

Comprehension of Software Analysis Data Using 3D Visualization

Andrian Marcus, Louis Feng, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

330 672 9039
amarcus@cs.kent.edu, lfeng@cs.kent.edu, jmaletic@cs.kent.edu

Abstract

The paper presents a software visualization

application-framework that utilizes a variety of 3D
metaphors to represent large software system and related
analysis data. The 3D representation is based on the
SeeSoft pixel representation and extends that original
metaphor by rendering the visualization in a 3D space.
Object-based manipulation methods and simultaneous
alternative mappings are available to the user. The
visual elements, mappings, and user interactions
implemented and used by the framework are described
with respect to their support for software understanding
tasks. Examples are presented and discussed to
demonstrate how the system’s current features support
the needs of the user.

1. Introduction

Large-scale software maintenance and development
involve a variety of application tasks. These tasks range
from coding and debugging, to design and re-
engineering. The underlying theme is that all
development and maintenance tasks require some level of
understanding of the associated software system and
documentation. This is the promise of visualization tools
– that they can assist the user in (better) understanding an
aspect of the software. This can range from uncovering
bottlenecks in execution data or identifying poor
architecture or design. These two problems are quite
orthogonal with respect to the types of understanding
necessary for problem solving.

These different software engineering tasks should be
addressed by different visual representations. That is, we
should use the most appropriate visualization mechanism
for the given task.

In [15], Maletic et al defines a set of issues important
for software visualization systems. They include the:
task – why is the visualization needed; audience – who
will use the visualization; target – what is the data source
to represent; representation – how to represent it; and
medium – where to represent the visualization. In the

work presented here we focus on using different
representations to address particular tasks with regards to
improving comprehension.

In this paper, we present the sv3D (source viewer 3D)
application-framework, which implements a 3D visual
metaphor for software visualization. Our 3D visual
metaphor is based on the SeeSoft representation [1, 4]. It
brings a number of extensions to the original concept.
SeeSoft [1, 4], was proposed by Eick et al. in the early
90’s and is one of the most well known software
visualization tools. Several attributes of the SeeSoft
metaphor warrant its success and usefulness. One of the
most important of these attributes is the natural and direct
mapping from the visual metaphor to the source code and
back. This in turn leads to a natural navigation between
the representations. These features make the visual
representation easy to understand; yielding high levels of
trust on behalf of the user. Color and pixel maps are used
to show relationships between elements of a software
system (rather than graph-based representations). This
supports the visualization of large amounts of source
code, the non-trivial relationships, and data on a standard
2D visualization medium (e.g., monitor or screen). Many
other software visualization tools use graph-based
representations that suffer from scalability, layout, and
mapping problems.

Along with the 3D extension to SeeSoft we have
added a number of new visualization mechanisms. Our
intent is to show that adding new representations,
coupled with advanced user interaction facilities, yields a
richer tool to support comprehension of the software
under examination. In designing sv3D we tried to bring
together results from information visualization, human
computer interaction, and program comprehension.

The next section presents related work in the field that
motivates our approach along with some discussion of
3D visualization. The architecture, implementation, and
main features of sv3D are presented in the following
sections. Examples and applications of sv3D are shown
with respect to the new representations and visualization
mechanisms. The paper concludes with a discussion of
the aspects of sv3D that are under development and
require further research.

2. Related Work

SeeSoft-like representations are used by a number of
existing tools: Tarantula [11], The Aspect Browser [8],
The Aspect mining Tool [9], Bee/Hive [17], GSEE [6],
Advizor [5], etc.

Despite its success, SeeSoft and most of its versions
have noted limitations. Namely, use of 2D pixel bars
limits the number of attributes that can be visualized.
Also, the type of relationships that can be shown, in
particular hierarchical relationships, are difficult to
represent. Additionally, one of the major strengths of the
metaphor (i.e., direct linking to the source code) yields
one of the metaphors weaknesses that is, little support for
multiple abstraction levels and limited usage of the 2D
space.

