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Abstract—In this paper we present a novel probabilistic
approach to activity recognition. Our approach is to estimate
posterior probabilities of different activities using Bayes’ rule.
The approach can handle any type of activities as long as it
is possible to estimate the conditional probabilities of potential
observations, and easily scales to large numbers of activities.
We test our approach empirically in an environment where
observations are GPS signals of users moving around in a city.

I. INTRODUCTION

Activity recognition is the problem of inferring the intent

of a given user or group of users through observation of their

behavior. Activity recognition is a form of cognitive inference

since the intent of a user is unobservable to anyone except the

user itself. Sensors typically include GPS signals, cameras,

accelerometers, gyroscopes or any other devices that can help

disambiguate a user’s activity.

In this paper we present a Bayesian approach to activity

recognition. In our approach, each activity has an associated

likelihood of being the activity currently pursued by the user,

i.e. a normalized posterior probability that is updated as a

result of each new observation. An algorithm for activity

recognition can either output the most likely activity or a list of

the most likely activities together with their relative likelihood.

Our approach has two main advantages: it is independent of

the actual activities and sensors used in a particular instance of

activity recognition, making it a flexible choice with potential

use in many different applications. The only specification that

the algorithm needs as input is the conditional probability

of making a certain observation given a particular activity,

which can either be provided by a system expert or estimated

experimentally. Our approach also appears to scale very well

to instances that include many thousands of different activities.

We implement our approach as part of a system that relies

solely on GPS signals to track a single user. Our system

consists of two modules: a city model representing the geo-

graphical area in which the user is moving, and a recognition

module that receives as input a sequence of GPS signals and

outputs a ranking of the user’s most likely activities.

Existing approaches to activity recognition using GPS sig-

nals include hierarchical conditional random fields [1] and

clustering to detect recurring patterns of visiting locations

[2], [3]. Several researchers have also applied data mining to

trajectory data, using the information to build ontologies [4],

[5], [6], [7], [8] or simply to extract meaningful patterns [9].

A similar idea to ours was proposed in the more restricted

context of visual recognition from images [10].

The rest of the paper is organized as follows. In Section II

we present the methodology behind our approach. In Section

III we describe our framework for testing the approach exper-

imentally. Section IV presents results of experiments, while

Section V concludes with a discussion about future work.

II. METHODOLOGY

Accurately estimating the current activity of a user is a

challenging problem since many variables are unobservable.

Depending on the sensors used, it may be hard to establish

precisely what the user is doing, and as already mentioned, a

user’s intention is unobservable to any sensor. We therefore opt

for a probabilistic framework where the likelihood of potential

activities are expressed using probabilities.

Formally, our approach attempts to infer the posterior prob-

ability P (A|O) of each potential activity A, where O is the

sequence of observations. Using Bayes’ rule we can rewrite the

posterior probability as P (A|O) = α P (O|A) P (A), where α
is a normalization constant, P (O|A) is the conditional prob-

ability of observing O given that the activity is A, and P (A)
is the prior probability of activity A. The prior probability

P (A) can either be estimated using prior knowledge about the

relative frequency of different activities or, if such information

is unavailable, simply be defined as a uniform distribution.

We use a Markov decision process, or MDP, to approximate

the effects of repeated decisions of the pedestrian. An MDP

is composed of a set of states, each representing a possible

current situation, and a set of actions, each representing

a possible decision. In this setting, an observation can be

viewed as a state-action pair, and the set of observations

O = 〈s1, a1, s2, a2, . . . , sk+1〉 as a sequence of such state-

action pairs, ending in a state sk+1. Given an initial state s1,

we can write the conditional probability Ψ = P (O|A, s1) as

Ψ =
k

∏

i=1

P (ai|A, si) P (si+1|si, ai) = β
k

∏

i=1

P (ai|A, si),

where P (ai|A, si) is the probability of choosing ai in si when

performing activity A and P (si+1|si, ai) is the probability of

transitioning from si to si+1 when taking ai. The constant β
reflects that the transition probabilities are the same for all A.



