
 

  

 

Aalborg Universitet

On Numerical Robustness of Bi-quad Structures using Fixed-Point Approximate
Multiplication

Koch, Peter; Østergaard, Jan; Andersen, Ove Kjeld

Published in:
Proc. 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC)

DOI (link to publication from Publisher):
10.1109/WPMC55625.2022.10014781

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Koch, P., Østergaard, J., & Andersen, O. K. (2022). On Numerical Robustness of Bi-quad Structures using
Fixed-Point Approximate Multiplication. In Proc. 2022 25th International Symposium on Wireless Personal
Multimedia Communications (WPMC): 5G Way Forward to 6G Article 10014781 IEEE.
https://doi.org/10.1109/WPMC55625.2022.10014781

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/WPMC55625.2022.10014781
https://vbn.aau.dk/en/publications/98c93779-8b58-4cf1-970a-ee3fb2d0f19a
https://doi.org/10.1109/WPMC55625.2022.10014781


On Numerical Robustness of Bi-quad Structures
using Fixed-Point Approximate Multiplication

Peter Koch, Jan Østergaard, and Ove Andersen
Department of Electronic Systems

Aalborg University
Aalborg, Denmark

(pk, jo, oa)@es.aau.dk

Abstract—Digital filters are key components in many applica-
tions related to wireless personal communication and multimedia
devices, some even portable and battery powered. The ability to
design and implement cost efficiently such filters is therefore of
significant importance. Recursive filters are known to have low
computational complexity (number of multiplication and addi-
tion) but at the same time they are numerically sensitive due to
their feedback loop. Therefore, using arithmetic functional units
with reduced accuracy might introduce some challenges, despite
their proficiency in physical size, execution time, and power
consumption. We are therefore interested in investigating to what
extent approximate multiplication can be used in different types
of bi-quad sections, which is the fundamental building block in
higher order IIR filter systems. We found that it is possible to
operate three selected types of such implementation structures
in the presence of additive noise from multipliers with different
degree of approximation, and we show that there are significant
performance differences of the structures, both in the time- and
in the frequency domain.

Index Terms—Approximate multiplication, Finite word length,
Recursive 2nd order filters, Additive noise, Simulation.

I. INTRODUCTION

For several decades, digital signal processing has been an
enabling technology used intensively in many applications
related to wireless multimedia communication. For instance,
the deployment of real-time signal processing hardware and
software has paved the way for Software Defined Radio
architectures to be an integrated part of mobile communica-
tion, [1]. In particular, digital filtering, sample rate conver-
sion, and signal analysis are examples of important functions
which are used in the front-end as well as in the base-band
sections of wireless communication devices, [2] [3]. Since
many such devices are often defined to comply with non-
trivial design constraints on area (A), execution time (T ), and
power consumption (PW ), researchers have developed many
different design methodologies to meet given specifications
while still maintaining the requirements on the overall system
performance. The performance depends directly on the accu-
racy of the arithmetic computations conducted on the target
architecture, i.e., numerical operations executed on a DSP, an
MCU, an FPGA or a mix hereof. Since the design metrics are
normally mutually dependent, an improvement in one metric
will most likely lead to a degradation in one or more of the
others, [4].

However, in some specific application domains, primarily
multimedia and other types of systems with human interaction
based on e.g., sound/hearing and image/vision, it is possible
though to relax somewhat the computational accuracy with
only a negligible impact on the overall perceived performance.
One possible way to do this is to employ arithmetic circuits
which intentionally perform the computations with reduced
accuracy, thus minimizing the overall circuit complexity [5].
Numerous such circuits have been suggested, mainly for
addition and multiplication, but also circuits for division have
been reported, [6]. Arithmetic circuits with this behaviour
belong to the category of Approximate Computing (AC).

AC circuits have been applied to signal processing functions
such as Finite Impulse Response (FIR) filters, Fast Fourier
Transform (FFT), and Discrete Cosine Transform (DCT),
e.g., [7], [8], [9], demonstrating the ability to obtain A-, T -,
and/or PW -reduction at the expense of a decreased accuracy.
These functions are all characterized by a feed-forward data
flow. Since AC arithmetic performs inexact operations, an
error is therefore introduced at their particular locations in
the algorithm/architecture, and thus these noise sources impact
directly the Signal to Noise Ratio (SNR) at the output.

