
Evaluating Using Animation to Improve Understanding of Sequence
Diagrams

Elizabeth Burd, Dawn Overy, Ady Wheetman

The Research Institute in Software Evolution
University of Durham

South Road
Durham, DH1 3LE, UK

Abstract

This paper describes an experiment whereby the
benefit of using animation to improve the
comprehensibility of UML sequence diagrams is
assessed. The paper hypothesizes that through
animation the control flow of sequence diagram will
become more evident. The development a system that
seeks to enable stakeholders to better interpret UML
modeling behaviour is described. This system aims to
provide dynamic visualization through the use of
animation techniques. A study to evaluate the extent to
which the animation of a diagram can aid its
interpretation is then described. The results of the study
show that the animation system did improve the
comprehensibility of the sequence diagram control flow
thus improving the comprehensibility when compared
to the comprehensibility of a traditional static
representation. Finally, this paper discusses the
reasoning for these results.

1. Introduction

Despite the massive investment that companies place in
IT and the recent growth in performance in both
hardware and software, the Standish Group reports [1]
that only sixteen per cent of all projects are successful.
Over a half are impaired while almost a third are
cancelled. These impairments manifest themselves in
many different ways. Projects are often delivered late
and may fall short of established quality standards. The
product may be unreliable due to insufficient testing,
contain redundant functionality or even be incomplete.
Such quality comprises maintainability. From the point
of view of the developers, it is common for the product
to have exceeded its budget. When put into a global
business context, it is essential that issues relating to the
performance of the IT industry are addressed.

It is hard to identify one major cause of the crisis.
However, work on the problem has led to the
recognition of a subset of crucial factors. The early
stages of a project’s lifecycle are crucial to its success.
At each stage communication between developers and
other stakeholders is undertaken. Such communication
must be carried out successfully in order to achieve a
valid and verified set of requirements. It is essential for
different stakeholders to convey system attributes in an
objective and unambiguous fashion, despite sometimes
using different languages. The application of modelling
to represent components of the project provides a way
to overcome such communication difficulties.

A model is an abstraction or higher level description of
an entity or system. Modelling therefore allows the
design of a system to be considered and visualised early
on. This can be an enlightening process and can present
advantages and disadvantages of a system proposed
design prior to the implementation stage. The shear size
of todays systems far exceeds the understanding of any
one person. The use of modelling is used to provide an
interpretable abstraction.

The need for system modeling was addressed by
Rumbaugh, Jacobson and Booch when they defined the
Unified Modeling Language (UML). It is a “general-
purpose modeling language that is used to specify,
visualize, construct and document the artifacts of a
software system” [2]. It is not a method advocating a
step-by-step process but a toolkit to allow the
description of a system. The semantics and notations
inherent in models are exploited in UML to allow static
and dynamic views that depict a system. One of the
goals of UML is to allow the visualization of systems to
enable interpretation and understanding by a wide
variety of people. Such visualization is key to allow
stakeholders to communicate in the same language and

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

developers to create a product that is exactly what the
customer requires.

Visualisation is the graphical representation of an entity
to convey the semantics of that entity to the viewer. As
systems become more complex, dynamic visualisation
or animation may be a solution of combat this problem.

Animation has the potential to address many of these
issues raised through improving the levels of
comprehension to allow requirements verification by
technical and non-technical staff. A system that can
interactively model and animate requirements could be
used throughout the requirements engineering process
by a number of stakeholders. Thus the lack of customer
involvement can be addressed directly. Animation of a
requirements diagram such as a UML sequence diagram
can aid the stakeholders interpretation of the system and
give them a greater understanding of the product
proposed to be developed.