A number of improvements of the original SeeSoft
representation have been made by various researchers. In
particular, Tarantula [11] uses brightness to represent an
extra attribute (dimension). However as noted by its
authors, brightness is confusing and poorly perceived by
the user. Bee/Hive [17] introduces the file maps, which
make use of texture and the third dimension in the
visualization. The file maps form only one view
supported by Bee/Hive. By supporting multiple views of
the data and multiple data sources, Bee/Hive overcomes
many of the limitations of the SeeSoft view. However,
the supported user interactions are somewhat limited for
the 3D renderings; in particular it supports only space-
based manipulation, and as such suffering from some of
the problems inherent to 3D visualizations (e.g.,
occlusion).

sv3D builds on the success of this research, while
trying to address some of the inherent limitations of the
medium and representation.

3. 2D versus 3D Representations

No visualization method addresses all the needs of the
users. A standard approach to address additional user’s
needs is to offer multiple views of the data as done by
[17, 19]. Using one view of the data limits the number of
attributes and the available exploration space. The
solution we propose to overcome this problem is the
efficient use of a 3D space for visualization.

Visualization in the 2D space has been actively
explored. Many techniques for generating diagrams,
graphs, and mapping information to the 2D
representation have also been studied extensively.
Although the question of what benefits 3D representation
offer over 2D still remains to be answered, some
experiments have given optimistic results. These results
further motivate our work presented here.

The work of Hubona, Shirah and Fout [10] suggest
that users' understanding of a 3D structure improves

when they can manipulate the structure. Ware and
Franck [21] indicate that displaying data in three
dimensions instead of two can make it easier for users to
understand the data. In addition, the error rate in
identifying routes in 3D graphs is much smaller than 2D
[22]. The CyberNet system [3] shows that mapping large
amount of (dynamic) information to 3D representation is
beneficial, regardless of the type of metaphors (real or
virtual) used. 3D representations have also been shown
to better support spatial memory tasks than 2D [20].

The debate in the information and software
visualization fields on the 2D vs. 3D battle is still heated.
We support the results that show the advantages of 3D
representations. Additionally, the use of 3D
representations of software in new mediums, such as
virtual reality environments, are starting to be explored
[13, 14]. In our view the design of these representations
and the underlying mapping to the data is the most
important aspect for a successful 3D visualization. The
following section describes the design details and
rationales behind sv3D.

4. The sv3D Framework

sv3D is a software visualization application-
framework that builds on the SeeSoft metaphor. It brings
a number of major enhancements over SeeSoft-type
representations:

• It creates 3D renderings of the raw data.
• Various artifacts of the software system and their

attributes can be mapped to the 3D metaphors, at
different abstraction levels.

• It implements improved user interactions and
object level manipulation.

• It is independent of the analysis tool and it
accepts a simple and flexible input in XML
format. The output of various analysis tools can
be translated to sv3D input format.

• Its design and implementation are extensible as
an application framework.

4.1. Elements of the Visualization

A defined visual language/presentation has to be
effective and expressive enough to provide good results
in visualization. In other words, the available metaphors
have to be simple, yet allow us to represent all the
information we desire to visualize. The relationship
between data values and visual parameters has to be a
univocal; otherwise, if more than one data value is
mapped onto the same visual parameter than it will be
impossible to distinguish one value’s influence from the
other. The power of a visualization is derived from its
semantic richness, simplicity, and level of abstraction.
The aim is to develop a visual language with few

Figure 1 shows a close-up on a container highlighting the
elements that support representation of analysis data. In
this view each poly cylinder represents a line of text from
the source code associated with the container. The visual
components of the container represent values from the
associated data file. The diameter of a poly cylinder is
adjustable and is defined in the mapping.

metaphors and constructs, but with the ability to
represent a variety of elements with no ambiguity or loss
of meaning. The visual metaphors in the language
should be simple, having a familiar form and
straightforward mapping to the target.

We intentionally separated visualization from data
collection and sv3D is designed to work with a variety of
analysis tools as an independent visualization front-end.
Therefore, the input format to sv3D is kept as generic as
possible.

Future versions of sv3D will also support container
position in the space, relationships between containers,
and texture of the poly cylinders. This will allow
representation of hierarchical data and other relationships
between software elements.

We define a sv3D application P as a quadruple
{ , , , }P V D S M= :

V defines the visual metaphors to be used. D represents
the data resulted from software analysis stored as a set of
files D d , corresponding to a set of source
code files .

defines the visual metaphors to be used. D represents
the data resulted from software analysis stored as a set of
files D d , corresponding to a set of source
code files .