For recursive algorithms, e.g., frequency selective Infinite
Impulse Response (IIR) filters, the application of AC arith-
metic is challenging. First and foremost, filters with sig-
nal feedback are known to be more sensitive to any noise
induced [10], thus potentially leading to an unacceptable
reduction in the output SNR. Secondly, IIR filters eventually
can become unstable due to unintended misalignment of the
pole locations. On the other hand, an IIR filter normally has
a significantly lower filter order, i.e., a lower computational
complexity, as compared to an FIR filter with a similar
specification. This makes IIR filters a strong candidate in many
applications with tight A−, T− and/or PW−budgets.

In order to further improve the overall cost function for
digital filters implemented in dedicated hardware, an idea
therefore is to introduce AC into IIR filter structures. However,
only very few works have previously been reported on AC
(or Approximate Processing) as applied to IIR filters. In [11],
the authors discuss an approximate filtering approach where
the filter order is dynamically adjusted in order to enable
time-varying stop band attenuation in proportion to the time-
varying input SNR, while maintaining a fixed output SNR. The
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purpose being to disable one or more of the 2nd order sections
of the overall filter when not needed. Another and much more
relevant work, [12], presents the design of an A-weighting
filter implemented as a 6th order IIR filter organized into a
cascade of 1st order sections. In this configuration, a subset of
the multiplications is conducted using approximate multipliers.
The authors show that approximate multiplication impacts the
ordering of the cascaded filter sections, and similarly they
show that the overall amplitude response is affected by the
amount of approximation used in the multipliers. Although
being a valuable contribution, this design exercise solely focus
on 1st order Direct Form I structures which represent only one
among several potential filter structures.

Various studies have shown that different IIR filter structures
behave differently in a finite word length context, but to
our knowledge no investigations have been published so far
illustrating how recursive filter structures generally perform
when operated in an AC environment. In our work we there-
fore conduct a series of simulation experiments where AC-
based multiplication is applied to different types of bi-quad
structures. For varying i) filter topology and ii) pole location,
we investigate how the degree of multiplier inaccuracy in
AC-based multiplications impact the overall numerical per-
formance of such filters.

The paper is organized with an introduction to approximate
multiplication in Sec. II, a description of the bi-quad structures
in Sec. III, a presentation and evaluation of the experimental
results in Sec. IV, and finally the conclusion in Sec. V.

II. APPROXIMATE RADIX-4 MULTIPLICATION

For signal processing applications it is almost always nec-
essary to conduct arithmetic operations using signed numbers,
and therefore the 2’s complement number representation is
often the preferred choice. Circuits for signed approximate
multiplication are described and evaluated in [6], several of
which are based on the Radix-4 Booth algorithm, [13].

Given two d-bit numbers X and Y being the multiplicand
and the multiplier, respectively, the product is P = X · Y .
In order to express Y as a 2’s complement number, we use
a notation where the MSB is indexed 0. This is opposite to
most literature, where the MSB is indexed d − 1, but in a
digital filter context where we scale the input signal (X), and
the coefficients (Y ) to the dynamic range [−1; 1[, this is a
convenient notation since Y can then be written as

Y = −y0 +
d−1∑
j=1

yj · 2−j (1)

where the fixed point is located just after the sign bit y0, and
where the product can then be expressed as

P = −y0 ·X +

d−1∑
j=1

(yj ·X) · 2−j (2)

It can be shown that the multiplier Y can be rewritten as

Y =

d−1∑
j=1,odd

(yj + yj+1 − 2 · yj−1) · 2−j (3)

which enables the product to be calculated alternatively as

P =

d−1∑
j=1,odd

(zj ·X) · 2−j (4)

where

zj = yj + yj+1 − 2 · yj−1; zj ∈ {0,±1,±2} (5)

From Equ. (4) and (5) it is concluded that P is the sum
of d/2 left-shifted and sign-extended partial products (PP)
which can take on the values {0,±X,±2X} depending on the
pattern of three consecutive bits of the multiplier Y , starting
with y0 at the MSB end.

In the general case where d can be even or odd, Equ. (3)
can now conveniently be expressed as

Y =

⌈ d
2 ⌉−1∑
j=0

(y2j+1 + y2j+2 − 2 · y2j) · 2−(2j+1) (6)

from which we finally derive the expression for the product

P =
1

2
·
⌈ d

2 ⌉−1∑
j=0

X · zj · 4−j (7)

Equ. (7) shows that the PPs are individually shifted two
bit positions against each other (i.e., Radix 4), and that P is
obtained after a 1-bit right shift of the sum of the ⌈d

2⌉ PPs.
In our experiments we have opted for an AC multiplier

denoted ”Broken Booth Multiplier” (BBM) which is based on
Equ. (7). The argument for this choice is that the BBM repre-
sents a sound compromise between execution time and power
consumption, against the metric Mean Relative Error Distance
which is often used for evaluation of AC circuits, [14].