2. Background

Visualisation of a model is one approach to aid its
understanding. The extent to which different types of
visualisation effect the assimilation process is unclear
and much work has been focussed in this area. Eloi [3]
suggests that people carry underlying assumptions in
their head, which when made explicit through model
visualisation can be used as an explicit rule of inference
or shared with others. He also suggests that
participating in several visualisation sessions
encourages the user to construct a dynamic mental
model based on the animation itself. This hypothesis is
corroborated by Letovsky’s [4]. The visualisation
system, combined with the existing knowledge base and
both handled by the assimilation process drives the
evolution of the user’s mental model. Norman draws
the conclusion that a person’s ability to run their mental
model are severely limited, [5]. On this, Eloi comments
that visualisation support provides insight into a
conceptual model. He suggests that participating in a
visualization session can resolve differences between
their mental model and what is perceived by the
visualization model” i.e. visualization support facilitates
cognition. Work by Byrne et al [6] suggests that

dynamic visualization provides more opportunity for the
participant to make and test ad-hoc spontaneous mental
predictions regarding the behaviour of the system.
Making and testing predictions are a form of active
learning, which supports cognition more than passive
learning.

This paper describes an experiment whereby the benefit
of using animation to improve the comprehensibility of
UML diagrams is assessed. The paper discusses the
development a system that seeks to enable stakeholders
to better interpret UML modeling behaviour so that they
are more able to communicate and address problems.
The system aims to allow dynamic visualization through
the use of animation techniques. A study to evaluate the
extent to which the animation of a diagram can aid its
interpretation is then described and the results of the
study are presented and discussed.

3. Approach

It is hypothesized that through animation the dynamic
nature of UML diagrams can be made more explicit.
This section describes the process adopted to test this
hypothesis.

In order to investigate the benefit of animation to
improve the understandability of the dynamic UML
diagrams three main activities were performed. These
were:

1. Identify requirements for the animation system
2. Implement a system to animate sequence diagrams
3. Compose an experiment to investigate if benefits

through animation are achieved.

Each of these activities will now been described in
further detail.

3.1 Identify Requirements for the animation
system

The initial consideration for aiding the comprehension
process through using animation was to determine what
aspects of the UML to animate. Clearly the benefits of

Figure 1: Choices of animation technique

Moving Symbol

Flash
Colour

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

animation could best be utilized through the
representation of its dynamic aspects. Of these dynamic
aspects it is often sequence and collaboration diagrams
that are considered the hardest to comprehend and
therefore could receive the greatest assistance towards
improving comprehension. Since the sequence and
collaboration are semantically equivalent then the
selection between these two model types is arbitrary.
Sequence diagrams were selected due to their more
clearly defined layout properties.

In order to enhance the comprehensibility of the
sequence diagram it is initially necessary to decide
which concepts should be the focus of animation and
would best support understanding through animation.
The decision included considering object
creation/deletion and message passing objects via
activations or messages. To achieve the animation
moving symbols could pass through the diagram to
indicate the control flow, similar to Process Weaver [7],
which uses a CASE tool to animate Petri Nets.
Alternatively a more primitive animation effect is the
use of colour to highlight the control flow. Examples of
these two approaches are highlighted in Figure 1.

The main representational property of sequence
diagrams is that of control flow. Therefore animation
properties are best utilized though the animation of
those aspects of the diagram that represent this flow of
control. For this reason it was decided to animate the
process of messages passing between the objects.

The choice of animation effect was then considered. If
the animation was to represent control flow between
objects then the best methods for highlighting ones
attention to the change of control between objects needs
to be found. For a sequence diagram having a symbol
moving across a message line using Process Weaver
techniques does not have any additional meaning within
a sequence chart. It is simply the fact that the message
has been sent there is no semantic meaning, for instance,
in the speed of the message passing. Therefore, the
simpler animation technique where the entire message
passing line is temporarily coloured and flashes once is
adopted.

3.2 Implement a system to animate sequence
diagrams

A simple implementation has been developed. The
sequence animation system is written in Java and takes a
single input file that describes the sequence diagram to
be animated. The animation occurs on the basis of the
order of the input file. This therefore means that data
format of the input file is critical, however, if the system

proves successful then further enhancements to improve
the usability of the system can later be made.

Figure 2: A simple sequence diagram in the
animator system

A screen shot of a typical sequence diagram that could
be animated is shown in Figure 2. This figure shows the
object in square boxes at the top of the diagram and the
lifelines of each object are represented by the lines
down from each object. The lifelines from top to bottom
of the page represents passing time. The arrow between
the lifelines represents the message passing between
objects and is the aspect of the diagram that is animated.
For further details on sequence diagram specification
and interpretation please refer to [2].

