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Abstract—In previous work, we developed and investigated a
distributed Projection Approximation Subspace Tracking Algo-
rithm (PAST-Consensus) based on Consensus Propagation for
wireless sensor networks. Preliminary simulation results showing
a good tracking capability and still reduced complexity, have
motivated us to evaluate the performance of the aforementioned
algorithm. In this work, some simulation results will be presented
comparing the root mean square error for several signal to noise
ratios, as well as the error in the signal subspace given by its
angle difference.

I. INTRODUCTION

Subspace methods have become a very important subject

of study in contemporary signal processing. There are several

subspace estimation algorithms such as MUSIC, ESPRIT, and

ESF which calculate for instance, the direction of arrivals

(DOA) of plain waves impinging on a sensor array or estimate

the frequencies of sinusoids that lie in a specific space [1], [2],

[3], [4], [5].

However, these traditional methods present a high complex-

ity due to the fact that they rely on eigenvalue/singular value

decomposition for estimating the signal or the noise subspace.

These algorithms have to calculate the sample covariance

matrix every time a new sample arrives, which leads to a high

amount of internal processing.

The goal of this paper is to evaluate the performance of the

PAST-Consensus algorithm developed in [6]. This method is a

distributed version of the Projection Approximation Subspace

Tracking (PAST) [7], a well-known algorithm whose major

advantage is the considerably low complexity. PAST intro-

duces a new signal subspace model interpretation and presents

a solution where the signal subspace is calculated in a recursive

manner at time t, depending on the previous subspace estimate

at time t− 1 and the new sample x(t).
Likewise, Consensus Propagation is a remarkable protocol

widely used for obtaining averages over a network [8], [9],

[10]. The work in [6] has introduced a distributed algorithm

based on Consensus Propagation for frequency estimation over

a wireless sensor network.

Notation: We denominate a column vectors in underlined

boldface and matrices in uppercase and boldface. The super-

script H represents complex conjugation, ⊤ transposition, tr(. )
the trace operator and ‖. ‖ the Euclidean vector norm.

Organization of the paper: Section II presents an overview

of the analytical model and constraints. The section III intro-

duces the PAST-Consensus algorithm as implemented in [6].

Finally, in Section IV we will present some simulation results

that evaluate the root mean square error for several signal to

noise ratios, as well as the signal subspace error expressed in

terms of principal angle components.

II. AN OVERVIEW OF THE PROJECTION APPROXIMATION

SUBSPACE TRACKING ALGORITHM

Let x(t) ∈ CN be the data vector observed at time t,
composed of r narrow-band signal waves impinging on a

planar array of N sensors hidden in additive noise (zero-mean

with variance σ2). The data vector is modelled as

x(t) =

r
∑

i=1

si(t)a(wi) + n(t)

= A(ω)s(t) + n(t)

(1)

with,
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s(t) =
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
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s1(t)

...

sr(t)
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and n(t) =









n1(t)

...

nr(t)









.

Here, A(ω) is a deterministic N × r signal mixing matrix

depending on ω = (ω1, . . . , ωr). Its columns are plane wave

steering vectors a(ωi) and the n-th element of a(ω) is defined

by

[a(ωi)]n = exp

(

j
2π

λ
(ξn cos θi + ηn sin θi)

)

/
√
N

where ωi = cos θi are the frequency that lies in the subspace of

A and that we intend to track. The Cartesian coordinates of

the n-th sensor node are (ξn, ηn) and λ is the wavelength,
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s(t) is the vector of complex signal amplitudes and n(t)
is uncorrelated additive noise. We allow ω to be slowly

time-varying and seek an estimate for matrix W (t) whose

columns span the same subspace as A(ω(t)). A tracking

algorithm estimates W (t) by a function of the previously

estimated matrix W (t − 1) and the new observation x(t)
alone. Particularly, Yang [7] approximates the cost function

to minimize

J(W (t)) =
t
∑

i=1

βt−i
∥

∥x(i)−W (t)WH(t)x(i)
∥

∥

2
(2)

by

J ′(W (t)) =

t
∑

i=1

βt−i
∥

∥x(i)−W (t)y(i)
∥

∥

2
(3)

with

y(i) = WH(i− 1)x(i) . (4)

Here, the vector y(t) stores the modified data vector resulting

from the new incoming data x(t) and the previous estimated

signal subspace W (t). Besides, the matrix W ∈ CN×r is

constrained to rank r < N and the minimization of cost

function (3) results in a low-complexity update of the signal

subspace.