Our approach is to compute P (A|O) based on the observa-

tion sequence O and the conditional probabilities P (ai|A, si).
In other words, what matters are the decisions made by the

user at each point. To use our approach, all that is necessary

is to define the states and actions used as part of observa-

tions, and specify the conditional probabilities P (ai|A, si) of

choosing action ai in state si when the user performs activity

A. Two alternatives for specifying P (ai|A, si) are consulting

with a domain expert or estimate them experimentally.

In addition to computing posterior probabilities, we add a

filtering mechanism that allows us to weigh posterior probabil-

ities according to some probability distribution. Specifically,

if Φ is a probability distribution on activities, the filtered

posterior probability of a given activity A and observation O
equals F (A|O) = Φ(A)P (A|O). Although the distribution Φ
is similar to the prior probability distribution on activities, we

distinguish between the two concepts since, unlike the prior

probability, we allow the distribution Φ to vary over time.

III. IMPLEMENTATION

In this section we describe the concrete implementation

of a system that we used to test our approach. Our system

consists of a city model describing the environment of the user,

and an activity recognition module responsible for ranking

activities according to likelihood. The only input to the activity

recognition module is the sequence of GPS signals of a

given user. The absense of more fine-grained sensory data

makes activity recognition challenging since our system cannot

observe, for example, whether a user stops to look at the menu

of a restaurant or to browse the window of a shop.

A. City Model

The city model of our system consists of three parts: a

road network that represents the physical connections of a

city (roads, cycleways, pedestrian zones, etc.), a database

containing information about specific points of interest in the

area (shops, restaurants, museums, etc.), and a viewshed that

enables fast computation of whether a given point of interest

is visible from another location. For brevity we omit many of

the details of how the city model is constructed, and we only

describe the most important features here.

The road network consists of junctions (where roads meet)

and edges between junctions. Each edge is a sequence of

linear segments that describe the twists and turns of the

corresponding road segment. Each road segment also includes

information about the type of road and the street name (in

cases where the road segment is part of a street).

The database contains information about points of interest

in the city. Each point of interest has a type, a name, and

an estimated location; the exact location is in general difficult

to ascertain. We connect each point of interest to the road

network by projecting the estimated location onto the closest

road segment. In case the point of interest is a building or part

of a building, the projected location provides an estimate of

where the entrance is located.

Fig. 1. Part of the road network for Edinburgh (Copyright: Ordnance Survey).

In experiments we used two instances of the city model,

each representing a specific city (Edinburgh and Stockholm,

respectively). The Edinburgh city model contains approxi-

mately 8,750 junctions, 6,800 edges, and 3,300 points of

interest. The Stockholm city model contains 7,700 junctions,

3,000 edges, and 1,000 points of interest. Figure 1 shows part

of the road network for Edinburgh, including junctions and

edges; street names and other information are excluded.

B. Activity recognition

We divide activities into two categories: points of interest

and abstract activities. The former includes specific locations

that the user may want to visit, while the latter includes general

activities such as “look for a restaurant”, “visit a shop”, “go

to a bar”, etc. When pursuing a general activity it is assumed

that the user is not looking for a specific location, although the

user may prefer some locations over others. We also include

a special activity associated with ambling, i.e. exploring the

city without any particular goal in mind.

For each category, the output of the recognition module

is a list of the N most likely activities of that category.

Since P (A|O) tends to be very small and it is the relative

probabilities that matter, we normalize the output such that the

most likely activity A∗ of each category has a score of 100.

Each other activity A has a score of 100 · P (A|O)/P (A∗|O).
The ranking is simply an ordered list of activities with scores

in descending order. For some points of interest we estimated

the prior probability from user generated content (details),

approximating the “popularity” of each. For the remaining

points of interest we assumed a uniform prior distribution.

When using GPS signals, the only relevant information

available is the location and direction of the user. We therefore

focus on the relevant choices that the user makes with respect

to location and direction. Our implementation ignores the

user velocity since variation in speed may depend on factors

(e.g. user mobility) that are unrelated to the types of activities

that we consider. Although different activities may spur the



user to walk at different speeds, it is mainly direction that

determines what location or activity the user is interested in.