The BBM can be implemented using two different modes,
denoted as Type 0 and Type 1, respectively. We use Type 0
where all the PPs are completely calculated prior to sign-
extension and addition using a 2’s complement number repre-
sentation, no matter the actual sign of the individual PPs. In
the Type 1 scenario, some of the negative PPs are represented
as 1’s complement numbers, thus potentially reducing the need
for one or more LSB additions. This saving is possible since
X2′s comp = X1′s comp + LSB = X + LSB which indicates
that the Type 1 scheme may introduce a larger error due to
the omitted LSB addition. Fig. 1 shows the two BBM types.

Note from Fig. 1 that i) the PPs, according to equation 4,
are consecutively left shifted two bit positions due to their
individual numerical weighting, and ii) the PP word length
equals d+1 bit which stems from the potential multiplication
with ±2. The figure also illustrates a dotted vertical line known
as the Vertical Breaking Level (VBL), which represents the
fundamental concept in this approximate multiplier. The idea
is that all bits to the right of the VBL are nullified (grey dots
on Fig. 1), thus eliminating the need for additions in these bit
positions, and thereby reducing the circuit complexity at the
expense of inexact products.

In [14], the VBL is defined in the interval [0; d − 1], 0
representing the LSB position of the least significant (i.e., the



Fig. 1. The BBM shown for a 12x12 bit multiplication, Type 0 (a) and Type 1
(b). In Type 0, the addition of 1 LSB is included into the negative valued
PPs, whereas in Type 1 this is true only for the negative valued PPs which
doesn’t have their LSB nullified, i.e., the LSBs to the left of the VBL, [14].

topmost) PP. In our implementation of the Type 0 BBM, we
extend VBL to be defined in the interval [0; 2d − 1], thus
enabling all bits in the product to be nullified.

We have built a simulation model of the Type 0 BBM which
is a parameterised d×d bit multiplier, where the accuracy can
be adjusted, i.e., d and VBL are presented as input parameters
along with the multiplier and the multiplicand. For VBL = 0,
an exact product is calculated, given the word length d. The
two input operands are fed into the multiplier as floating point
numbers, both numerically less than 1, and are next converted
into d-bit 2’s complement numbers, d restricted to be even.

Using Equ. (7), a total of d
2 2’s complement PPs are next

derived. Starting with the least significant PP, zeros are then
inserted from LSB towards MSB according to the given VBL
value, and the PPs are next converted back to floating point
number representation, scaled due to their individual weight
factor, and added. Finally, the sum is down-scaled with a factor
of 2. The final product P is therefore a floating point number,
numerically less than 1, and with an accuracy equivalent to a
2d-bit 2’s complement representation.

In order to get an insight into the numerical behaviour of
the BBM, we generated 104 products based on pseudo-random
input operands drawn from a uniform discrete distribution,
all in the interval [−1; 1[. We measure the Error Distance
(ED) defined as the difference between the approximate and
the exact products. Overall, we found that the Type 0 BBM
produces errors which are always negative and which tend to
be normal distributed with mean and standard deviation being
dependent on d and VBL. In order to consider how we should
model this error, we investigated the correlation ρ between the
exact product P and the ED;

ρ = E[P · ED] ≃
∑N

j=1 Pj · EDj√∑N
j=1(Pj)2 ·

∑N
j=1(EDj)2

(8)

Fig. 2 shows an example of the ED distribution for the
situation d = 16, VBL = 14, and N = 104. For these values
we typically found |ρ| < 0.01 indicating a limited correlation

between the product and the error. Thus, we safely conclude
that the error can be considered as an additive noise source.

Fig. 2. The ED distribution for the Type 0 BBM excited by 104 random
input operand pairs all numerically less than 1. The partial products which
are impacted by the VBL-operation are all decreased numerically due to the
nature of 2’s complement, and therefore the error is always negative.

