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Abstract—In this paper, we analyze five true-range positioning
algorithms for UWB-based localization systems. The evaluated
algorithms are: (i) trilateration using a geometric method, (ii)
a closed-form multilateration solution using least squares, (iii)
an iterative approach using first-order Taylor series, a recursive
solution based on (iv) the Extended Kalman Filter (EKF), and (v)
the Unscented Kalman Filter (UKF). In contrast to the existing
comparative studies in literature, which are solely based on sim-
ulation results, our analysis is based on experimental evaluations.
The evaluated algorithms are strictly chosen for a scenario, where
a true-range multilateration method is applicable. True-range
means the accuracy of the measured ranges is not influenced by
the clock drift errors. The performance comparison of the five
algorithms is examined and discussed in the paper.

Index Terms—comparative study, comparative review, true-
range, positioning algorithm, performance comparison, UWB,
trilateration, multilateration, Taylor series, EKF, UKF, Kalman

I. INTRODUCTION

Ultra-Wideband (UWB) has been regarded as a promising
technology for precise wireless localization systems, especially
in global navigation satellite system (GNSS)-denied environ-
ments [1]–[3]. Example applications include logistics, medical
services, a self-localized robot, players’ statistics in indoor
sports, search and rescue missions and others [1]. In gen-
eral, the location determination in wireless communications is
typically composed of two phases: (i) ranging phase, during
which the distance between two transceivers is determined,
and (ii) positioning phase, during which the location of the
unknown device is calculated using a positioning algorithm.
In this paper, we focus on the positioning phase. The presented
positioning algorithms are examined for a scenario, where
multiple true-range measurements are available in the ranging
phase. True-range means that the accuracy of the measured
ranges is not influenced by clock drift errors [2], i.e. in
contrast to pseudo-range. There are several methods to achieve
a true-range measured distance in literature [4], [5]. We use
the alternative double-sided two-way ranging method (AltDS-
TWR) for true-range distance measurement in this paper,
which has been approved in [4], [5] as the most reliable true-
range method among different available schemes in literature
at several tested conditions.

The positioning algorithm is a backbone of all localization
systems in any environments because it is the main element
in the system to compute the unknown position of the mobile

node (hereinafter referred to as a tag) based on the known
references (hereinafter referred to as anchors). There have
been multiple studies, especially for UWB-based tracking
and navigation systems, on the performance comparison of
different positioning algorithms in literature [3], [6]–[10].
However, the majority of the studies are solely based on com-
puter simulations. In fact, the simulation results are important.
However, they often do not reflect realistic conditions. For
instance, a misleading conclusion can occur because of the
impractical parameter choice, motion model, and other factors
in the simulation environments. Besides, an unfair judgment
between two totally different methods is frequently performed
in the simulation (e.g. trilateration vs. EKF or particle fil-
ter), which is usually not matched with real-world system
implementations [7]. In practice, geometric and closed-form
methods are typically coupled with a filter or smoother [2].
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Fig. 1. Overview process of the evaluated true-range positioning algorithms.
The methods are categorized as linear (light green) vs. non-linear (light or-
ange). The motion model corresponds to the Kalman-based filters (section IV).

In this paper, the evaluated positioning algorithms are
designed to reflect the practical real-world system imple-
mentation. Besides, the performance comparison is conducted
upon the final outcomes of each method. Fig. 1 shows the
overview process of the analyzed positioning algorithms. In
general, UWB-based positioning algorithms have been divided
into categories when a comparative analysis was examined
in literature such as parametric vs. non-parametric [7], itera-
tive vs. optimization-based [9], [10], and geometric-based vs.
Bayesian-based approaches [6]. For simplicity, we categorized
the evaluated positioning algorithms under the linear vs. non-
linear approach in this paper (Fig. 1).
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II. RELATED WORK

In literature, a general overview of UWB-based indoor
positioning technologies can be found in [3]. Mathematical
methods for indoor positioning algorithms were addressed
in [6]. However, the algorithms are expressed in a generic
way intending to be helpful for new researchers in the field
as a general guideline. In [7], a comparative analysis of EKF,
particle filter, trilateration, and least squares approach were
evaluated in a simulation. The results showed that the par-
ticle filter has the best performance while the EKF performs
worst (especially when the target speed is increased) in most of
the conducted scenarios. The latter case is somewhat mislead-
ing. Moreover, the parameters used in the simulation (e.g. 1 s
position update rate, and 15 m coverage range) are outdated
compared to the current state-of-the-art UWB systems.