1 2{ , , ..., }nd d=

1 2{ , ,S s s=
1 2{ , , ..., }nd d=

1 2{ , ,S s s= ..., }ns..., }ns 1 2,1 2,{ , ..., }k{ , ..., }kM m m m=
defines the mapping between data and visualization as a
set of relations . im DÎ S´ ´ V

Each source code file is SÎ is composed of lines of
text 1 2{ , , ..., }p

i i i is t t t= . For each source code
file is there is an associated analysis data filed D .
Each is an XML file with elements e d
corresponding to a line of text t . Each element

 has a set of attributes that contain the analysis data
. In the current version of sv3D

each attribute is linked to an element of the visualization
, by a mapping m . The number of

elements in the visualization is fixed but the number of
the attributes in the data is not. If there are more
attributes than visual elements, the user will decide which
ones will be represented or the system chooses a subset
automatically. The same is true if the number of visual
elements exceeds the number of data attributes.

i Î
ik iÎid

1 2{ , , ..., }q
ik ik ike a a a

V

k
i Î

M

is
ike

ik

j

=

v Î i Î

Expressiveness and effectiveness were the guiding
principles in defining the visual elements and the default
mappings. In addition, we must balance two opposing
issues with regard to the user namely, the simultaneous
display of as much information as possible and the
dangers of information overload.

Figure 1. A container, in sv3D, with the elements of the
visualization: poly cylinders, height, depth, color and

position.

Currently sv3D supports mapping to the following
elements of the visualization, defined in V :

• Poly cylinder - p sv3D provides the user with a set of default mappings
and in the current version sv3D maps a container o to a
source code file

i

is . Each poly cylinder j ip oÎ is

mapped to a line of source code t . The
coordinates and of a poly cylinder within in the
container are determined by the position in the source
code file, with a fixed width of the container. Finally, the
first four attributes in every element of d are mapped to
cylinder colors (c and c), height (z), and depth
(z) respectively.

j
i

i

+

iÎ s
xp yp

+ -

-

• Poly cylinder container - o
• Poly cylinder position in the container on its o

axis - p
x

x

• Poly cylinder position in the container on its o
axis - p

y

y

• Poly cylinder height - z +

• Poly cylinder depth - z -

• Poly cylinder color on o axis - c z+ +

• Poly cylinder color on o axis - c z- - The user can define, save, or load mappings, as well
as define and save views that highlight different elements
of the visualization. These views preserve a current state

• Poly cylinder shape - s
Every element v is a nine-tuple: j VÎ

- -{ , , , , , , , , }.j x yv p o p p z z c c s+ +=

of the visualization (i.e., the source data, the mapping,
and the current manipulations and visual parameters).

The default mapping is not ideally suited for all user
needs. When defining custom mappings, the user needs
to consider what types of data can be mapped to each
visual element. Some elements are better suited for
quantitative data, some for categorical data. In different
views, certain elements cannot convey information as
well as in others. Poly cylinder height, depth, and color
are best suited for quantitative data representation. Shape
and texture are suited for categorical data representation.
Only a very few shapes and textures should be used (2-3
types each). In addition, these attributes of the
visualization are less effective at increased zoom levels
and loose their effectiveness during overviews.
Reducing the diameter of the cylinder to one pixel will of
course remove this information from the visualization.

Position within containers and links between containers
are best suited for representation of relations.

Figure 2. A 2D overview of the Doxygen system containing 52 C++ source code files (56,962 LOC). Each file is mapped to
a container and the name of the file is shown on top of the container. Color is used to show profiling information – line

coverage (number of hits) in one execution. Light gray pixels are the unexecuted and darker pixels are executed lines. For
color figures see http://www.sdml.cs.kent.edu

Once the data is rendered based on the current
mapping, the user can manipulate any part of the
visualization, or change parts of the mapping. In the
design of sv3D, particular attention was given to user
interactions and manipulations. These aspects make the
difference between an effective 3D visualization and an
ineffective one.