III. FIXED-POINT BI-QUAD FILTER SECTIONS

The general transfer function for the bi-quad sections inves-
tigated in this work is given as

H(z) =

∑2
i=0 biz

−i

1−
∑2

j=1 ajz
−j

(9)

which we express in the time-domain by the constant coeffi-
cient difference equation

y[n] =

2∑
j=1

aj · y[n− j] +

2∑
i=0

bi · x[n− i] (10)

We implement Equ. (10) using three different bi-quad
structures; the Direct Form I (DF-I), the Direct Form II
(DF-II), and the Direct Canonical Form (DCF) as shown in
Fig. 3. Using floating point arithmetic, these structures are
characterized by numerically equivalent I/O-relations. In a d-
bit fixed-point environment however, this behaviour is it not
guaranteed due to the introduction of quantization errors which
originate from either i) the individual products or ii) the
accumulated products being quantized from 2d to d bits, [15].
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Fig. 3. Three different types of bi-quad sections; (a) Direct Form I, (b)
Direct From II, and (c) Direct Canonic Form. The Direct Form I and II are
implementations of Equ. (9) whereas the Direct Canonic Form is based on a
rewritten version of the transfer function, here shown under the structure.

In our simulation model we perform all product accumu-
lations in double precision, which means that quantization



is introduced only at the locations indicated with a Q in
Fig. 3. The quantization Q is implemented using rounding.
The 2d-bit additions are performed by adder modules, which
i) accept floating point operands on the input, ii) convert these
operands into 2’s complement representations, iii) perform bit-
parallel addition using a Ripple Carry Adder (RCA) including
overflow detection, and finally iv) convert the resulting sum
back to floating point representation. This strategy implements
an efficient interface between the multipliers and the adders,
essentially enabling the multiplications and the additions to be
conducted in any word length, respectively.

We use the BBM for all multiplications in our simulations.
Due to its approximate behaviour, the generated products are
negatively biased which we model as an additive normal
distributed noise sequence emult[n] injected after each mul-
tiplication, see Fig. 4. The additive nature of the multiplier
error combined with the linearity of Equ. (10) enables us
to reduce the multiplier noise sources into one single source
denoted emult k[n] in Fig. 3, where k indicates the number of
multiplications which add up to the resulting noise source.

Thus, in our recursive filter structures, there are two dif-
ferent noise sources in the feedback path, Q and emult k[n],
which are functions of d, as well as d, VBL, and k, re-
spectively. Normally, Q can also be modelled as an additive
sequence which, under certain conditions, is assumed being a
white signal equally distributed in [−∆/2;∆/2[ (for rounding)
and with variance σ2

q = ∆2

12 , where ∆ = 1/2(d−1) represents
1 LSB. Despite this assumption, we do not conclude that
the two noise sources are mutually independent, and we
do also not investigate further this question, thus keeping
them separated. We next address how the filter coefficients
potentially influence emult k[n], i.e., the overall numerical
robustness of the filter structures.
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Fig. 4. An exact d×d bit multiplier (a) generates a 2d-bit product. Similarly
does the BBM (b), but the product has superimposed noise for VBL ̸= 0.
Referring to Fig. 2, for d = 16 and VBL = 16, we found emult[n] to be
normal distributed with mean µ ≈ −1.7e−4 and variance σ2 ≈ 3.1e−9 for
uniform distributed inputs. For VBL = 8, µ ≈ −3.2e−7 and σ2 ≈ 2.3e−14.
In comparison we note that for d = 16, σ2

q = 7.8e−11, and mean µq = 0.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the numerical properties of the different
bi-quad sections, we conduct a series of experiments where we
investigate the time domain as well as the frequency domain
behaviour. We excite the filters with the impulse signal s ·δ[n],
where n ∈ [0;N − 1], and s is a scalar used to adjust the
signal level in order to avoid internal overflow in the filters.
Since we are not aiming for the design of filters with the
highest possible output SNR, but rather want to derive relative
performance indicators, we do not perform scaling in a strict

mathematical sense. Alternatively, we empirically select s =
0.5 which leads to a safe compromise between utilization of
the 2’s complement dynamic range [−1; 1[ and elimination of
overflow in the variables where overflow is not allowed.

We measure the impulse responses from two versions of
each structure, one exact response hex[n] from a floating-point
implementation, and another approximate response hap[n]
obtained using a d-bit BBM and a 2d-bit RCA. From these
responses we calculate the residual energy defined as

σ2
h =

N−1∑
n=0

(hex[n]− hap[n])
2 (11)

where N is chosen sufficiently large in order for the impulse
response to reach its steady state. We found that N = 1000 is
a viable value for our experiments. This metric gives an insight
into how much an inexact filter deviates from the exact one in
the time domain. Excitation signals other than δ[n] could have
been chosen, but since we are also interested in the frequency
domain behavior, we opted for this input.