In [8], different UWB-based positioning algorithms for
both Time-of-Arrival (ToA)- and Time-Difference-of-Arrival
(TDoA)-based approaches were evaluated. The authors per-
formed five positioning techniques (analytical method, least
squares, Taylor Series (TS), maximum likelihood, and genetic
algorithm) for each ToA and TDoA approaches. However, the
simulated environments are specifically designed only for a
Line-of-Sight (LOS) scenario. The simulation results showed
that the TS method has been dominantly preferred in most of
the evaluated conditions with minimal average error and failure
rate. In practice, this is not always true in LOS scenario as
our experimental results reveal in section V.

On the contrary, we performed the comparative analysis of
the positioning algorithms based on the experimental evalua-
tions in this paper. This, in turn, closely reflects to the realistic
system performance of real-world scenarios.

III. TRUE-RANGE POSITIONING ALGORITHMS IN UWB

This section reviews the five true-range positioning algo-
rithms expressed in Section I (Fig. 1) and additionally, reviews
the standard Kalman Filter (KF) in section III-D.

A. Trilateration Algorithm using Geometric Technique

The fundamental and straightforward positioning algorithm
in UWB is trilateration, which is a conventional survey-
ing method based on geometric technique as illustrated
in Fig. 2 (a). The term trilateration is usually used inter-
changeably with true-range multilateration in literature [11].
In this paper, trilateration specifically refers to the positioning
algorithm that uses three circles to compute the location of an
unknown mobile node (tag) using an analytic geometry in 2D.

By assuming the three known anchors be A1, A2 and
A3, and their corresponding Cartesian locations in 3D
be A1(0, 0, 0), A2(U, 0, 0), A3(Vx, Vy, 0) as depicted in
Fig. 2 (a), the location of an unknown tag (T (xt, yt, zt)) can be
computed by trilateration, i.e Pythagoras theorem [11], [12]:

d21 = x2t + y2t + z2t (1a)

d22 = (U − xt)2 + y2t + z2t (1b)

d23 = (xt − Vx)2 + (yt − Vy)2 + z2t (1c)

where, di is the measured distance (radius of a circle or sphere)
between the ith anchor and the tag, (xt, yt, zt) is the interested
unknown location of the tag.

By subtracting (1b) from (1a) yields

xt =
d21 − d22 + U2

2 · U
Extract z2t from (1a) and substitute it into (1c) achieves

yt =
d21 − d23 + V 2

x + V 2
y − 2 · xt · Vx

2 · Vy
Substituting the computed xt and yt into (1a) gives

zt = ±
√
d21 − x2t − y2t (4)

To determine the ambiguous solutions from (4), the infor-
mation from the fourth anchor is necessary in 3D trilatera-
tion. There are three constraints in the geometry of trilatera-
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(a) Illustration of Trilateration (b) Illustration of Multilateration

Fig. 2. Illustration of trilateration and multilateration algorithms in 2D.

tion (Fig. 2 (a)): (i) the first anchor (A1) should be located in
the origin of a coordinate system, i.e. (0, 0, 0) in 3D Cartesian
coordinate, (ii) the second anchor should be located on the X-
axis, and (iii) the height of the anchors (Z-value) should be
the same for all anchors. In an arbitrary system set-up, the first
constrain can be accomplished by subtracting the value of the
first anchor (A1) from all the three available known anchors
including itself. The second constrain can be accomplished by
projecting the second anchor’s value (A2) onto the X-axis.