4.2. Mapping and User Interaction

Based on the above-mentioned mechanism and visual
elements, much of the effort in the design and
implementation of sv3D is devoted to the definitions of
various mapping types and user interaction. Our working
hypothesis is that once the visual language is effective

and expressive enough, interaction and mapping are the
two most important elements that ensure the success of
the visualization. By offering a variety of mapping and
interaction mechanisms we can ensure that the user will
be able to generate a representation that best suits their
needs. Our view of the representation and user
interactions aspects of a software visualization system
subsumes many of the taxonomical categories proposed
by Price [16] and Roman [18].

q
a
c
2
a
t
d
c
c
t
C
c
l
a
r
s
1
r
s

cylinder/pixel. This type of mapping allows
representation of fairly large systems. The same
abstraction mechanism allows definitions of mappings
such that a function or a class is represented by a
container (see figure 3). By allowing these types of
mappings, sv3D can generate multiple views of a
software system at different abstraction levels. Different
engineering or maintenance tasks require understanding
of the system at various granularity levels. When
debugging for example, the user needs to see information
(e.g., a static or dynamic program slice) at line of code
level. For reverse engineering activities a high-level
view of the system (e.g., classes and/or files) would
typically be more useful.

As discussed previously, by using 3D metaphors we
can show more information in the visualization and more
complex data. The height of a cylinder is better suited
for representation of quantitative data than color. In
order to make this mapping even more effective future
versions of sv3D will also represent the projection on Ox
and Oy axis of the data points from the Oz axis, similar to
the way Advizor [5] shows this type of information.

One of the major drawbacks of 3D renderings is
occlusion. sv3D allows the user to deal with occlusion in
three different ways. One is through direct manipulation
of one or more containers (i.e., object and space
manipulation). Two types of manipulators are available:
handle box (figure 4a) for scaling and stretching, and
track ball (figure 4b) for rotation, along each axis. More
than that, the visualization can be paned and zoom in or
out. Figures 3 through 5 each show a few containers
zoomed in and rotated in different angles. The position
of the camera and light are fixed. While this is a simple
mechanism it is often unpractical to rotate parts of the

Figure 3. A 3D view of three functions from the file
utils.cpp in Doxygen. Both color and height represent

the same attribute (i.e., lines of code coverage as in
figure 2). The values for the height are normalized.

One of the goals of sv3D is to preserve all the

ualities of the original SeeSoft pixel representation and
s such sv3D can present a SeeSoft view by using
ylinders with a fixed height (i.e., height as zero). Figure
 shows the overview of a system with 52 files and
pproximately 56,000 lines of code. This view is similar
o the original SeeSoft metaphor and makes use of a two
imensional space to render the visualization. Each
ontainer is mapped to a source code file and each
ylinder/pixel to a line of text. File names are present in
he view, but they can be discarded if the user chooses.
olor is used to represent specific attributes of the source
ode (e.g., here color represents profiling information,
ine coverage in a particular execution). This feature
llows for the overview of large software systems and
elationships between different components. On a usual
creen, reducing the width of the pixels to 1, more than
00,000 lines of text with associated data can be
epresented. The user can choose to map a function (or
ome other meaningful program entity) to a

visualization or find camera angles and zoom levels that
suit multiple containers simultaneously.

The second method to deal with occlusion is through
transparency. The user can define various transparency
levels for elements of the visualization based on the
values of their attributes. For example, cylinders of
certain colors or height can be shown at a certain
transparency level. Figure 5b shows the same file and
container as figure 5a. In this view all the colors except
brown (medium gray scale) are 85% transparent. By
using transparency, the need for excessive direct
manipulation of the visualization is reduced. In
particular, parts of the visualization can be made 100%
transparent.

The third option of the user to handle occlusion is
elevation [2]. Figure 5c shows again the same file and
container as figure 5a. This time the container is split on
five levels. Each levels shows a number of functions
separated from the other colors.

a
p
s
i
v

[7]. In addition, the 3D space allows arranging the
containers in any position. We are also exploring ways
to use links between the 3D containers and arrange them
in a graph layout, much as we proposed in [14].

It has been shown that presenting the user multiple
views of the same system fosters better understanding
[17, 19]. To support this concept, sv3D allows the user
to define custom mappings to display different views of
the analyzed system. For example the user may choose
to represent attribute a1 with color and attribute a2 with
height. In a different mapping the user may want to
reverse this mapping (i.e., map a1 to height and a2 to
color). Different mappings not only better suit different
type of data, but also different types of users. Figures 4a
and 4b show such a reversed mapping. Each figure
shows the same file and the same attributes, but color and
height are mapped differently.

sv3D not only allows the user to define new mappings
but allows the display of these mapping in the same
space. We call this feature simultaneous alternative
mapping. There are two types of simultaneous
alternative mappings that we propose. One is depicted in
figures 4a and 4b. Both views can be displayed at the
same time and each representation can be manipulated
separately or together with its alternate.