III. PAST-CONSENSUS

A. Consensus Propagation

In the following, consider a wireless sensor network

composed of N = 36 nodes placed in an irregular cartesian

grid, as shown for instance in Figure 1. The average distance

between nodes is λ/2 and the transmission range is set to

1.44λ/2. For every node n = 1, . . . , N in the network,

Nn denominates the set of the adjacent nodes including

itself. In this setting each node in the neighborhood Nn can

correctly receive broadcasted messages from nodes within

its neighborhood with probability 1. One can observe on

Algorithm 1 that at the end of step t− 1, every node n sends

its own estimation of the average y
n
(t− 1) and a weight wn

to its adjacent nodes Nn . Then, at the beginning of step t,
every node n receives the pairs {y

i
(t− 1), wi}i∈Nn

from its

neighbors and compute a new average, to be sent at the end

of step t.

The aforementioned weights are constant for every node and

defined as

wn = 1/
√

|Nn| ∀1 ≤ n ≤ N. (5)

Finally, the local observation vector xn(t) is obtained with the

aggregation of data observed by the adjacent nodes, denoted

by {xj(t− 1)}j∈Nn
.

B. PAST-Consensus propagation algorithm

The distributed subspace tacking algorithm presented in

[6], has been conceived for sensor network applications. Due

to its low computational complexity O(nr), scalability and

robustness, it seems a suitable approach for distributed sensor

network applications.
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Fig. 1. Sensor network with neighborhood N17 for radius 9.

Algorithm 1: Consensus Propagation Algorithm

for n := 1, 2, . . . , N do
Input: {y

j
(t− 1), wj}j∈Nn

are the pairs sent to

node n in step t− 1

y
n
(t) =

(

∑

j∈Nn

y
j
(t− 1)wj

)

/

(

∑

j∈Nn

wj

)

(6)

Broadcast the pair {y
n
(t), wn} to all nodes in Nn

Output: y
n
(t) is the estimation of the average in

step t at node n
endfor

Sensor systems are well known for a wide range of appli-

cations such as the monitoring of environmental phenomena,

i.e. avalanches, floods. Constant improvement is sought in

the areas of power consumption, internal processing load,

scalability and robustness.

The PAST-Consensus algorithm is an alternative for tackling

some of this problems. In addition, it locally averages the

vector y
n
(t) in n with information from Nn. Afterwards,

n broadcasts its local observation xn(t), the locally filtered

r-dimensional vector y
n
(t), and a weight wn. To conclude,

y
n
(t) in equation (4) contains information from the updated

signal subspace at t−1 as well as new observation data xn(t).
The aforementioned algorithm is given by Algorithm 2.

In the following, we will show some simulation results

which analyze the performance of the algorithm in terms of

the root mean square error and calculate the error between

the original and the estimated subspace at node n. Here, the

distance between two subspaces is equal to two times the sum

of the squared sines of the principal angles [11].

IV. SIMULATIONS

In order to make a consistent data performance evaluation,

we propose the following simulation scenario. Consider a

planar sensor network with N = 36 nodes, whose position

resembles an imperfect Cartesian grid. The exact sensor array

geometry is documented in [6] and represented in Figure 1.
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Algorithm 2: PAST-Consensus [6]

Input: β, P1(0), . . . ,PN (0), W1(0), . . . ,WN (0)
for t := 1, 2, . . . do

for n := 1, 2, . . . , N do
Input: x(n)
aggregate xn(t)=Snx(t− 1) from all nodes∈Nn

y
n
(t) = WH

n (t− 1)xn(t)
apply Algorithm 1 for locally averaging y

n
(t)

hn(t) = Pn(t− 1)y
n
(t)

g
n
(t) = hn(t)/[β + yH

n
(t)hn(t)]

Pn(t) =
1
β
[Pn(t− 1)− g

n
(t)hH

n (t)]
en(t) = Dn(x(t)−Wn(t− 1)y

n
(t))

Wn(t) = Wn(t− 1) + en(t)g
H

n
(t)

broadcast {xn(t),yn
(t), wn} to all nodes∈Nn

endfor

endfor

Here, every sensor network observes 1000 snapshots in

time (t = 1, ..., 1000) and tracks the instantaneous frequency

ω1(t) = 0.1 of a single impinging wave which is constant over

time. The forgetting factor is chosen to be β = 0.97, W (0)
and P (0) are initialized as identity matrices. We assume that

messages sent by node n are received correctly by all nodes in

its neighborhood Nn. The spectral MUSIC algorithm is used

for extracting the r = 1 frequency component ω̂1(t) from the

signal subspace matrix W (t).

In the first experiment, we consider the performance at

node 17 and compare the behavoir of the PAST-Consensus

algorithm (see Figure 2, curve b)) with:

a) the original PAST-algorithm in [7], where only node 17
and its neighborhood N17 are considered (N = 6).

c) the original PAST algorithm applied to the global sensor

network. Here, we suppose that each node can simultane-

ously access all nodes in the network, and we keep using

the non-distributed version of [7]. Again, the starting

point for such calculations is the node 17.

d) the average RMSE when considering all nodes in the

network N = 36.