B. Closed-form Multilateration using Least Squares
The generic spherical equation for true-range multilatera-

tion (Fig. 2 (b)) [2] can be represented in 3D as:

d2i = (xi − xt)2 + (yi − yt)2 + (zi − zt)2 (5)

where, di is the distance (range or radius of a sphere) between
the coordinates of the ith anchor and the tag.

By subtracting the first one (d1 when i = 1) from the result
of other equation in (5) and simplifying it, the set of equations
can be written in matrix notation [2] as follows:

Ax = b (6)

where,

A =


x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

...
xn − x1 yn − y1 zn − z1

 , x =

xtyt
zt

 ,
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b =
1

2
·


d21 − d22 + (x22 + y22 + z22)− (x21 + y21 + z21)
d21 − d23 + (x23 + y23 + z23)− (x21 + y21 + z21)

...
d21 − d2n + (x2n + y2n + z2n)− (x21 + y21 + z21)


The detailed implementation and derivation of the method are
available in our previous work [2]. The solution for (6) can be
achieved using over-determined least square method [2] as:

x = (ATA)−1AT b (7)

C. Non-linear Iterative Solution using first-order Taylor Series
From (5), the actual ith measured range between the ith

anchor and tag can be defined as a function [13] (Fig. 2 (b)):

fi(x, y, z) =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (8)
= di + εi (i = 1, 2, ..., n)

where, εi is the range estimation error between a tag and
the ith anchor. The errors (ε) are statically distributed, and
the elements of it are independent using zero-mean Gaussian
random variables [13]. The error covariance matrix becomes

R = E[εεT ] = diag[σ2...σ2] (9)

where, σ is the range estimation error.
Assuming that (xv, yv, zv) is an initial guess of the true

tag’s location (xt, yt, zt), it can be written as:

xt = xv + δx, yt = yv + δy, zt = zv + δz (10)

where, δx, δy and δz are the location errors of a tag to be
determined, which is the incremental error between the guess
and the true positions.

Expanding (8) into TS and keeping first order term yields:

fi,v + ai,1 · δx + ai,2 · δy + ai,3 · δz ≈ di + εi (11)

where,

fi,v = hi(xv, yv, zv), ai,1 =
∂fi
∂x

∣∣∣
xv,yv,zv

=
xv − xi
ri

,

ai,2 =
∂fi
∂y

∣∣∣
xv,yv,zv

=
yv − yi
ri

, ai,3 =
∂fi
∂z

∣∣∣
xv,yv,zv

=
zv − zi
ri

,

ri =
√

(xi − xv)2 + (yi − yv)2 + (zi − zv)2

Equation (11) can be written in matrix notation as

Hδ = ∆d+ ε (15)

where, ∆d = di − fi,v = di − ri,

H =


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

...
an,1 an,2 an,3

 , δ =

δxδy
δz

 , ε =


ε1
ε2
...
εn


Using the covariance of measurement error (R) in (9) as a
weight, (15) can be solved using the over-determined weighted
least square method [13] as:

δ = (HTR−1H)−1HTR−1∆d (16)

By substituting the initial guess (xv, yv, zv) and the com-
puted incremental error (δ) from (16) to (10), the total value
of location estimation (xt, yt, zt) for the tag device can be
continually refined by iterative procedure.

D. Brief Review of Standard KF

In general, KF gives a recursive solution to a linear filtering
problem for estimating the state of a process governed by the
difference equation and its measurement as follows [14]:

xk = Axk−1 +Buk−1 + wk−1, wk ∼ N(0, Q) (17)

zk = Hxk + vk, vk ∼ N(0, R) (18)

where, xk is the state vector, A is the n × n state transition
matrix, uk is the input vector, B is the n × l input control
matrix, zk is the measurement vector, H is the m × n state
to measurement transition matrix, wk and vk are the process
and measurement noise respectively, and Q and R represent
the process and measurement noise covariances respectively.