If the system believes that the user has finished doing an

activity, there is a reset mechanism that essentially restarts

the system and resets the posterior probabilities of activities

according to the prior distribution. In this way, the system

has a larger chance of not becoming confused when the user

is pursuing several, apparently conflicting, goals. The current

reset mechanism is inspired by Pareto’s principle: when the

top hypothesis dominates the others by a factor that exceeds

a threshold, the system resets itself.

1) Points of Interest: When the goal is to reach a point of

interest, we assume that the user has basic knowledge of the

location. To reach a point of interest the user would either

have to look at a map or ask for directions. If the user has no

idea of the location, there is little the recognition module can

do to infer the current activity. We can therefore use the city

model to estimate the likelihood of going in a certain direction

given that the goal is to reach a point of interest.

Due to uncertainty in the GPS signal, it is difficult to observe

detailed choices of the pedestrian with respect to location and

direction. We therefore focus on four main decisions:

1) Decide which direction to go at a junction.

2) Change direction along an edge of the road network.

3) Decide when to stop at a particular location.

4) Decide when to start walking again.

In each case we take uncertainty into account, e.g. we do not

consider that a user has stopped until several seconds have

passed, otherwise a noisy GPS signal could lead to false beliefs

about the user’s movements.

For each junction j and each point of interest poi, we

precompute the optimal distance dist(j, poi) between j and

poi along the road network. Given two neighboring junctions

j and k and a point of interest poi, we define a likelihood

L(k|poi, j) that we use as a substitute for the conditional

probabilities P (ai|A, si): the activity is to reach poi, the

current junction is j, and the action is to go towards junction

k. We use the optimal distances to estimate L(k|poi, j) as

L(k|poi, j) =
dist(j, k) + dist(j, poi) − dist(k, poi)

2 · dist(j, k)
,

where dist(j, k) is the distance between the neighboring

junctions j and k. Note that 0 ≤ L(k|poi, j) ≤ 1 since

dist(j, poi) and dist(k, poi) can differ by at most dist(j, k). A

likelihood of 0 would drive the posterior probability P (poi|O)
to 0, so we compute an adjusted likelihood L̂(k|poi, j) =
0.1 + 0.8 · L(k|poi, j) such that 0.1 ≤ L̂(k|poi, j) ≤ 0.9.

Finally, we compute a normalized likelihood as

LN (k|poi, j) =
L̂(k|poi, j)

∑

n∈N(j) L̂(k|poi, j)
,

where N(j) is the set of all neighboring junctions of j. Each

time the user makes a choice of which direction to go from a

given junction, we use the normalized likelihood to update the

posterior probability of each activity, i.e. point of interest. This

approach is extended to the case for which the user changes

direction along the current edge of the road network.

Before presenting the relative likelihood of different points

of interest, we filter the posterior probabilities by a proximity

factor, i.e. a probability distribution Φ that considers points

of interest in the near proximity as being more likely. The

intuition is that although many points of interest may lie in

a given direction, locations that are closer are more likely

targets. However, we do not want to incorporate the proximity

factor into the actual posterior probabilities, which would

cause (former) proximity to persist in memory long after the

user has left a point of interest behind.

In the case of ambling, we assume that the goal of the

user is to visit parts of the city where they have not already

been. We compute a normalized likelihood LN (k|ambling, j)
in a similar way to LN (k|poi, j). Going towards intersection

k is more likely if the user has not previously walked along

the edge (j, k). Again, the same strategy can be applied

when the user changes direction along the current edge. The

normalization also makes it possible to compare the posterior

probability of ambling with those of points of interest.

When the user stops, we assign a likelihood of 0.9 to points

of interest in the near proximity, and a likelihood of 0.1 to all

other points of interest, including ambling. The intuition is

that points of interest in the proximity of the user are likely

targets when the user stops. When the user starts walking

again, we assign a likelihood of 0.9 to points of interest not in

the vicinity, while the likelihood of nearby points of interest

depends on the duration that the user has spent in their vicinity.

If the user stopped by chance or due to an erroneous GPS

signal, this mechanism will cancel the boost given to points

in the vicinity. On the other hand, if the user spent an extended

amount of time in the vicinity of a point, it is more likely that

the point was a target.

