot be
statically eliminated, these three preconditions would, at
code generation, result in three run-time tests being sched-
uled before or concurrent to the speculative parallel execu-
tion of S as a CSR matrix vector product. The range of
the values in col needs not be bound–checked at run time
since we can safely assume that the original program runs
correctly in sequential.
Now we have a closer look at these pre- and postconditions:

We call an integer vector iv monotonic over an index
range �L � U � at a program point q iff for any control flow
path through q, iv(i)�iv(i� �) holds at entry to q for
all i � �L � U � ��.

We call an integer vector iv injective over an index
range L:U at a program point q iff for any control flow path
through q, for all i� j �L:U holds i �� j �� iv(i) ��
iv(j) at entry to q. Injectivity of a vector is usually not
statically known, but is an important condition that we need
to check at various occasions.

We must verify the speculative transformation and paral-
lelization of a recognized computation on a set of program
objects which are strongly suspected to implement a sparse
matrix A. This consists typically of a check for injectivity
of an index vector, plus maybe some other checks on the
organizational variables. For instance, for non–transposed
and transposed sparse matrix–vector multiplication in CSR
or CUR row–compressed format, we have to check that
(1) first(1) equals 1,

�Technically, one node is hidden from further matching and code gen-
eration by annotating it with an instance of EMPTY, see Fig. 2.

(2) vector IV(first,1,n+1,1) is monotonic, and
(3) vectors IV(col,first(i),first(i� �)-1,1)

are injective for all i � f�� ���� ng.
These properties may be checked for separately.

Even if at some program point we are statically in doubt
about whether a set of program objects really implements
a sparse matrix in a certain storage format, we may derive
static information about some format properties of a specu-
latively recognized concept instance.

For any concept (or combination of a concept and spe-
cific parameter formats) the format property preconditions
for its parameter matrices are generally known. If an in-
stance I of a concept c generates a new (sparse) result ma-
trix m, it may also be generally known whether m will
have some format properties after execution of I (i.e., a
postcondition). Such a property � of m may either hold
in any case after execution of an instance of c, i.e. ��m�
is installed by c. Or, � may depend on some of the ac-
tual format properties ��� ��� ��� of the operand matrices
m��m�� ���. In this case, ��m� will hold after execution
of I only if ���m��, ���m�� etc. were valid before execu-
tion of I . In other words, this describes a propagation of
properties ���m�� � ���m�� � ���� ��m�� Also, it is gen-
erally known which properties of operand matrices may be
(possibly) deleted by executing an instance of a concept c.

The assumptions, preservations, propagations and dele-
tions of format properties associated with each concept in-
stance are summarized by the program comprehension en-
gine in the form of pre- and postcondition annotations to the
concept instances. Note that the preservations are the com-
plementary set of the deletions; thus we renounce on listing
them. If existing program objects may be overwritten, their
old properties are clearly deleted. Note that the install
and propagate annotations are postconditions that refer
to the newly created values. The shorthand all stands for
all properties considered.

For example, if a certain piece of program has been spec-
ulatively recognized as an occurrence of a CSC to CSR con-
version concept, annotations are (conceptually) inserted be-
fore the concept instance as follows:

<assume FirstB(1)=1>
<assume monotonicity of IV(FirstB,1,M,1)>
<assume injectivity of IV(RowB,FirstB(i),FirstB(i+1),1)

forall i in 1:M>
<delete all of FirstA>
<delete all of ColA>
<install FirstA(1)=1>
<propagate (monotonicity of IV(FirstB,1,M,1))
then (monotonicity of IV(FirstA,1,N,1))>
<propagate (monotonicity of IV(FirstB,1,M,1)
and (injectivity of IV(RowB,FirstB(i),FirstB(i+1),1)

forall i in 1:M)
then(injectivity of IV(ColA,FirstA(i),FirstA(i+1),1)

forall i in 1:N)>
MCNVTM(CSR(V(A,1,NZ,1), IV(FirstA,1,N+1,1),

IV(ColA,1,N,1), N, NZ),
CSC(V(B,1,NZ,1), IV(FirstB,1,M+1,1),

IV(RowB,1,M,1), M, NZ))

4.2 Run time tests / user interaction

Once the static concept recognition phase is finished, these
properties, summarized as pre- and postconditions for each

concept instance in the (partially) matched program, are op-
timized by a dataflow framework presented in [18]. This
method allows to eliminate redundant conditions and to
schedule the resulting run-time tests (or user interactions)
appropriately.