For the sake of brevity, we refer the theory of KF to [14].
The set of equations for time update phase in KF is:

x̂−k = Ax̂k−1 +Buk−1 (19)

P−
k = APk−1A

T +Q (20)

where, P−
k and Pk are the priori and posteriori estimate of

error covariance matrices.
The set of equations for measurement update phase is:

Kk = P−
k H

T (HP−
k H

T +R)−1 (21)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (22)

Pk = (I −KkH)P−
k (23)

where, Kk is the n×m matrix Kalman gain.

E. Recursive Solution using Extended Kalman Filter

EKF [14] is somewhat akin to the combination of TS (sec-
tion III-C) and standard KF (section III-D). The exception
is that the EKF keeps track of the state variables of a total
quantities, while the incremental ones are kept track in the TS
[15]. Therefore, the non-linear functions are usually linearized
by keeping either the first-order or the second-order TS. The
former conduct is typically known as the Jacobian approxima-
tion, and the later as Hessian.

In general, the state of a dynamic process and its measure-
ment relationship in non-linear cases are as follows [14], [15]:

xk = f(xk−1, uk−1, wk−1) (24)

zk = h(xk, vk) (25)

where, f and h are the known non-linear functions of the state
and measurement model respectively.

Similar to the standard KF, the time update equations are:

x̂−k = f( ˆxk−1,, uk−1, 0) (26)

P−
k = AkPk−1A

T
k +WkQk−1W

T
k (27)

The set of measurement update equations in EKF is:

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (28)

x̂k = x̂k
−Kk(zk − h(x̂k

−, 0)) (29)

Pk = (I −KkHk)P−
k (30)
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F. Recursive Solution using Unscented Kalman Filter

The UKF addresses the non-linear problem by using
carefully chosen deterministic sample points called sigma
points [16], [17]. The method is known as the unscented
transformation. Similar to EKF, the distribution of the state
and measurement function is also approximated by a Gaussian
random variable (GRV). It has been claimed that the UKF can
accurately capture the posterior mean and covariance of the
GRV up to 3rd order TS expansion of any non-linearity [17].
Moreover, the computational complexity of the UKF and
the EKF are in the same order [16], [17]. In general, the major
advantage of the UKF over EKF is a scenario, where a non-
linear function cannot be easily differentiated analytically as
it is necessary to be done via Jacobian or Hessian in EKF.

For the sake of brevity, we refer the theory of UKF to [17]
and its original paper [16] since the method is well established
and has been widely used across multiple fields.

IV. IMPLEMENTATION OF THE KALMAN-BASED FILTERS

In this paper, the standard KF is used for refining the
outcome achieved from three positioning algorithms namely
trilateration, multilateration and TS approaches. This means
that the input (observed value) of the standard KF is the esti-
mated location data from the mentioned methods. In contrast,
the EKF and UKF act as standalone positioning algorithms.

A. Implementation of Standard KF for localization systems

For a kinematic motion model of the state in standard KF,
a Position-Velocity (PV) [15], [18], a.k.a Constant Velocity,
is used in our implementation. PV is applied as the motion
model for all Kalman filters (standard KF, EKF and UKF) in
this paper. The parameters used in the standard KF are:

xk =
[
x y z ẋ ẏ ż

]T
, R = diag(

[
σ2
vx σ2

vy σ2
vz

]
)

Q = diag(
[
T 4

4
T 4

4
T 4

4
T 3

2
T 3

2
T 3

2

]
) · σ2

w

A =


1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



where x, y and z are the position coordinates of the state in
3D, ẋ, ẏ and ż are their corresponding velocities (derivation
of the position), and T is the update rate of the system.

In our implementation, the system update rate (T) is 10 Hz,
σ2
w in the process noise (Q) is 0.01, and [σ2

vx, σ
2
vy, σ

2
vz] in the

measurement noise (R) is [0.015, 0.015, 0.025] (the value is
drawn from our previous experimental measurement results).

B. Implementation of EKF and UKF for localization systems

The dynamic model of the state in navigation and track-
ing systems are conventionally assumed as linear [15], [18]
according to Newton’s second law of motion (section IV-A).
Therefore, the non-linearity occurs only in the measurement

function according to (8). This means the state model in EKF
stays exactly the same as a standard KF.

