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Abstract-This paper investigates a signal processing archi­
tecture for cognitive radio based on a sub-Nyquist sampling 
of the wideband signal. Then spectrum scanning is performed 
by applying an adaptive digital filter to scan the bands which 
might be used for cognitive radio. In particular, the paper studies 
detectors which are tailored for the applied signal processing 
scheme and which takes into account the noise correlation, 
introduced by the digital scanning filter. 

Index Terms-Cognitive Radio, correlated noise, sub-Nyquist 
sampling. 

I. INTRODUCTION 

In recent years, there has been increasing interest of con­
sumers in wireless services, which has led to the evolution 
of wireless networks toward high-speed data networks. With 
many new introduced wireless services and the increasing need 
for mobile Internet access, demand for frequency band or 
spectrum is expected to grow continuously in years to come. 
However, with most of the spectrum being already allocated, 
it is hard to find vacant bands to either deploy new services 
or to enhance existing ones. Measurements have shown that 
most of the allocated spectrum is generally under-utilized. This 
is where cognitive radio technology comes into play with 
its inherent capability of spectrum opportunity detection or 
spectrum sensing [1], [2]. 

The idea of cognitive radio (CR) is to allow unlicensed or 
secondary users to use spectrum holes, which are the spectrum 
bands that are not being occupied by licensed or primary users. 
In order to detect spectrum holes, every secondary user should 
be equipped with spectrum sensing capability to monitor 
continuously the spectrum activities of licensed users in order 
to find a suitable spectrum band for possible utilization. Once 
the operating spectrum band is determined, the communica­
tion can be performed over this spectrum band. However, if 
the current spectrum band in use becomes unavailable, the 
spectrum mobility function is performed to provide a seamless 
transmission and to avoid possible interference to the licensed 
users, by switching to another available spectrum holes. Thus, 
a very flexible signal processing structure is needed to be able 
to scan a wide spectrum band. 

There exists a variety of different methods for spectrum 
sensing [3]. Following [4] we may arrange these techniques 
into two groups. In the first group a narrow-band detector is 
deployed for wide-band spectrum sensing which uses a tunable 
Band Pass Filter (BPF) at the Radio Frequency (RF) front 
end and scans one band at a time. Since analog filters are 
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Fig. 1. Sub-Nyquist sampling of a wide-band signal x(t) using a multi­
channel scheme and a subsequent digital extraction filter versus band-pass 
filtering, and uniform sampling. 

not easily tunable this approach is usually quite expensive, 
slow, and inflexible since at least two tunable BPF are needed, 
one for spectrum sensing and a second for the actual signal 
receiver of the CR unit. In a second approach, the input signal 
is sampled at Nyquist rate that is twice the highest wide-band 
frequency. In this approach the analog front-end is fixed and 
the signal samples can be used for both spectrum sensing as 
well as for the actual signal receiver of the CR. However, 
since CR typically operates in a wideband environment this 
might require a prohibitively large Nyquist sampling rate, and 
consequently very fast signal processing capability. 

A promising alternative is the use of sub-Nyquist sampling 
techniques [5]-[7] and to exploit the fact that the CR only 
needs to observe a small fraction of the wide-band spectrum 
at each time. In such a scheme the input signal is sampled 
with a multichannel sampling scheme with a rate which can 
be much lower than the Nyquist rate. Afterwards, an adaptive 
digital filter is used to extract the signal samples of a particular 
signal band [7] as shown in the upper half of Fig. 1. The 
advantage is that 

• We can sample and process the data on a fairly low rate. 
• The digital filter r can be adapted easily and fast to 

different signal bands. 
• One can deploy several filters r in parallel operating on 

the same signal samples. For example, one filter may be 
used for spectrum scanning, another for receiving and 
extraction the actual data, and a third for monitoring an 
already detected free band. 

In principle, the proposed scheme belongs to the first group of 
sensing schemes, but using an adaptive digital filter operation 
on sub-Nyquist (non-uniform) signal samples instead using 
a tunable bandpass filter (cf. Fig.I). Nevertheless, there also 



exists a major different between the two schemes sketched 
in Fig.1, namely that the noise (due to, e.g., quantization or 
thermal noise) is added at different points. Using analog filters, 
the noise enters just in front of the detector and consequently 
it can often assumed to be white and uncorrelated. However, 
in the sub-Nyquist sampling scheme, the additive noise passes 
the digital filter r such that the detector observes the signal 
in correlated noise. 

After our signal model is explained in Section II, Section III 
explains the sub-Nyquist sampling scheme which is assumed 
throughout this paper. In Section IV the digital filter is derived 
which extracts a particular signal band from the sub-Nyquist 
samples, and Section V compares the energy and the quadratic 
detector which might be used for sensing. The paper closes 
with a short summary in Section VI. 