3.3 Compose experiment to investigate if
benefits through animation are achieved

In order to investigate if the use of animation improves
the comprehensibility of sequence diagrams then it is
necessary to initially select a domain and scenario so an
experiment to be conducted. It was decided that a fairly
simple and familiar scenario should be adopted and thus
the scenario sending a fax was used.

In order to investigate comprehensibility at different
levels it was decided to investigate the benefits of
animation for simple UML sequence diagrams and
compare this to the benefit to comprehensibility for
more complex examples. The modification of the
scenario was then necessary that portrayed different
levels of abstraction for the simple and complex
sequence diagrams. A decision was made to have the
scenario “sending a fax” as reusable components could
be extended to provide sufficient combinations to model
both examples. The simple sequence diagram was
primarily concerned with a single use case, therefore the

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

decision to portray the best-case scenario for sending a
fax was justified in terms of usability. As a result of
this decision an instance sequence diagram was
designed to represent a fax that could be successfully
sent at the first attempt. The complex sequence diagram
was developed to portray multiple paths through the
system. Due to the numerous possibilities of
unsuccessful path combinations that can arise when
sending a fax, only one was represented to improve
usability and visual simplicity. The conditional
behaviour of the generic diagram depicted the phone
line when it was free or busy. In addition to the
successful routing of the fax a report was generated
recursively. In UML terminology is more complex
diagram would be referred to as a generic sequence
diagram.

Once the scenario had been chosen and written in UML
then an experiment and questionnaire was produced to
test the hypothesis. The questionnaire was designed to
be discretionary and anonymous and its objective was to
compare the static (graphics) and animated versions of
the UML sequence diagrams to determine user’s
interpretations before and after animation. The
questionnaire comprised of ten questions and four
diagrams. Two of these diagrams were supported by an
animated example. Users were instructed to annotate the
diagrams with their interpretation of the control flow for
the static and animated versions consecutively.

Figure 3: A complex sequence diagram in the
animator system

The experiment and questionnaire compared the
understanding of two sets of sequence diagrams. The
first of these sequence diagrams was fairly simple (see
Fig 2) the second more complex (see Fig 3). By
comparing the static and animated interpretations, the
benefit of animation and participants comprehension of

the control flow was determined. The use of a complex
and simple sequence diagram allowed investigations of
how complexity effects comprehension and how this
understanding is helped or hindered through the
provision of animation. Both simple and complex
diagrams represent the same scenario but in the case of
the complex sequence diagram additional conditions are
shown.

In addition, the questionnaire also offered opportunities
for participants to signify their animation preferences,
provide suggested improvements and comments and
suggest potential UML models for animation.
Participant’s reactions were observed as they ran the
animated deliverables to clarify if the control flow was
obvious from the animation.

An adequate sample was important to ensure fair
representations of participant’s views were obtained.
Therefore it was decided that people with different
levels of expertise in UML would act as the
participants. Forty people were distributed with a
questionnaire; fifteen had no prior knowledge of UML,
twenty had up-to-one year’s knowledge, four had two-
to-four year’s knowledge and one had five or more, as
identified from the questionnaires. Those with one
year’s or less experience of UML were students at the
University of Durham, the others were experts working
in industry. People with no prior knowledge of UML
were chosen randomly from outside the Computer
Science domain. A larger sample was obtained for up-
to-one year’s knowledge as the second and third year
Computer Science syllabuses incorporate UML in
Durham. Obtaining expert knowledge proved to be
more difficult, due to the experts time commitments.
By utilising a UML devoted mailing list known as the
Object Technology User’s Group a minority of experts
offered their time to complete the designated
questionnaire. The mailing list provided a source of
experts who had common interests in object technology,
which was ideal for evaluation purposes. A different
evaluation technique was adopted for the latter
evaluation, as it was not possible to observe the experts
running the programs. Consequently class files for were
sent via email with instructions outlined in the
questionnaire.