According to the Parseval relation, a residual energy, identi-
cal to σ2

h, will emerge if the two associated spectra, |Hex(e
jω)|

and |Hap(e
jω)|, are compared directly. Since our aim is to

evaluate how the different filter structures perform against each
other in the frequency domain, we alternatively apply the RMS
Logarithmic Spectral Distance, [16], defined as

Ŝ =

√√√√ 2

N

N
2 −1∑
n=0

[ln(
|Hex(ej

2π
N n)|

|Hap(ej
2π
N n)|

)]2 (12)

where we evaluate the frequency range from DC to fsample/2.
No practical filter is exactly band limited and thus |H| > 0
holds for both amplitude responses involved.

Since in all three bi-quad structures the BBM noise is
introduced into the critical feedback path, we limit our ex-
periments to focus on varying the pole locations, i.e., for
all experiments we fix the bi coefficients and alter the aj
coefficients only, Equ. (9). We opt for a double zero in z = −1,
i.e., b0 = b2 = 0.5 and b1 = 1, (1 − ∆ in 2’s complement).
All experiments are therefore conducted on filters with a
low-pass characteristic. The aj coefficients are derived from
pole locations specified using polar coordinates, (r, Θ). We
choose only pole locations for which r < 1. In many cases
however, it turns out that the coefficient 1 ≤ |a1| < 2,
which cannot be represented by the Q1.d-1 format that we
use for the coefficients. We therefore split the coefficient
into two coefficients each equal to a1/2 and then perform
two multiplications and one more addition. This eventually
increases the number of BBM noise sources by 1 (not shown
in Fig. 3).

Our simulations are all conducted with word length d = 16,
and with VBL = {0, 8, 16}. The results in terms of σ2

h and Ŝ
for each of the three bi-quad structures are shown for selected
r and Θ in Table I, II, and III. Note that Table I represents an
exact 16-bit reference.

Initially, we note that in almost all cases, σ2
h and Ŝ deterio-

rate when r → 1 no matter the VBL value. This general trend



TABLE I
RESIDUAL ENERGY AND SPECTRAL DISTANCE FOR DIRECT FORM I,

DIRECT FORM II AND DIRECT CANONICAL FORM. d = 16, VBL = 0.

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 9.384e-7 5.995e-7 8.951e-7 6.026e-7 9.198e-7

0.2085 0.1670 0.1216 0.0968 0.2985
0.95 1.327e-5 1.284e-5 2.004e-5 1.314e-5 1.884e-6

0.3160 0.2463 0.3427 0.2526 0.1466
0.99 1.381e-4 1.012e-4 3.063e-4 1.423e-4 1.204e-4

0.4346 0.4610 0.5234 0.5270 0.2214

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 3.679e-6 6.035e-7 4.520e-7 7.193e-9 4.617e-9

0.2646 0.2410 0.2242 0.1632 0.0345
0.95 8.531e-5 2.530e-5 9.697e-6 2.070e-6 4.019e-7

0.4277 0.3623 0.2554 0.2464 0.0554
0.99 2.251e-4 2.533e-4 8.727e-5 2.645e-5 1.150e-6

0.4788 0.5301 0.4311 0.4560 0.1669

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 8.288e-6 2.677e-6 8.951e-7 3.028e-7 9.169e-7

0.0018 0.0008 0.0012 0.0018 0.0003
0.95 1.926e-4 6.025e-5 1.939e-5 8.567e-6 1.889e-5

0.0042 0.0022 0.0015 0.0021 0.0011
0.99 12.00e0 5.504e-4 1.747e-4 8.542e-5 5.086e-5

2.7245 0.0083 0.0029 0.0026 0.0019

TABLE II
RESIDUAL ENERGY AND SPECTRAL DISTANCE FOR DIRECT FORM I,

DIRECT FORM II AND DIRECT CANONICAL FORM. d = 16, VBL = 8.