II. SIGNAL MODEL 

A. Notations 

As usual L2(lR) denotes the Hilbert space of square inte­
grable functions on the real axis lR equipped with the inner 
product (x, y) = In�. x(t) y(t) dt and the corresponding norm. 
For every x E L2(lR), the Fourier transform is defined as 

x(w) = I: x(t) e-iwt dt, wE lR . 

Let lffi c lR be an arbitrary subset of the real axis. Then PW(lffi) 
denotes the Paly-Wiener space of functions in L2(lR) that are 
bandlimited to lffi, i.e. 

PW(lffi) = { x E L2(lR) : x(w) = 0 for all w tj. lffi} . 

Vectors in a finite dimensional Euclidean space eN or lRN 
are denoted by boldface letters with an overline arrow, like c. 
If c E lRN is a random vector with a multivariate Gaussian 
distribution with mean vector ill and covariance matrix �, 
then this is denoted by writing C rv N(ill, �). 

B. Multiband Signal 

We assume that the CR units observe a wide spectral range 
lffiWB in which several primary users may be active. For the 
following considerations, the whole observed spectral range is 
subdivided (cf. Fig. 2) into disjoint subintervals lffik of equal 
width f2 and center frequencies Wk = Vk f2 where Vk E Z lies 
in the range between Vrnin = 1 and Vrnax• Thus 

lffik := {w E lR : Wk - f2/2 :::; W < Wk + f2/2} 

and the union of all these subintervals covers the whole 
spectral range lffiWB = U�':'llffik' For simplicity of exposition, 
it is assumed that each primary user operates in one of the 
spectral intervals lffik. The more general case in which the 
primary users operate in disjoint but arbitrary spectral ranges 
lffik can easily lead back to the particular case considered here 
(see [7] for details). 

Now we consider the following transmission and sensing 
scheme for each CR unit. At each time instant the CR unit 
is not interested in the whole wideband signal contained in 
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Fig. 2. Partitioning of the observed spectral range into lImax disjoint 
subintervals of width O. 

lffiWB but only in the signal parts contained in K < Vrnax sub­
bands lffiV1" .. , lffiVK' For example, lffiV1 might be the actual 
transmission band of the CR unit, lffiV2 might be a band which 
was already detected by the CR unit to be free and which 
is constantly observed as an alternative transmission band if 
the actual band gets occupied by a primary user. Finally, lffiV3 
might be a band which should actually be sensed whether or 
not it is free or occupied by a primary user. Additional other 
band lffiV4' ... ,lffiVK for other purposes might be of interest for 
the CR unit. The set K = {Vb"" VK} of the K integers 
characterizing the locations of the sub-bands lffik, which are of 
interest for the CR unit, will be called the frequency location 

pattern. Clearly, this frequency location pattern changes from 
time to time. For example, if the actual sensing band is 
detected to be occupied, then the CR unit will switch to 
another sensing band. Consequently K will change. 

However, for a fixed frequency location pattern the CR units 
is interested in signals in x E lffi concentrated on a multiband 
region 

(1) 

If x is a wideband signal whose Fourier transform is 
supported in lffiWB, then if x would be sampled uniformly 
at Nyquist rate vrnaxf2/(27f) it would be easy to extract the 
desired signal components contained in the spectral band lffiVk 
with Vk E K. However, this may require prohibitively high 
sampling rates and signal processing capabilities. Therefore, 
we consider a sub-Nyquist sampling which is described in the 
next section. 

III. SAMPLING SCHEME 

We assume that the wideband signal is sampled by a sub­
Nyquist multi-channel sampling scheme with N channels as 
sketched in Fig. 3. Thus, the signal is passes N filters with 
frequency responses ?In) with a subsequent uniform sampling 
with a sampling rate f2/27f proportional to the width of the 
subintervals lffik. For concreteness we consider only the case 
where the transfer functions of the filter functions g(n) are 
given by 

g(n)(W) = e-iTnW, n = 1, ... , N 

and where the delays Tn have the particular form 

27f Tn =bn --,,-Vrnax �G 
(2) 

for some integers bn E { I, 2, ... , vrnax}. Such a sampling 
scheme is usually called multicoset sampling and the set N = 



t = k2; 
I ------+- C(l) [k] 

I ------+- c(2) [k] 
x(t) 

Fig. 3. A general multichannel sampling scheme with N channels. 