Our system incorporates an optional mode that uses Gaus-

sian distributions to model the likelihood of specific points of

interest as a function of duration spent in its proximity. The

mean and variance of the distribution depends on the type

of location. Getting cash from an automatic teller machine is

typically much quicker than eating a meal as a restaurant, and

these differences are reflected in the distribution. However, it

was outside the scope of our project to collect data regarding

the duration of different types of activities, so in our system

the distributions are manually crafted to reflect our knowledge

of different types of points. This is also the reason why

the mechanism is optional: our system can incorporate this

information if available but will function even when the

information is missing. If the optional mode is turned off,

all durations are considered equally likely.

An interesting extension of this mechanism would be to

take the time of day into consideration when estimating the

likelihood of an activity. For example, if a user stops near

a restaurant and a bar, the restaurant is a more likely target

during lunch hour, but the bar is a more likely target at night.

However, estimating this information was again outside the

scope of our project.



Fig. 2. Example probability density function for restaurants.

2) General activities: As for general activites, we consider

the same four decisions as before. Apart from ambling, we

make the assumption that each general activity is associated

with a set of points of interest, and that the likelihood of a

general activity is proportional to the maximum posterior prob-

ability of any point of interest in its associated set. However,

just as before, repeatedly incorporating a high likelihood into

the posterior probability creates a memory which is difficult to

erase. We therefore apply the maximum posterior probability

of individual points of interest a posteriori, as a filtering factor,

just like the proximity factor for individual points of interest.

The only case for which there is a qualitative difference

between the likelihood of individual points of interest and

that of general activities is when the user starts walking

again. Browsing the menu of a restaurant and then leaving

should make the probability of that restaurant go down, but

the probability of looking for a restaurant in general should

go up. The posterior probability of general activities are

therefore only updated when the user starts walking again after

having stopped. We use the same strategy based on Gaussian

distributions over the duration to estimate the likelihood of a

given general activity when the user starts walking.

In the case of general activities we can model different

types of events associated with the same point of interest, as

shown in Figure 2, which superimposes the likely duration

of browsing the menu of a restaurant and the likely duration

of having a meal. As seen in the figure, we again adjust

the likelihood to a number in the range [0.1, 0.9] to avoid

multiplication by zero.

C. Familiarity and Visibility

So far, our implementation makes an assumption that the

user always knows where they are going, an assumption that

Fig. 3. Example trajectory from the Stockholm city model.

clearly does not always hold, especially if the user is a tourist

or visitor. For this reason, the recognition module includes a

simple heuristic for estimating how familiar the user is with

the surroundings. To compute the heuristic we keep track of

the total distance d travelled by the user and compare it to

the optimal distance d∗ from the user’s initial location to the

current location. We then compute a factor U representing how

unfamiliar the user is with the surroundings as

U = 1 −
d∗

d
.

In other words, if the user travelled straight to the current

location, U = 0. On the other hand, if the user took a much

longer route, U approaches 1. Intuitively, the choices that the

user makes regarding which direction to go should matter more

when we think that the user is familiar with the surroundings.

We incorporate familiarity into the conditional probability of

walking towards junction k from junction j as follows:

(1 − U)LN (k|poi, j) + U
1

|N(j)|
.

For U = 0, the conditional probability equals LN (k|poi, j),
i.e. the same as before. For U > 0, we assign less weight to

LN (k|poi, j) and proportionally more weight to the uniform

probability 1/|N(j)| (i.e. each neighbor is equally likely).

We also take into account whether a point of interest is

visible from the user’s current location. Intuitively, if the user

can see a point of interest, choosing whether or not to go

towards it becomes more informative. Let V (poi) be a boolean

function that returns 1 if poi is visible from the current junction

and 0 otherwise. We compute an individual unfamiliarity factor

for each point of interest as follows:

U(poi) = (1 − V (poi))

(

1 −
d∗

d

)

.



Fig. 4. Relative ranking of three points of interest.

In other words, the user is considered to be familiar with

the location of a point of interest (U(poi) = 0) if they

either walked straight to the current location or can see the

point. We can now substitute U(poi) for U in the conditional

probabilities. We can also generalize this idea and consider

intermediate probabilities for V (poi) representing uncertainty.