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 9.354e-7 5.995e-7 8.951e-7 6.019e-7 9.198e-7

0.2068 0.1670 0.1216 0.1316 0.2985
0.95 3.260e-6 1.283e-5 2.004e-5 1.314e-5 1.795e-6

0.1909 0.2666 0.3447 0.2647 0.1919
0.99 1.329e-5 9.202e-5 2.802e-4 1.241e-4 6.331e-5

0.1502 0.4537 0.5267 0.5195 0.2006

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 3.710e-6 1.490e-6 4.520e-7 3.044e-7 6.557e-9

0.2263 0.3039 0.2242 0.1910 0.1037
0.95 1.297e-5 2.923e-5 9.692e-6 3.375e-6 1.800e-7

0.3346 0.2776 0.2556 0.1882 0.1054
0.99 2.900e-5 2.385e-4 7.934e-5 2.419e-5 4.110e-7

0.3186 0.4846 0.4382 0.4797 0.2438

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 8.299e-6 2.677e-6 8.963e-7 3.026e-7 9.088e-7

0.0018 0.0008 0.0012 0.0018 0.0003
0.95 2.908e-5 6.028e-5 1.937e-5 8.557e-6 1.712e-6

0.0034 0.0020 0.0015 0.0021 0.0008
0.99 12.00e0 5.042e-4 1.588e-4 7.278e-5 1.222e-5

2.7247 0.0080 0.0027 0.0023 0.0014

is expected due to a decreased SNR when the pole locations
approach the unit circle [10], in particular for the DCF with
pole locations at low frequencies.

Next, we make the following general observations. Com-
pared against the reference, i.e., VBL = 0, for VBL = 8 and
Θ = π/6 none of the structures, for any pole radius, show
impaired performance in neither time nor frequency. Rather
we see improvements in many cases. This is interesting since
a degradation would normally be expected when noise is
introduced. One reason for this result may relate to the fact that
(for all structures) poles located at a low frequency lead to a

TABLE III
RESIDUAL ENERGY AND SPECTRAL DISTANCE FOR DIRECT FORM I,

DIRECT FORM II AND DIRECT CANONICAL FORM. d = 16, VBL = 16.

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 2.841e-3 4.943e-4 6.137e-7 6.055e-5 7.711e-5

0.6300 0.3775 0.3862 0.3829 0.3785
0.95 5.078e-3 6.763e-4 2.619e-4 2.559e-4 1.900e-3

0.6988 0.6051 0.4544 0.2189 0.5068
0.99 1.585e-2 3.240e-3 2.434e-3 2.641e-3 4.181e-3

0.5689 0.7540 0.6815 0.6503 0.4760

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 1.379e-2 2.229e-3 7.417e-7 3.037e-4 3.438e-4

0.7896 0.6009 0.3899 0.2918 0.1073
0.95 1.824e-2 2.580e-3 1.468e-4 2.700e-4 1.383e-4

0.8222 0.5752 0.3856 0.3092 0.3146
0.99 5.982e-2 8.666e-3 8.833e-4 8.653e-4 2.237e-4

0.8726 0.6615 0.5812 0.5684 0.2889

r, Θ π/6 π/3 π/2 2π/3 5π/6
0.8 3.481e-2 5.229e-3 2.212e-6 1.082e-3 6.469e-4

0.0323 0.0365 0.0032 0.0524 0.0495
0.95 4.295e-2 6.408e-3 2.471e-4 7.519e-4 9.872e-4

0.0411 0.0441 0.0501 0.0426 0.0554
0.99 12.14e0 1.769e-2 1.623e-3 2.387e-3 3.563e-3

2.7233 0.0450 0.0458 0.0250 0.0442

slowly varying impulse response which enters into steady-state
after a certain number of samples, depending on the value of
r. In steady-state, the impulse response will be characterized
by zero-input limit cycle oscillations for VBL = 0 which
however, do not occur to the same extent for VBL = 8. Due to
the BBM-induced noise, a signal is circulating in the recursive
part of the structures thus preventing the output signal from
entering the limit cycle dead band, and therefore there are
no or reduced output signal oscillations. In such a case, we
see a better agreement between the exact and the approximate
responses, and thus a smaller residual energy.

Comparing the structures for VBL = 8 against the refer-
ence, we observe that the DF-II has the highest instances
of performance degradation, in particular for r = 0.8 and
r = 0.95. On the other hand, in most cases the DF-I
shows comparable performance, with several exceptions in
the frequency domain for r = 0.95. Most remarkable though,
is the DCF which in almost all cases shows comparable (or
better) performance. In addition to the previously mentioned
argument concerning reduced limit cycles activity, we explain
this with a reference to Fig. 3 which shows that the DCF
has only two multiplier-related noise sources in its feedback
loop, whereas the DF-I has 5. The DF-II also has only two
noise sources in its recursion, but due to the direct coupling
from input to output (via the coefficient b0) in the DFC,
this structure benefits from a non-filtered input signal added
directly at the output. We assume this feature overrides the
noise induced in the feedback loop. Note that the structures
are comparable in the sense that both has 3 noise sources
acting directly at the output.