Ideally, there are, once a sparse matrix has been con-
structed or read from a file, no changes to its organizational
variables any more during execution of the program, i.e.,
its sparsity pattern remains static. In that case SPARA-
MAT can completely eliminate all but one test on mono-
tonicity and injectivity, which is located immediately after
constructing the organizational data structures. An example
program exhibiting such a structure is shown in the neural
network simulation code given in [19].

Note that, due to speculative execution, a test can be exe-
cuted concurrently with the subsequent concept implemen-
tation even if that is guarded by this test. In particular, pos-
sible communication delays of the test can be filled with
computations from the subsequent concept implementation,
and vice versa. The results of the speculative execution of
the concept implementation are committed only if the test
process accepts.

If applied to an interactive program comprehension
framework, these run-time tests correspond to prompting
the user for answering yes/no questions about the proper-
ties.

The run-time tests on monotonicity and injectivity can
be parallelized, as shown in [19].

4.3 SPARAMAT implementation

SPARAMAT is currently being implemented using the Po-
laris Fortran compiler [6] as a front end. SPARAMAT is
conceptually broken up into two major components, the
driver and the generator (see Fig. 3). When configuring
the SPARAMAT system, the generator accepts specifica-
tion files describing concepts and templates, and creates
C++ files containing the trigger graph (TG) and the tem-
plates. These are then linked with some SPARAMAT con-
cept matching core routines to form the driver.

When submitting a Fortran program to SPARAMAT, its
control flow graph is passed to the driver from the Polaris
front end. The driver, upon completion, passes to the op-
timizer the control flow graph annotated with concept in-
stances. The pre- and postconditions are optimized in a
separate pass described in [18]. This optimizer passes the
modified control flow graph to the back end.

If applied to parallelization, the back end may gener-
ate for the concept instances (speculative) calls to parallel
routines and replace the remaining conditions by run-time
checks, see Fig. 3.

If applied in an interactive framework, SPARAMAT
could instead compute and present a certainty factor for
specific matrix formats and then ask the user, displaying
the code, if the detected format is correct. This requires a
user interface to display the code highlighting matched con-
cepts. As DOT [20] files are already generated for testing,
the GraphViz package can be easily leveraged to implement

such a user interface.
To date we have implemented a subset of the basic con-

cepts and some of their templates, in particular for dot prod-
uct and dense and sparse matrix–vector multiplication and
their subconcepts for CSR, MSR and COO format. Due
to the generative approach, the implementation can be eas-
ily extended for further formats, concepts, and templates by
any user of the SPARAMAT system.

In some situations the matrix format might not be clear
until a discriminating piece of code is encountered. Until
then, it may be necessary to store a set of possible formats in
the concept instance and postpone the final identification of
the format to a later point in the concept matching process.
To support this, we use a special nested concept summa-
rizing the same matrix object in a set of different possible
formats within the same slot of the concept instance.

5 Related work

Several automatic concept comprehension techniques have
been developed over the last years. These approaches vary
considerably in their application domain, purpose, method,
and status of implementation.

General concept recognition techniques for scientific
codes have been contributed by Snyder [35], Pinter and Pin-
ter [28], Paul and Prakash [27], diMartino [23] and Keßler
[17]. Some work focuses on recognition of induction vari-
ables and reductions [1, 29, 14] and on linear recurrences
[10, 30]. General techniques designed mainly for non–
numerical codes have been proposed by Wills et al. [31]
and Ning et al. [16, 21].

Concept recognition has been applied in some commer-
cial systems, e.g. EAVE [8] for automatic vectorization, or
CMAX [33] and a project at Convex [24] for automatic par-
allelization. Furthermore there are several academic appli-
cations [17, 23] and proposals for application [9, 3] of con-
cept recognition for automatic parallelization. Today, most
commercial compilers for high–performance computers are
able to perform at least simple reduction recognition auto-
matically.

A more detailed survey of these approaches and projects
can be found e.g. in [17] or [12].

Our former PARAMAT project (1992–94) [17] kept its
focus on dense matrix computations only, because of their
static analyzability. The same decision was also made by
other researchers [28, 23, 24, 3] and companies [33] inves-
tigating general concept recognition with the goal of auto-
matic parallelization. According to our knowledge, there is
currently no other framework that is actually able to recog-
nize sparse matrix computations in the sense given in this
paper.