In our simulations, the root mean square error formula at

each node for one single frequency (r = 1) is defined as:

RMSE n =

√

√

√

√

1

901

1000
∑

t=100

|ω1,n(t)− ω̂1,n(t)|2, (7)

where ω1,n(t) is the true frequency value and ω̂1,n(t) its

estimate. Since the Algorithm 2 does not require any a priori

data statistics, the initial information tends to be the least

reliable. Due to this fact, we neglect the first one hundred

snapshots in our graphs in order to obtain a more representative

error sampling.

For the different simulations, we consider the additive noise

n(t) (see eq. (1)) with a Signal Noise Ration (SNR) from
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Fig. 2. Root Mean Square Error comparison for r = 1: a) PAST result for
N17, N = 6, b) PAST-Consensus result for neighborhood N17, N = 6, c)
PAST result for whole sensor array N = 36

-20dB to 20dB. The simulation runs are carried out with the

same noise realization.

Note that this definition of RMSE n is the root of the time

averaged square error, which is different from the classical

definition based on the ensemble average of the square error.

In Figure 2, we observe the performance at node 17

for different signal to noise ratios. In a) the original PAST

algorithm is analyzed for the neighborhood N17 (N = 6,

r = 1). Likewise, in b) we examine the root mean square

error (RMSE) for the same neighborhood, but employing

the PAST-Consensus based on Consensus Propagation. Both

errors a) and b) behave the same way at the beginning,

since the initialization parameters for the algorithms were the

same. However, our distributed approach seems to outperform

the centralized solution after -19dB, where it stays constant.

Note that for SNR values higher than 10 dB the error factor

decays faster. As expected in c), the error evaluation for

n=17 considering the whole neighborhood N= 36 has the best

performance, since all nodes have access to all data available

in the sensor network.

In the second experiment, we consider again 1000 iterations

for the case of two crossing frequencies, ω1=-0.5 to 0.5 and

ω2=0.5 to -0.5. The simulation runs are carried out with the

same noise realization. However, the SNR for the image a)

is set to 5dB and for b) the SNR= -10dB. We observe keep

simulating for the node 17.

Figure 3 shows the principal angles between the subspace

spanned by the columns of the estimated signal subspace

Wn(t) and the original signal subspace spanned by the

columns of the matrix A, as in (1). Notice that the graph

a) shows a good tracking capability for a signal to noise ratio

set to 5dB. However, in the graph b) the estimation accuracy

diminishes for a SNR=-10dB. The principal angles are zero

if the subspaces compared are the same. However, this is

not case for the graphs c) and d), where the angles never

reach zero. Nevertheless, one can observe that the evolution
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Fig. 3. Figures a) and b): Two crossing frequencies (r=2, n=17) showing the tracking capabilities of the PAST-Consensus algorithm for SNR=5dB and
SNR=-5dB respectively. Figures c) and d): Distance between two subspaces expressed in terms of its principal angles. Namely, the signal subspace matrix
Wn(t) and the signal mixing matrix A of N17 (see eq. (1)). Again, the calculations are for n = 17, SNR = 5dB and SNR = −5dB correspondingly

of the error in the subspace seems not to be dramatically

affected for different SNR values. The reason for this is

that the PAST-Consensus algorithm, as previously mentioned,

estimates the signal subspace in a recursive manner and does

not need any knowledge of the eigenvalues. The algorithms

based on eigenvalue decomposition are very sensitive to low

SNR values, because the gap separating the signal from the

noise subspace is reduced and is more difficult to make a

correct identification of both.

V. SUMMARY AND CONCLUSION

We have calculated the distance between the estimated

signal subspace W (t) and the original subspace introduce by

the matrix A, as in (1) in terms of the principal angles. The

results are quite interesting: On one hand the error between

subspaces does not lead to zero, it rather stays constant over

time for values between 0.03 and 0.01 radians. On the other

hand, one can observe that the signal subspace interpretation

in [7] leads to an algorithm more robust against errors, when

considering too closely spaced or very weak signals.

The RMSE simulation result indicates that the PAST-

Consensus algorithm has a performance in terms of the RMSE

between the (centralized) PAST algorithm [7] which uses the

data of all sensors and a PAST algorithm which uses only the

sensor data of the immediately neighboring nodes. In future

research, we will optimize the weighting coefficients used for

consensus propagation which will further reduce the RMSE

of the PAST-Consensus algorithm while conserving its good

tracking capability and low complexity.
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