Performing a time-domain comparison between the three
structures for VBL = 8, we find a consistent indication that
DF-I is superior for Θ = π/6 and Θ = π/3, whereas DF-II



is the better for other Θ-values, no matter the r-value. One
reason for this may relate to the number of oscillations in
the variables which increases for larger Θ. With fewer BBM
noise sources in its recursion, the DF-II structure may be better
suited to cancel the negative biased BBM noise for a fast
fluctuating signal due to more positive and negative samples
per time unit for larger Θ. Also, it is worth pointing out that for
all structures, we see very little deviation in the performance
as compared to the reference for Θ = π/2. We explain this
behaviour by the fact that for this Θ-value, the coefficient
a1 = 0 which therefore eliminates one of the multiplications,
and therefore one noise source in the feedback loop.

Now, turning into our second experiment where VBL = 16,
we first observe an almost consistent performance degradation
for all structures and pole locations (the exception being for
DF-I, (r,Θ) equal to (0.8, π/2) and (0.95, 2π/3)). First we
observe, despite deviations in σ2

h up to a factor of 104, and
a factor of 10 in Ŝ (as compared to the reference), that
we never experienced unstable behaviour in any combination
of implementation structure and pole location. This clearly
indicates the ability of all three structures to operate with
an approximate multiplier which generates products having
the least significant half of the word nullified. This is a
valuable result as it indicates (at least for the BBM) a potential
significant saving in A-, T -, and PW .

Next, our simulation results provide a sound basis for a
direct comparative study of the structures under the severe
VBL = 16 condition. As compared to VBL = 8, for all struc-
tures we note a significantly smaller variation in term of both
σ2
h and Ŝ when r increases from 0.8 towards 0.99, for all Θ-

values. This indicates that all three structures become more
affected when the BBM noise is increased, even for filters
with a low qualify factor (i.e., for r = 0.8). Comparing the
structures in the time domain, we see that for r = 0.8 and
r = 0.95, the DF-I outperforms the DF-II and the DCF, in that
order, for Θ equal to π/6, π/3, and 2π/3. Again, Θ = π/2 is
a special case with a1 = 0 which eliminates one multiplication
in the recursion, thus making the performance of the structures
almost identical. For r = 0.99, the DF-II has the best time
domain performance for Θ ≥ π/2. Finally, a comparison in
the frequency domain shows an almost opposite situation with
the DCF being superior to both DF-I and DF-II (the exception
being for r = 0.99 and Θ = π/6). More in-depth analysis
and comparisons of the time-domain and frequency-domain
responses are needed before we draw any definitely conclusion
on this important observation.

V. CONCLUSION

We have addressed the very challenging problem of using
approximate multiplication in recursive 2nd order filters. We
have opted for the Radix-4 Broken Booth Multiplier and
shown that it generates a negative biased error which can be
modelled as a normal distributed additive noise source with
a variance dependent on the word length d and the VBL-
value. In addition to the traditional quantization noise Q, the
BBM noise impacts the feedback loop and thus the output of

three selected bi-quad structures, DF-I, DF-II, and DCF. For
d = 16 we have experimented with VBL up to 16 bit, and we
found that it is possible to safely operate the filters under this
condition, where the lower half of the products is nullified. The
structures show very distinct numerical performance towards
the VBL-value as well as to the pole locations, both in the
time- and frequency domain. Our results clearly indicates that
for a high VBL-value and for pole locations close to the unit
circle, which represents the most critical design situation, the
DF-II has the better time-domain performance, whereas the
DCF provides the best frequency-domain performance, the
exception being for low frequency pole locations where the
DF-I is superior. We have derived numerous important results
which, as expected, have also led to many new research ques-
tions. Thus, our work ahead will address theoretical research
which should clarify i) determination of the output SNR as
a function of d and VBL, and ii) the relation between emult

and Q. Additionally, we will extend our experiments beyond
simulation studies and evaluate how AC bi-quads perform in
real wireless and multimedia communication applications.
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