Although slight variation in techniques were adopted it
was fundamental to obtain such feedback on this work
to establish the benefits for comprehension for different
levels of expertise. The reasoning behind the sample
was to focus on participants who would benefit most
from the animation such as people with no prior
knowledge or minimal experience of UML. Expert
knowledge would then provide an industrial perspective
and realisation of the effectiveness of the animation

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

4. Results

After collating the completed questionnaires the results
were analyzed. These are now presented within the
following sections. Initially the simple sequence
diagram is investigate followed by the more complex
analysis. Finally, some additional results obtained from
the questionnaire are presented.

4.1 Simple UML Sequence Diagram

By analysing the annotated diagrams of the
questionnaire, it was determined whether the correct
interpretation of control flow had been established.
Table.1 represents the results for the corresponding
simple sequence diagram interpretations.

Diagram
investigated
(Fig.-2)

Correct
interpretation

Incorrect
interpretation

Static 21 19

Animated
36 4

Table 1: Summary of analysis results of simple
sequence diagram

The results highlight that mistakes were made with both
the static and dynamic versions. However, in the case of
the animated version 90% of the participants interpreted
the control flow correctly.

4.2 Complex UML Sequence Diagram

Table.2 represents the results for the corresponding
complex sequence diagram interpretations.

Diagram
investigated
(Fig.- 3)

Correct
interpretation

Incorrect
interpretations

Static 0 40

Animated 25 15

Table 2: Summary of analysis results of complex
sequence diagram

The results from individual questionnaires showed a
trend that participants did not expect a second control
flow to represent the conditional branch. Twelve

participants attempted to account for the branching by
annotating both conditional branches simultaneously but
did not account for recursive behaviour and six
participants interpreted the control flow to be
consecutive. Such interpretations did not match the
predefined criteria in the study to qualify as a correct
interpretation.

4.3 Other Results from Survey

The survey also queried which type of representation
the participants preferred; that is the static or dynamic
(animated) representations of the sequence diagrams. In
the questionnaire participants were asked if the control
flow was more obvious in the static or animated version
to determine the significance of the animation. Table 3
identifies all preferences were for the animated version
for both simple and complex diagram. However,
individual questionnaires identified that two participants
made additional comments that neither version was
significantly more prominent, for the purpose of
interpreting the simple diagram.

Question
Description

Static Animated

In which simple
sequence diagram was
the control flow more
obvious.

0 40

In which complex
sequence diagram was
the control flow more
obvious.

0 40

Table 3: Summary of participant preferences for
type of sequence diagram.

5. Evaluation

Results from the study illustrated an 80% decrease in
misinterpretations of the control flow when animation
was utilized in the simple sequence diagram. Thus from
this figure it can be argued that for the simple sequence
diagram the benefit of animation was not significant
since the level of misinterpretations was reduced to only
10%. However, this needs to be reviewed in light of the
relative simplicity of the sequence diagram being
interpreted. For such a simple diagram a much higher
proportion of mistakes than one would expect were
made for the interpretation of control flow. For the
simple diagram the misinterpretations for the static
diagram was 48% of the participants. This seems to
indicate, certainly from those new to the UML notation,
sequence diagrams are hard to comprehend. For
software development this does imply significant

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

problems, as the original specification
misinterpretations may result in incorrect
implementations. In addition, the misinterpretations may
additionally lead to problems during maintenance. If
the UML sequence diagrams are used to interpret the
implementation order for maintenance then the
misinterpretations may result in the addition of further
errors in the code. In addition, with technology now
available to reverse engineeer UML specifications from
existing code [8] it is more likely in future that these
types of interpretations will be relied upon the
implement change requests.

For the complex sequence diagram a 62% decrease was
recorded for the control flow misinterpretations of the
animated diagram compared to the static representation.
There are a number of interesting features represented
within this figure. The first of these is that for the static
diagram all questionnaire respondents misinterpreted
the control flow. This therefore seems to indicate that
the difficulties associated with interpretation of control
flow from these diagrams is not restricted to those with
relatively little experience (one year or less) of the
UML. In this case those with greater experience still
made mistakes in its interpretation. The second
important aspect of the results of the analysis of the
complex sequence diagram was that there was still a
relatively high proportion of mistakes made (38%) even
with animation. Thus this high level of errors does
identify issues of using sequence diagrams as means to
develop or interpret software applications especially
with using staff with relatively little experience of the
UML.