The second type of simultaneous alternative mapping
separates one mapping into two components and shows
each sub-mapping in the same view. Figures 6a, 6b, and
6c show such an example. In figure 6a color, height, and
depth are used for mapping. Figures 6b and 6c show the
same file and attributes but depth is not used in this
mapping. Instead, two containers are created, each using
height and color only. The height of the cylinders in the
figure 6c corresponds to the depth used in figure 6a.
Once again, these alternate views can be shown
simultaneously, a feature that offers the user a chance to
evaluate which view best support their needs.

4.3. Implementation of sv3D

The user needs were the driving factors in the design
and implementation of sv3D and a high degree of
extensibility, flexibility, and performance is necessary.
In order to achieve these goals sv3D is designed as an
extensible application-framework using Qt (see
www.trolltech.com) for the user interface and Open
Inventor [23] for the rendering components. The SoQt
Toolkit (see www.coin3d.org) allows sv3D to use Qt and

Figure 4a. A 3D representation of one file from Doxygen
(outputlist.cpp). The container represents the file; each
cylinder represents a function; the color represents the
hit count for each function; the height of the cylinder

represents execution time of the function. A handle box
manipulator is active on the container.

Figure 4b. An simultaneous alternative mapping for the
file in figure 4a. Color and height mappings are
reversed. The container represents the file; each

cylinder represents a function; the height represents the
hit count for each function; the color of the cylinder

represents execution time of the function. A track ball
manipulator is active on the container.

While the use of color and 3D in the visualization

llow representation of various types of relationships,
ixel bar charts [12] and its variations do not directly
upport representation of hierarchical data. We are
nvestigating a variant representation based on set-based
isualizations of overlapping classification hierarchies

Open Inventor together to generate applications.
Qt is a well known cross platform GUI framework

(Linux KDE is built using Qt). Qt offers great portability
and generates common user interfaces. Since sv3D is
intended to be used in concert with other analysis tools
on various platforms, Qt was a natural choice for the GUI
implementation.

OpenGL has long been the standard cross platform
API for high quality, high performance interactive 3D
visualizations. However, a higher level toolkit suitable
for developing large visualization applications is
beneficial. Open Inventor is an open source high level
C++ object oriented toolkit originally developed at SGI.
The toolkit is system-independent and runs on major
platforms, such as Windows, Linux, and UNIX.

The data processing and mapping component is
currently implemented in two steps. The processing step
converts the value of each entity attribute to an internal
representation, normally as integers. The internal
representation of the visualization is a scene graph
allowing the management of complex visualizations. A
scene graph consists of 3D objects, called nodes,
arranged in a tree structure. Complex objects are
composed of collections of other simpler objects. The
visualization is rendered by traversing the tree. Scene
graph objects are constructed by creating a new instance
of the desired class and are accessed and manipulated
using the methods of the class. Nodes can be added or
removed from the scene graph dynamically allowing run
time user interaction. Open Inventor provides a number
of customizable manipulators to handle user interactions.
sv3D uses a standard Open Inventor file format to load
and store the 3D scene database and exchange with other
applications.

The input data for a sv3D application is in XML
format and sv3D utilizes the SAX XML parser in Qt to
process data files. We partially addressed one of the
burning issues in software visualization (i.e., scalability)
and all the implementation is in C++ and therefore offers
considerably higher efficiency in 3D rendering than
Java3D.

Figure 5a. A 3D representation of one file from Doxygen
(outputlist.cpp). The container represents the file; each
cylinder represents a line of code; the color represents
the function to which the line part of; the height of the
cylinder represents the hit count for the associated line.

Figure 5b. One function is selected, while the others are
represented with 85% transparency.

In addition, sv3D is designed such that the user can

extend its functionality easily. The core components of
sv3D are designed as an application framework. A
number of hot spots are provided that allow the user to
customize the framework and generate applications that
best suit its needs. The GUI can be extended and new
methods for mapping and new visual elements can be
defined. The user can also extend the framework to
define collaborations with other tools.

Figure 5c. Several functions are selected (based on

color) and elevated from the container.