6 Conclusion and future work

We have described a framework for applying program com-
prehension techniques to sparse matrix computations and

Concept specification

Optimizer
Recognition

Concept

Driver

Templates

Flow
Control

Graph by concept
instances

Graph annotatedPolaris

front endcode

source

TG

Control Flow
Linking

Executable

Polaris
back end

Extensions
Code Generation

Modified
Control
Flow

Graph

Concept
Recognizer

Implementation
of parallelGenerator

Code Generator

Library of
concept

implementations run-time tests

Figure 3: SPARAMAT implementation (left hand side), with a possible application to parallel code generation from concept
instances (right hand side).

its implementation. We see that it is possible to perform
speculative program comprehension even where static anal-
ysis does not provide sufficient information; in these cases
the static tests on the syntactic properties (pattern matching)
and consistency of the organizational variables are comple-
mented by user prompting or run-time tests whose place-
ment in the code can be optimized by a static data flow
framework.

If applied to parallel code generation, speculatively
matched program parts may be optimistically replaced by
suitable parallel library routine calls, together with the nec-
essary (parallel) run-time tests. Only if the tests are passed,
parallel execution may continue with the optimized parallel
sparse matrix library routine. Otherwise, it must fall back
to a conservative code variant.

Our automatic program comprehension techniques for
sparse matrix codes can also be used in a non–parallel
environment, e.g. for program flow analysis, for program
maintenance, debugging support, and for more freedom of
choice for a suitable data structure for sparse matrices.

Current work on the SPARAMAT implementation fo-
cuses on CSL and the generator. Once operational, we will
implement the complete list of concepts given in [19] with
the most important templates.

References
[1] Z. Ammarguellat and W. Harrison III. Automatic Recognition of Induction

Variables and Recurrence Relations by Abstract Interpretation. Proc. Conf. on
Progr. Language Design and Implementation, pp. 283–295. ACM, June 1990.

[2] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, 1994.

[3] S. Bhansali et al. Parallelizing sequential programs by algorithm-level trans-
formations. In V. Rajlich and A. Cimitile, eds., Proc. 3rd IEEE Workshop on
Program Comprehension, pp. 100–107. IEEE CS Press, Nov. 1994.

[4] A. J. Bik and H. A. Wijshoff. Automatic Data Structure Selection and Trans-
formation for Sparse Matrix Computations. IEEE Trans. on Parallel and Dis-
tributed Systems, 7(2):109–126, Feb. 1996.

[5] A. J. C. Bik. Compiler support for sparse matrix computations. PhD thesis,
Leiden University, 1996.

[6] W. Blume et al. Polaris: The next generation in parallelizing compilers,. Proc.
7th Wksh. on Languages and Compilers for Parallel Computing, 1994.

[7] R. Boisvert et al. Matrix-market: a web resource for test matrix collections. In
The Quality of Numerical Software: Assessment and Enhancement, pp. 125–
137. Chapman and Hall, 1997.

[8] P. Bose. Interactive Program Improvement via EAVE: An Expert Adviser for
Vectorization. Proc. Int. Conf. on Supercomputing, pp. 119–130, July 1988.

[9] T. Brandes, M. Sommer. A Knowledge-Based Parallelization Tool in a Pro-
gramming Environment. 16th Int. Conf. on Par. Processing, 446–448, 1987.

[10] D. Callahan. Recognizing and parallelizing bounded recurrences. Proc. 4th
Workshop on Languages and Compilers for Parallel Computing, 1991.

[11] M. I. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. Pitman and MIT Press, 1989.

[12] B. DiMartino and C. W. Keßler. Program comprehension engines for automatic
parallelization: A comparative study. In I. Jelly, I. Gorton, and P. Croll, eds.,
Proc. 1st Int. Wksh. on Software Eng. for Par. and Distr. Systems, pp. 146–157.
London: Chapman&Hall, Mar. 1996.

[13] I. S. Duff. MA28 – a set of Fortran subroutines for sparse unsymmetric linear
equations. Tech. rept. AERE R8730, HMSO, London. Sources at [26], 1977.