In our implementation of EKF, the observation vector (z)
for the measurement [19] update phase is:

zi,k = [d1,k d2,k ... dn,k]T (31)

where, di,k represents the measured distance between a tag
and the ith anchor at the current estimation time tk.

The h( ˆxk/k−1) is a vector of measurement function
from (8), i.e. the process distances between the tag and ith
anchors at the estimation time tk. This can be expressed as:

h(x̂k/k−1) = [f1(t, A1) f2(t, A2) ... fn(t, An)]T (32)

where, fi(t, Ai) =
√

(xi − xt)2 + (yi − yt)2 + (zi − zt)2
The Jacobian matrix (Hk) in EKF becomes:

Hk =


xt − x1
f1(t, A1)

yt − y1
f1(t, A1)

zt − z1
f1(t, A1)

0 0 0

... ... ... ... ... ...
xt − xn
fn(t, An)

yt − yn
fn(t, An)

zt − zn
fn(t, An)

0 0 0


Therefore, the error covariance matrix (Rk) for the measure-
ment function in EKF now becomes:

Rk = diag([σ2
1,k σ2

2,k ... σ2
n,k]) (33)

Similar to EKF, the dynamic state function for UKF is again
linear (section IV-A). Therefore, the unscented transform is
applied only in the measurement function achieved from (8).

V. EXPERIMENTAL EVALUATION RESULTS

In this section, the comparative result of five true-range
position algorithms for a static scenario is reported in sec-
tion V-B, a LOS scenario in section V-C, and a None-Line-of-
Sight (NLOS) scenario in section V-D.

A. Experimental Setup

The experiments were conducted in the Cognitive Interac-
tion Tracking (CITrack) laboratory [20] and at the university’s
sports hall. CITrack allows the integration and evaluation
of current tracking technologies in a controlled environment
of 6 m× 6 m× 3.7 m. The VICON’s motion capturing sys-
tem in the CITrack, which has an accuracy of millimeter
range, supports the evaluation with a reference trajectory.
In the experiment, the commercially available TREK1000
system [21] from Decawave was used as an UWB hardware
for collecting the measurement data. In each experimental trial,
four anchors and a tag were used to track a moving tag. The
anchors were deployed in each of the four corners of the test
environments (lab. and sports hall). During the experiment,
the four measured ranges from each anchor were logged into
a computer. Then, the logged data were applied afterward in
each of the presented algorithms to compare their performance
using Matlab. For evaluation, the point cloud registration
method Iterative Closest Point (ICP) algorithm was applied
for registering the UWB with the reference. The remaining
root-mean-square error (RMSE) quantifies the performance.
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B. Performance Comparison in a Static Scenario

In a static condition, all the evaluated methods gave very
accurate results with RMSE value less than 0.1 cm when
VICON system was used as a reference (Fig. 3 and first
column in Fig. 4). Moreover, the results show that both EKF
and UKF had very similar performances. Their differences can
be spotted only in the initial condition when the two filters
were not completely converged yet (Fig. 3). This occurs in all
of our evaluated conditions. Therefore, we can conclude that
EKF and UKF have the same performance, at least, for the
non-linear measurement function using (8). The TS method
has the worst performance in a static scenario (Fig. 3 and
Fig. 4). In general, a few outliers were evident in all of the
evaluated algorithms at their initial conditions (Fig. 3), which
is very typical in Kalman-based filters.
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C. Performance Comparison in a pure LOS Scenario

LOS condition was conducted in two scenarios, the CIT-
rack (Fig. 5) and the university’s sports hall (Fig. 6). In a
small-scale scenario at CITrack, it is evident in the result that
multilateration follows the trajectory from the VICON system
significantly closer than the other four methods (Fig. 5).
This can be further confirmed in the RMSE provided in the
second column of Fig. 4 and the best-case scenario of the
five algorithms in this particular measurement illustrated in
Fig. 5 (a). Moreover, the TS method gave comparable results
to EKF and UKF. In this particular experiment, an unusual
measurement result has occurred at roughly between 2.7 m
and 3.7 m in X-axis (Fig. 5). This has an impact on all of
the evaluated methods. However, the linear methods are more
sensitive to this occurrence than the non-linear ones.