5. Using sv3D to Support Comprehension

SeeSoft-like tools have a variety of uses in assisting
the user solving software engineering and comprehension
tasks. Obviously, sv3D can be used for all these tasks
such as: fault localization [11], visualization of execution
traces [17], source code browsing [8, 9], impact analysis,
evolution, complexity, and slicing [1], etc. In addition,
by allowing visualization of additional information (via
3D), sv3D can be used for solving other more complex
tasks. For example, in the case of Tarantula [11], using
height instead of brightness would improve the
visualization and make the user’s task easier.

s
a
s
e
p
u
s
p
p
s
e

Figure 6b. Simultaneous alternative mapping for the
view in figure 6a. It shows the same file with height

mapped to the same attribute, no depth, and no color.

Figure 6c. Simultaneous alternative mapping for the

Figure 6a. A 3D representation of one file from Doxygen
(outputlist.cpp). The container represents the file; each

cylinder represents a line of text; the color represents the
execution time of the function the lines is part of; the

height of the cylinder represents line hit count; and the
depth of the cylinder represents function hit count.

Section 4.2 discussed how the features of sv3D can

upport the user to gain a better understanding of the
nalysis data. We revisit some of these views in this
ection, explaining the analysis data that is shown. The
xample is based on what is described in [1] using
rofiling information to identify execution hot spots. We
sed a freely available version of Doxygen (a tool for
oftware documentation generation). To obtain the
rofiling data we used the Microsoft Visual Studio
rofiling tool. A simple parsing converts the output into
v3D input format. Table 1 shows the statistics of the
xecution.

view in figure 6a. It shows the same file (outputlist.cpp)
with height mapped to the attribute originally mapped

by depth, no current depth, and original color.

Table 1. Profiling data for one execution of Doxygen
Number of files: 52
Total functions: 7,944
Function coverage: 31.7%
Total function hits: 955,098
Call depth: 47
Total time: 1,351.145 millisecond
Time not in funct: 34.168 millisecond
Number of lines: 56,962
Line coverage: 18.5%
Total line hits: 3,253,792

Figure 2 shows a 2D overview of Doxygen, where
each .cpp file is mapped to a container and each pixel to a
line of code. The color represents the number of hits on a

particular line of code. The mapping to the color is
straightforward using the RGB scheme on a continuous
color subset ranging from dark blue to red (seen as gray
scale here). Figure 3 shows a different granularity
mapping. Each container is mapped to a function from a
file (utils.cpp). Color is mapped the same way as in
figure 2. Height is mapped the same (normalized)
attribute. If the task of the user is to identify the “hot
points” in the execution, from this dual mapping, color
seems to be a better choice than height, that is it is easier
for the user to identify a color in the 3D space than
compare the heights.

Of particular interest are the locations in the program
where the execution takes a long time or those lines of
code and/or function that have a very high hit count. As
shown by the figure 2 overview, color is a good choice to
map one of these attributes if viewing the system in a 2D
space (i.e., one attribute mapped to color). However, if
the user needs both types of information, at various
granularity levels, use of 3D is an added benefit for
comprehension. Figure 4a shows the representation of a
single file from the Doxygen system (i.e., outputlist.cpp),
rendered in the 3D space. The container represents the
file, while each cylinder maps a function from the file. It
is a higher level of granularity view than the one in the
previous view. As mentioned, choosing a higher
granularity level allows representation of data for larger
systems. The economy in space yields an easier and
more efficient manipulation. For example, the active
manipulator in the figure allows the user to stretch or
scale the figure 4a along every axis. The color of a
cylinder represents the hit count for each function, using
the same color conversion as in figure 2. The height of
the cylinder represents the normalized execution time of
the function in milliseconds.

Figure 4b shows an alternate mapping, where color
and height mappings are reversed. The container
represents the file. Each cylinder represents a function,
the height of the cylinder represents the hit count for each
function, and the color of the cylinder shows the
normalized execution time of the function. The user can
see both mappings at the same time and choose to
manipulate them simultaneously with a track ball, a
handle box, pan, or zoom. This way the user can decide
which mapping offers the best view of the system, thus
promoting a better understanding. Such a decision is of
course highly subjective and depends on the user.
However, some heuristics can be defined so that the
default mapping conforms to some rules.