{8n : n = 1, 2, ... ,N} of the corresponding delay coefficients 
is refereed to as the sampling pattern [8]. The signal at the 
output of the nth sampling filter is given by 

yCn)(t) = � ( x(w) g-Cn)(w) eiwt dw (3) 27r J,ll£ 
= - x(w) elwCt-Tn) dw = x(t -Tn) . 

1 
J
oo . 

27r -00 
Thus the filters represent just a delay of the signal by Tn. 
Sampling yCn) at a rate of 27r /0, and using that the delays are 
given by (2), one obtains 

cCn)[kl := x(k2� -Tn) = xC':a:o [kvmax -8nD 
= x([kvmax -8nl TNYQ) 

for the signal samples in the nth channel. Therein 1/TNYQ = 
vmaxn/(27r) is the Nyquist frequency of the wideband signal. 
The whole sampling scheme is completely determined by the 
sampling pattern N. Clearly, the sampling pattern can not be 
chosen arbitrarily. A minimal requirement on N is, that the 
signal x E PW(Jffi) can be reconstructed from the samples 
{ cC n) [k]}, where Jffi is the spectral range (1) of the required 
signal. 

To derive a sufficient condition on N such that this is 
possible, we first notice from (3) that the signal samples cCn) [kl 
may be written as 

cCn)[kl = yCn)(k�-n = 2�(x,sin)) = (x,s�n)) 

where the so-called sampling functions s�n) are given in the 
Fourier domain by 

sin)(w) = XIffi(W) exp (-iv'::o [kvmax -8nl w) . (4) 

Now, we consider the sampling operator S : PW(Jffi) -+ £2 
which maps a signal x E PW(Jffi) onto the sequence of signal 
samples 

S: xH{cCn)[kl=(x,s�n)):n=1, ... ,N; kEZ}. 

We require that every signal x E PW (Jffi) can be reconstructed 
from the samples c := {cCn)[k]}��i,···,N by means of a 
bounded linear operator. This means that we require that S 
is bounded and invertible, i.e. we assume that there exists 
constants 0 < A ::; B < 00 so that 

A IIxl12 ::; IISxl12 ::; B IIxl12 for all x E PW(Jffi). (5) 

Inserting explicitly the sampling operator S, this condition is 
equal to 

N 
A IIxl12 ::; L L I(x, s�n))12 ::; B IIxl12 

n=1 kEZ 
which shows that this condition is equivalent to require that the 
sequence {s�n)} forms a frame for the signal space PW(Jffi), 
and the constants A and B are the so-called frame bounds [9]. 

Necessary and sufficient conditions for {s�n)} to be a frame 
for PW (Jffi) are derived in [7] for arbitrary filter functions g-C n) . 
For the special case of the multicoset sampling scheme, these 
conditions can be formulated as follows. 

Lemma 1: Let Jffi be a multiband region with K bands and 

with the location pattern K = {VI, ... , VK}, and let N = 
{81, ... ,8 N } be the sampling pattern of a multicoset sampling 

scheme. Denote by H the K x N matrix with entries 

[ 1 
( . Vk 8n) H k,n = exp -127r-- . Vmax 

Then the sequence {s�n)}��i,···,N of sampling functions de­

fined by (4) forms a frame for PW(Jffi) if and only if there 

exists constants 0 < Ct ::; f3 < 00 such that 

(6) 

It form a Riesz basis for PW(Jffi) if and only if additionally 

N = K. Moreover, the lower and upper frame bounds are 

given by 

A = 
2r;. Amin(HH*) and B = � Amax(HH*) . (7) 

The upper bound in (6) is always be satisfied since H H* 
has a finite size of K x K. Thus Lemma 1 basically requires 
that the K x N matrix H has rank K. To this end, it is 
necessary that N ;:::: K, i.e. the number N of channels in the 
sampling bank of Fig. 3 has to be at last equal to the number 
of signal band K. Situations in which N > K correspond to 
an oversampling of the signal. 

So given the band location pattern K = {VI, ... , VK} 
the sampling pattern N = {81, ... , 8 N} has to be chosen 
such that (6) is satisfied. Nevertheless, it is easy to see that 
there exist universal sampling patters N such that H has 
rank K irrespective of the band locations K. The pattern 
No = {81 = 1,82 = 2, ... 8N = N} is an example [8], 
[10] since in this case H is a Vandermonde matrix for any 
choice of K. Nevertheless, the frame bounds A and B still 
depend strongly both, on the band locations K as well as on 
the sampling pattern N. Since these frame bounds influence 
the stability behavior of the sampling scheme, the sampling 
pattern N should be chosen such that these frame bounds are 
optimized in a certain sense. This problem is discussed next. 