IV. RESULTS

We ran experiments both in Stockholm and Edinburgh to

test the features of the activity recognition module. Figure 3

shows the trajectory of a user in the Stockholm experiments,

recorded during earlier work on spoken dialogue systems [11].

The user was told to find a postbox, with no preference

for specific targets. The figure shows the postbox eventually

found, as well as a restaurant and a shop along the user’s path.

Figure 4 shows how the relative ranking for the three

particular points of interest in the figure varies over time. For

clarity we have excluded many other points of interest in the

vicinity. Direction likelihood and proximity filters apply. As

we can see, the system initially selects “restaurant” as the top

pick, since its one of the nearest targets from the starting point.

As the user walks towards the bus stop in the figure, the

probability of “restaurant” and “postbox” drops (both due

to the proximity filter and the direction likelihood). On the

other hand, the probability of “shop” increases slightly. Once

the user reaches the bus stop and turns back, the direction

likelihood for “restaurant” and “postbox” increases, while that

of “shop” remains more or less constant. In this phase we

see the effect of proximity filtering. The postbox and the

restaurant are in the same direction, but proximity filtering

boosts the probability of “restaurant”. Once past the restaurant,

the direction likelihood drops rapidly and is compounded by

Fig. 5. Relative ranking of general activities.

proximity filtering. As the user closes in on the target (the

postbox), the likelihood of this location being the target greatly

increases and becomes the top pick of our system.

At the end of the experiment, the system reports the

following three points of interest as the top picks:

• restaurant (100) [not shown]

• post box (98.58)

• fast food (76.79) [not shown]

Each of these locations has a posterior probability less than

0.07, and there is a very long tail of results, each with a very

small posterior probability.

In the experiment we can see how decoupling the direction

likelihood from proximity filtering allows our system to be

much more responsive. Direction likelihood is aggregated,

while filtering is only applied when displaying the results.

The Stockholm experiment includes several other trajecto-

ries, but each has few stops, making it difficult to estimate the

likelihood of general activities. In another experiment from the

Edinburgh city model we simulated a user making two short

stops followed by a long one. In the vicinity of the two short

stops were an ATM, a restaurant, and a bar. In the vicinity of

the long stop were an ATM, a restaurant, and a shop. Figure

5 shows the relative ranking of the four associated general

activities over time. After the two short stops, the likelihood

of “shop” decreases drastically compared to the others.

Figure 6 shows the ranking of three points along the

trajectory: a restaurant near the two short stops (middle), and a

restaurant and a shop near the long stop (end). The likelihood

of the first restaurant is very high around the time of the two

short stops, but then decreases rapidly, unlike the likelihood

of the general activity “restaurant” in Figure 5.



Fig. 6. Relative ranking of three points of interest.

Finally, Figure 7 shows an example trajectory from the Ed-

inburgh city model. This experiment was designed to test how

familiarity and visibility affects the posterior probability of

different targets. The trajectory intentionally describes a loop,

simulating a user who is not familiar with the surroundings.

We fed the trajectory into the activity recognition module, first

with familiarity and visibility turned off, then turned on.

With familiarity and visibility turned off, the points of

interest ranked in the top 20 at the end of the trajectory

included none that were visible. In contrast, with familiarity

and visibility turned on, visible points of interest accounted

for 11% of the posterior probability in the top 20.

V. CONCLUSION

We have presented a Bayesian approach to activity recog-

nition that estimates the posterior probability of each activity

using observations made regarding a user’s behavior. We tested

the approach in a city environment where observations were

GPS signals indicating the location and direction of users. Our

experiments include familiarity and visibility, two concepts

that we believe are vital for activity recognition and that we

encourage other researchers to explore in future work.

In this work we only consider two types of activities:

reaching a specific point of interest, and satisfying a specific

type of need (go to a restaurant, purchase an item in a shop,

etc.) The flexibility of our Bayesian approach would make it

easy to include other types of activities, or more fine-grained

activities (e.g. find an Italian restaurant).
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Fig. 7. Example trajectory from Edinburgh.
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