Figures 6a, 6b, and 6c show another simultaneous
alternative view. In figure 6a one file from Doxygen is
represented (i.e., outputlist.cpp). The container
represents the file; each cylinder represents a line of text;
the color represents the execution time of the function the
lines is part of; the height of the cylinder represents line

hit count; and the depth of the cylinder represents
function hit counts. In this example each dimension in
the 3D space is used in the representation. While the
represented information is dense it can be easily studied
through manipulation. Occlusion is very probable when
both height and depth are used. If space is no issue and
also transparency or elevation is not preferred by the
user, an alternative mapping can be defined and
displayed. Figures 6b and 6c show the same information
as in figure 6a and this time the container is duplicated
and one copy (figure 6b) shows the top half of the
original, while the other (figure 6c) shows the bottom
half of the original (n.b., with no gravity settings, top and
bottom are relatively defined with respect to the static
image from figure 6a). This type of alternative mapping
allows a better distribution of the information across the
3D space and reduces the complexity of the elements.
Depending on the user task, a more complex
representation could be preferred to a simpler, yet
broaden view.

6. Conclusions and Future Work

The paper presents sv3D, an application framework
for software visualization. It is based on the SeeSoft [4]
pixel representation and 3D File Maps [17]. It brings a
number of extensions to these concepts, especially in
regard to the manipulation of the 3D structures. Using
transparency, elevation, 3D object-based manipulators,
and simultaneous alternative mappings sv3D overcomes
many of the shortcomings of 3D visualizations such as
occlusion. These features offer the user more flexibility
in defining views. The presented examples, while
simple, show how using 3D allows the representation of
multiple attributes and simultaneous alternative mappings
in one view.

In the future versions, position of the cylinder within a
container will represent some other type of information.
In its current version, sv3D only represent poly cylinders
with 4 edges and uniform fill. Variable number of edges
will be supported and also different textures. We need to
define these visual attributes very carefully to ensure
their usefulness. As mentioned previously, containers in
the 3D space may be connected by edges to form a 3D
graph. This will allow representation of hierarchical data
and also diagrammatic visualizations such as UML class
diagrams.

Several aspects are important to make sure that sv3D
fully exploits the advantages of the 3D space. First, a
stereoscopic version (sv3Ds) is being implemented. This
will be used with passive stereo displays and allow the
user to experience depth of the image through stereopsis.

One of the major problems of software visualization
tools is scalability. By using the 3D space, sv3D deals
with the real estate problem. However, efficiency is the

limiting factor for 3D renderings, in general. In the
current version, sv3D performs exceptionally well in
representing up to 40-50 KLOC. For larger software
systems the performance of the rendering and user
interaction is reduced. We are working on making the
rendering more efficient. We expect that the next version
will be very efficient in representing systems in the 100
KLOC range.

Finally, we need to conduct controlled user studies to
better assess the degree of support sv3D offers for
various comprehension tasks.

7. Acknowledgement

This work was supported in part by grants from the
Office of Naval Research N00014-00-1-0769 and the
National Science Foundation CCR-02-04175.

8. References

[1] Ball, T. and Eick, S., "Software Visualization in the Large",
Computer, vol. 29, no. 4, April 1996, pp. 33-43.

[2] Chuah, M. C., Roth, S. F., Mattis, J., and Kolojejchick, J.,
"SDM: Selective Dynamic Manipulation of Visualizations", in
Readings in Information Visualization Using Vision to Think,
Card, S. K., MacKinlay, J. D., and Shneiderman, B., Eds., San
Francisco, CA Morgan Kaufmann, 1999, pp. 263-275.

[3] Dos Santos, C. R., Gros, P., Abel, P., Loisel, D., Trichaud,
N., and Paris, J. P., "Mapping Information onto 3D Virtual
Worlds", in Proceedings of International Conference on
Information Visualization (IV '00), London, England, July 19-
21 2000.

[4] Eick, S., Steffen, J. L., and Summer, E. E., "Seesoft - A
Tool For Visualizing Line Oriented Software Statistics", IEEE
Transactions on Software Engineering, vol. 18, no. 11,
November 1992, pp. 957-968.

[5] Eick, S. G., "Visual Discovery and Analysis", IEEE
Transaction on Visualization and Computer Graphics, vol. 6,
no. 1, January/March 2000, pp. 44-58.

[6] Favre, J.-M., "A Flexible Approach to Visualize Large
Software Products", in Proceedings of ICSE'01 Workshop on
Software Visualization, Toronto, Ontario, May 12-13 2001.