A. Robustness of the Sampling Scheme 

If the sampling pattern N satisfies the conditions of 
Lemma I then the sampling functions {s � n)} form a frame 
with frame bounds A and B. Consequently, the corresponding 
sampling operator S : PW(Jffi) -+ £2 satisfies (5), which 



shows that S is bounded and bounded below such that there 
exists a bounded inverse S-1 : fi2 ---+ PW(JB) with liS-III = 
l/VA < 

00. In other words, S-1 : c r-+ x is a bounded linear 
operator which reconstructs the signal x from its samples c. 
However, the robustness of this reconstruction, with respect 
to disturbances in the signal samples, is determined by the 
condition number B / A of the sampling scheme. 

To see this, let c = Sx be the sequence of samples of 
an arbitrary x E PW(JB) and assume that these samples are 
contaminated by additive sample noise as 

c<n)[k] = c(n)[k] + e(n)[k] , k E Z , n = 1, ... , N . 

Therein � = {e(n) [k]} is an £2-sequence which models 
the error, e.g. due to quantization or thermal noise. The 
ratio SN R = IIcl12 /11�112 is the signal-to-noise ratio of the 
sampling scheme. Now the signal is reconstructed based on 
the erroneous samples c. By the linearity of S-I, one obtains 

x:= S-IC = S-IC + S-I� = X + S-I� 

for the reconstructed signal. Therewith, the relative reconstruc­
tion error can be upper bounded by 

Ilx - xl12 
= 

IIS-l�112 < B 11�112 
= 

B _1_ 
(8) 

IIxl12 IIxl12 - A IIcl12 A SNR . 

This upper bound is tight, i.e. there are signals x E PW(JB) 
and noise sequences � E £2 so that equality holds in (8). 
Since A > 0 the reconstruction error is always finite and can 
be made arbitrarily small by increasing the SNR. Therefore, 
the sampling scheme is said to be stable. However, since the 
upper bound increases proportional with the condition number 
B / A, a sampling scheme with a large condition number is 
less robust against errors in the samples. For this reason, the 
sampling pattern N should be chosen such that B / A is as 
small as possible. 
Example 1: We consider a configuration with K = 3 signal 
bands with band location pattern K = {VI, V2, V3}, where 
every Vk lies in the range from Vmin = 1 to Vmax = 50. For 
illustration, we fix VI = 10 and V2 = 40 and vary only V3. 
Then we apply the universal sampling pattern No with N = 3 
and with N = 4 sampling filters and determine for every V3 
the condition number B / A. The result is shown in Fig. 4 on a 
logarithmic scale. It shows that if the third band V3 lies close 
to one of the other bands, then the condition number becomes 
very high, i.e. the sampling scheme becomes almost unstable. 
For comparison, Fig. 4 also shows the condition number for 
the optimal sampling pattern NoPt' i.e. the sampling pattern 
N which yields the lowest condition number for the actual 
band location pattern K. It is clear to see that an adaption of 
the sampling pattern N to the actual band locations K yields 
a massive improvement in terms of robustness, compared to 
the universal sampling pattern, in most of the cases. Fig. 4 
also illustrates that oversampling (N = 4) gives a noticeable 
improvement in terms of the condition number. Nevertheless, 
the universal sampling pattern is still much worse than the 
optimized one, for almost all band locations. 

sampling pattern: 
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Fig. 4. Condition number of a multicoset sampling scheme as function of the 
band location 1/3 for signals with K = 3 frequency bands and for sampling 
schemes with N = 3 and N = 4 sampling filters. 

Note that the poor behavior of the universal sampling 
pattern, as illustrated in the previous example, is prototypical. 
This follows from results in [11] where the eigenvalues of 
matrices like H H* where studied in detail. Consequently, 
whenever possible, the sampling pattern should always be 
adapted to the actual band locations. 

IV. DIGITAL EXTRACTION FILTER 

This section gives the transfer function of the digital filter 
r q, which is used to extract the required signal samples 
corresponding to a signal in the required signal band from the 
multicoset samples of the wideband signal. Due to the limited 
space, we only present the result here. For an elaborated 
derivation, we refer to [7]. 