[14] M. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables: Detecting and
classifying sequences using a demand-driven SSA form. ACM Trans. Prog.
Lang. Syst., 17(1):85–122, Jan. 1995.

[15] R. Grimes. SPARSE-BLAS basic linear algebra subroutines for sparse matri-
ces, written in Fortran77. Source code available via netlib [26], 1984.

[16] M. Harandi and J. Ning. Knowledge-based program analysis. IEEE Software,
pp. 74–81, January 1990.

[17] C. W. Keßler. Pattern-driven Automatic Parallelization. Scientific Program-
ming, 5:251–274, 1996.

[18] C. W. Keßler. Applicability of Program Comprehension to Sparse Matrix Com-
putations. Proc. 3rd Int. Euro-Par Conference. Springer LNCS, Aug. 1997.

[19] C. W. Keßler, H. Seidl, and C. H. Smith. The SPARAMAT Approach to Auto-
matic Comprehension of Sparse Matrix Computations. Technical Report 99-??,
Universität Trier, FB IV - Mathematik/Informatik, 54286 Trier, Germany, 1999.

[20] E. Koutsofios and S. North. Drawing graphs with dot. Technical Report
910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ, Sept. 1991.

[21] W. Kozaczynski, J. Ning, and T. Sarver. Program concept recognition. Proc.
KBSE’92 7th Knowledge-Based Software Eng. Conf., pp. 216–225, 1992.

[22] K. Kundert. SPARSE 1.3 package of routines for sparse matrix LU factor-
ization, written in C. Source code available via netlib [26], 1988.

[23] B. D. Martino and G. Iannello. Pap Recognizer: a Tool for Automatic Recog-
nition of Parallelizable Patterns. Proc. 4th Wksh. on Program Comprehension.
IEEE CS Press, Mar. 1996.

[24] R. Metzger. Automated Recognition of Parallel Algorithms in Scientific Appli-
cations. IJCAI-95 Workshop Program Working Notes: “The Next Generation
of Plan Recognition Systems”, Aug. 1995.

[25] R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles
of run-time support for parallel processors. In Proc. 2nd ACM Int. Conf. on
Supercomputing, pp. 140–152. ACM Press, July 1988.

[26] NETLIB. Collection of free scientific software. Accessible by anonymous ftp
to netlib2.cs.utk.edu or netlib.no or e-mail ”send index” to netlib@netlib.no.

[27] S. Paul and A. Prakash. A Framework for Source Code Search using Program
Patterns. IEEE Trans. on Software Engineering, 20(6):463–475, 1994.

[28] S. S. Pinter and R. Y. Pinter. Program Optimization and Parallelization Using
Idioms. Proc. ACM Symp. on Principles of Progr. Languages, pp. 79–92, 1991.

[29] B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris Parallelizing
Compiler. In Proc. 9th ACM Int. Conf. on Supercomputing, pp. 444–448, 1995.

[30] X. Redon and P. Feautrier. Detection of Recurrences in Sequential Programs
with Loops. In PARLE 93, Springer LNCS vol. 694, pp. 132–145, 1993.

[31] C. Rich and L. M. Wills. Recognizing a Program’s Design: A Graph–Parsing
Approach. IEEE Software, pp. 82–89, Jan. 1990.

[32] Y. Saad. SPARSKIT: a basic tool kit for sparse matrix computations, Version
2. Research report, U. of Minnesota, Minneapolis, MN 55455, June 1994.

[33] G. Sabot and S. Wholey. Cmax: a Fortran Translator for the Connection Ma-
chine System. Proc. 7th ACM Int. Conf. on Supercomputing, 147–156, 1993.

[34] M. K. Seager and A. Greenbaum. Slap: Sparse Linear Algebra Package, Ver-
sion 2. Source code available via netlib [26], 1989.

[35] L. Snyder. Recognition and Selection of Idioms for Code Optimization. Acta
Informatica, 17:327–348, 1982.

[36] M. Ujaldon, E. Zapata, S. Sharma, and J. Saltz. Parallelization Techniques for
Sparse Matrix Applications. J. of Parallel and Distr. Computing, 38(2), 1996.

[37] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series. Addison–Wesley, 1990.

[38] Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer 1991.
[39] Z. Zlatev, J. Wasniewsky, and K. Schaumburg. Y12M - Solution of Large and

Sparse Systems of Linear Algebraic Equations. Springer LNCS vol. 121, 1981.