In a large-scale scenario, a person carried the tag on top of
his head while running along on the borderline of a basketball
field (Fig. 6). Overall, the evaluated five algorithms correctly
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Fig. 5. Performance comparison of five positioning algorithms for tracking
the movement of a tag in the CITrack.
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Fig. 6. Performance comparison of positioning algorithms for tracking a
moving tag in a large-scale scenario (University’s sport arena) at LOS.

tracked the trajectory of the runner and all have comparable
performance (Fig. 6 and the third column in Fig. 4). In the
best case scenario, all evaluated algorithms gave an error of
less than 5 cm (Fig. 6 (a)). In the worst case scenario, the
non-linear methods gave an error of up to 20 cm while the
linear methods reached up to 12 cm (Fig. 6 (c)). Moreover,
the abrupt changes in the corner of the field have two separate
effects on the evaluated algorithms (Fig. 6 (b)). This is due to
the applied dynamic model and process noise parameters in
the filters (standard KF vs. EKF or UKF). In either case, all
algorithms suffer from the abrupt changes in the corner of the
field (Fig. 6 (b)), which can be improved by using a different
dynamic model other than the PV model (section IV-A).

D. Performance Comparison in a NLOS scenario

A soft-NLOS scenario was evaluated in the sports hall,
where a person carried a tag right in front of his chest to
block the direct LOS communication between some anchors
and the tag (Fig. 7). The device was at 0.3 m distance from
the runner’s body. The runner took two paths consequently one
after another (on the border of a square and across the four
corners). An intentional drift was made at the center when
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crossing from the bottom left corner to the upper right corner
to examine the detection rate of the algorithms (Fig. 7 (a)).
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NLOS tracking scenario when a runner carry a tag in front of his chest
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Fig. 7. Comparison of positioning algorithms when a moving tag is tracked
in university’s sports hall (20m× 20m arena) at a NLOS scenario (a runner
hold the tag right in front of his chest at 0.3m distance from the body).

In general, the two linear methods performed poorly in
the NLOS scenario while the three non-linear methods had
impressive performances (Fig. 7 and fourth column in Fig. 4).
This confirms that the incremental correction in the positioning
algorithm using the iterative and/or recursive approach has
a significant benefit in a scenario where abrupt disturbances
can occur in the measurement function. Additionally, the
NLOS condition degraded the accuracy of all algorithms
significantly (the fourth column in Fig. 4). The deviation can
be visualized even in the best case scenarios (Fig. 7 (b)).
Moreover, the intentional drift in the middle was accurately
detected by all algorithms (Fig. 7 (a)), in which EKF and
UKF have the best reaction while trilateration has the worst.

VI. CONCLUSION AND FUTURE WORK

In literature, the linear positioning algorithms are less
appreciated and their performances based on simulation re-
sults are usually regarded as poor. However, the quality of
the ranging process (true-range) is neglected in simulation
environments when the merits of performance comparison are
conducted [6]–[10]. In this paper, we performed a compara-
tive analysis of UWB-based true-range positioning algorithms
based on experimental evaluations. The results show that the
linear positioning algorithms, especially the multilateration,
have superior performance compared to non-linear approaches
in LOS condition (section V-C) when the measured ranges
are very accurate. On the contrary, the non-linear approaches
have better resistance in abrupt changes and significantly
better performance in a NLOS scenario. In general, the non-
linear techniques require a good approximation of the initial
value, and they are computationally more expensive than the
linear approaches. It should be noted that the presented results
were based on the measurements without using any NLOS
identification and mitigation techniques.

As future work, a maximum likelihood-based positioning
algorithm and particle filter-based variants can be included in
the comparative analysis of true-range positioning algorithms.
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