Most importantly however this experiment would seem
to indicate that through the use of animation dramatic
reductions in the misinterpretation of the control flow
occur. This would therefore seem to imply that by using
animation to aid the identification of the focal point of
the diagram, it has the potential to some extent, alleviate
the diagram interpretation complexity.

The unambiguous result of this experiment and survey
is that participants liked using the animation application
as a means of interpreting sequence diagrams. The
participants felt that the animator gave life to the models
and as such felt that it improved their comprehension of
control flow. The results of the experiment seem to
concur with this observation.

While the results of the study seem to indicate a strong
positive correlation that animation does significantly
help with interpretation of the control flow of sequence
diagrams there are a number of other elements that were
hard to exclude from the study that may have lead to the
positive results. The first of the elements is that of the

potential practice effect. In order to evaluate our
hypothesis is was necessary to fix the order of
presentation of diagrams; first the static representation
was shown followed by the animated representation.
This may have meant that the second viewing of the
diagram resulted in the improved understanding.
However, to minimize this problem participants were
allowed as long as they thought necessary to interpret
the static diagram. The other important element was that
of the novelty of the application. The novelty aspect of
the animator may have encouraged participants to
concentrate harder on the control flow and therefore
have resulted in the improved comprehension. However,
this novelty element potentially improving
concentration is obviously a point in the system’s
favour.

6. Conclusions

This paper has conducted an experiment to investigate if
animation can aid the comprehension process.
Specifically this experiment examined if comprehension
of control flow for sequence diagrams became more
explicit through the use of animation. That is that
participants would make fewer errors in interpreting the
order and meaning of the control flow using an
animated rather than a static representation. The
experiment additionally investigated if the complexity
of the sequence diagram effected the results obtained.

The results of the study showed that UML diagrams
were hard to comprehend and participants made a
number of errors in the interpretation of the control
flow. However, the study in each trial showed an
improvement in comprehension (fewer mistakes made)
in the animated diagram representation over that of the
static representation. The trials investigating the varying
levels of complexity revealed that as the complexity of
the diagram so correspondingly did the number of
errors. However, in the case of the animated diagram
the number of errors were significantly fewer than for
the static diagram. The evaluation discussed some
reasons why these findings were achieved.
In conclusion the animation effect proved a popular
addition to aid comprehension and overall far fewer
mistakes were made when this facility was available to
users.

Further work needs now to be conducted to investigate
if these results apply to more experienced users (5 years
plus). However it seems from an educational viewpoint
that animation does benefit those with little experience
of the UML.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

References

1 Standish Group (1995) “Chaos”,
http://www.standishgroup.com/visitor/chaos.htm. Last
visited April 24 2000.

2 Rumbaugh, James, Jacobson, Ivor & Booch, Grady
(1999) “The Unified Modelling Language Reference
Manual”, Addison-Wesley.

3 Eloi, Regis (1998) “Automated Support for Animating
KISS Workflow Models to Enhance Client
Understanding”, Thesis for Degree of Master of Science
by Research in the University of Hull, submitted
September 1998.

4 Letovsky, S. & Soloway, E. (1986) “Delocalized Plans
and Program Comprehension” in IEEE Software, May
1996, Vol. 19, No. 3, pages 41-48.

5 Norman, D.A. (1983) “Some observations on mental
models” in Gentner, Dedre & Stevens, Albert L. (eds)
(1983) “Mental Models”, Lawrence Erlbaum Associated,
Hillsdale, NJ, USA.

6 Byrne, Michael D., Catrambone, Richard, Stasko, John
T. (1996) “Do Algorithm Animations Aid Learning?”,
Graphics, Visualization and Usability Center, Georgia
Institute of Technology, Atlanta, GA, Technical Report
GIT-GVU-96-18, May 1996.

7 Fernström, Christer , (1993) “Process Weaver. Adding
Process Support to UNIX” in IEEE Press, September
1993.

8 DiLucca G.A., Fadoline A.R., De Carlini U., (2000)
“Recovering Class Diagrams from Data-Intensive
Legacy Systems” in International Conference on
Software Maintenance, IEEE Press, October 2000.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