[7] Graham, M., Kennedy, J. B., and Hand, C., "A Comparison
of Set-Based and Graph-Based Visualisations of Overlapping
Classification Hierarchies", in Proceedings of AVI 2000,
Palermo, Italy, May 23-26 2000.

[8] Griswold, W. G., Yuan, J. J., and Kato, Y., "Exploiting the
Map Metaphor in a Tool for Software Evolution", in
Proceedings of 23rd IEEE International Conference on
Software Engineering (ICSE'01), Toronto, Ontario, May 12-19
2001, pp. 265-274.

[9] Hannemann, J. and Kiczales, G., "Overcoming the Prevalent
Decomposition in Legacy Code", in Proceedings of ICSE 2001

Advanced Separation of Concerns Workshop, Toronto, Canada,
May 15 2001.

[10] Hubona, G. S., Shirah, G. W., and Fout, D. G., "3D Object
Recognition with Motion", in Proceedings of CHI'97, 1997, pp.
345-346.

[11] Jones, J. A., Harrold, M. J., and Stasko, J. T.,
"Visualization for Fault Localization", in Proceedings of ICSE
2001 Workshop on Software Visualization, Toronto, Ontario,
Canada, 2001, pp. 71-75.

[12] Keim, D. A., Hao, M. C., Dayal, U., and Hsu, M., "Pixel
bar charts: a visualization technique for very large multi-
attribute data sets", Information Visualization, vol. 1, no. 1,
March 2002, pp. 20-34.

[13] Knight, C. and Munro, M., "Comprehension with[in]
Virtual Environment Visualisations", in Proceedings of Seventh
IEEE International Workshop on Program Comprehension
(IWPC'99), Pittsburgh, PA, 5-7 May 1999, pp. 4-11.

[14] Maletic, J. I., Leigh, J., Marcus, A., and Dunlap, G.,
"Visualizing Object Oriented Software in Virtual Reality", in
Proceedings of International Workshop on Program
Comprehension, Toronto, Canada, May 21-13 2001, pp. 26-35.

[15] Maletic, J. I., Marcus, A., and Collard, M. L., "A Task
Oriented View of Software Visualization", in Proceedings of
IEEE Workshop of Visualizing Software for Understanding and
Analysis, Paris, France, June 26 2002, pp. 32-40.

[16] Price, B. A., Baecker, R. M., and Small, I. S., "A
Principled Taxonomy of Software Visualization", Journal of
Visual Languages and Computing, vol. 4(2), 1993, pp. 211-266.

[17] Reiss, S. P., "Bee/Hive: A Software Visualization Back
End", in Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, Ontario, Canada, 2001, pp. 44-48.

[18] Roman, G.-C. and Cox, K. C., "A Taxonomy of Program
Visualization Systems", IEEE Computer, vol. 26, no. 12,
December 1993, pp. 11-24.

[19] Storey, M.-A. D., Best, C., and Michaud, J., "SHriMP
Views: An Interactive Environment for Exploring Java
Programs", in Proceedings of Ninth International Workshop on
Program Comprehension (IWPC'01), Toronto, Ontario, Canada,
May 12-13 2001, pp. 111-112.

[20] Tavanti, M. and Lind, M., "2D vs 3D, Implications on
Spatial Memory", in Proceedings of IEEE Symposium on
Information Visualization (INFOVIS'01), San Diego, CA,
October 22-23 2001, pp. 139-148.

[21] Ware, C. and Franck, G., "Viewing a Graph in a Virtual
Reality Display is Three Times as Good as a 2D Diagram", in
Proceedings of IEEE Visual Languages, 1994, pp. 182-183.

[22] Ware, C., Hui, D., and Franck, G., "Visualizing Object
Oriented Software in Three Dimensions", in Proceedings of
CASCON'93, Toronto, Ontario, Canada, October 1993, pp.
612-620.

[23] Wernecke, J., The Inventor Mentor, 2nd ed., Addison-
Wesley Publishing Company, 1994.

	1. Introduction
	2. Related Work
	3. 2D versus 3D Representations
	4. The sv3D Framework
	4.1. Elements of the Visualization
	4.2. Mapping and User Interaction
	4.3. Implementation of sv3D

	5. Using sv3D to Support Comprehension
	Number of lines: 56,962
	6. Conclusions and Future Work
	7. Acknowledgement
	8. References