A. Required Signal Samples 

Sampling a multiband signal x E PW(JB) with a multi­
coset sampling scheme as described in the Sec. III, gives N 
sequences {c(n)[k] = (x,S�n))hEZ' n = 1, ... ,N of uniform 
samples of x. If the conditions of Lemma 1 are satisfied, we 
are able to reconstruct the signal x E PW(JB) from these 
samples. However, our primarily aim is not to reconstruct 
the whole signal x, but only to determine the signal samples 
corresponding to one of the multiband components, say JBVq 
with Vq E K. So we are interested in the samples of the down­
converted and low-pass filtered signal 

y(t) = - x(w + Wq) i?(w) eiwt dw 1 100 -

211' -00 
where Wq = Vqn is the center frequency of the required 
signal band, and where F denotes the frequency response of 
the low-pass filter (cf. Fig. 5). Here we assume that F is an 
ideal lowpass matched to the required frequency band JBq, i.e. 
F (w) = Xlffiq (w). Afterwards this filtering signal is sampled 
with a rate n/(211') which gives the required samples of y(t) 
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Fig. 5. Required sample sequence {d[kJhEZ' after down-conversion, low­
pass filtering, and uniform sampling of the muItiband signal x (t). 

at time instances t = k � as 

d[k] = Y (k 2� ) = 2� (x, Wk) = (x, Wk) , kE71 

with the so called reconstruction functions 

(9) 

where w(t) = F(t) eiwqt. In the frequency domain these 
functions are given by Wk(W) = w(w) e-ik20' W with the 
function w(w) = F(w -wq) = XEq(W -wq). 

B. Extraction Filter 

Given the samples c = {c(n)[k] = (x,s�n))}��i,···,N 
of a multiband signal x , we seek a digital filter r q which 
determines the required samples d[m] = (x, wm) of a cer­
tain multiband component lBq• We require that r q is linear. 
Consequently, it has the form 

N 
d[m] = (f q c)[m] = L L Ikn) c(n) [m -k] (10) 

kE7l.n=l 
= LTfCm-k 

kE7l. 

with a coefficient sequence hkn)} E £2 , and where we defined 
T ._ ( (1) (N)) d ._ ( (1) (N))T 1 Tk '- Ik """k an Ck·- ck , ... ,ck . As usua 

(11) 

is called the transfer function of the linear filter (10). 

Lemma 2: Let K = {VI"'" VK} be a given band location 

pattern, and let N = { 01, ... ,ON} be a corresponding 

sampling pattern which satisfies the condition of Lemma 1. 
Assume that we want to extract the samples of the band lBvq 
with index Vq E K. Then the transfer function of the filter 
r q which determines the sample {d[k]} form the samples 

c = {c(n) [k]} is given by 

r q(eiO) = D(eiO) At w = D(eiO) Ht eq (12) 

where D(eiO) is a unitary N x N diagonal matrix whose 

entries are given by 

'0 ( On B ) [D(e1 )]n,n = exp i -- , Vmax 
(13) 

where A = H*H is a constant self adjoint N x N matrix 

with entries 

[A] - "K ( . 2 lin-Ii", ) n,m - uk=l exp -1 n Vmax Vk , 

and where w is a constant length N vector with entries 

[w]n = exp(-i2nOnvq/vmax) .  

Remark 1: Note that w is just the qth column of HT, i.e. 
w = HT eq where eq is the qth identity vector in CK. This 
observation yields the right hand side equation of (12). 

A proof of this result may be found in [7]. There, the above 
result was derived for a much more general situation and the 
above lemma only represents a particular case. Moreover, [7] 
also derived an optimal causal filter r q which only uses past 
signal samples {c(n) [k]}���···,N to determine an estimate of 
d[m]. -

Given the transfer function (12) of the correction filter, it is 
easy to determine the coefficients Ikn) of the linear filter (10): 

T = � J1I: 
r (eiO) e-ikO dB k 2n q 

-11: 

= � J1I: 
D(eio)At w(eiO) e-ikO dB 

2n -11: 

t -t 
= Dk A w = Dk H eq 

wherein Dk is an N x N diagonal matrix with entries 

[Dk]n,n = sin([On/vmax -k]n) . [on/vmax -k]n 
Generally, the impulse response of the filter r q extends from 
00 to 00. However, in practice this infinite impulse response 
has to be truncated at some point. Therefore, we assume in 
the following that the filter (10) is truncated at a certain index 
L such that 

L N 
d[m] = L L Ikn) c(n) [m -k] . (14) 

k=-Ln=l 
Therewith, we derived the digital filter which extracts 

the signal samples of a particular multiband component lBv 
from the signal samples obtained with a multicoset sampling 
scheme. Of course, one may apply several of these filters in 
parallel to extract mUltiple signal components, e.g. one filter 
to extract the actual transmission band, and another to extract 
the actual sensing band, and so on. 

V. SENSING 

There are several publications which investigate detectors 
for uncorrelated noise but for different probability distributions 
of the noise in cognitive radio context [3], [13], [14]. 

In this section we are in particular interested in the sensing 
band, i.e. we assume that lBvq is the actual sensing band and 
that the filter r q extracts the signal samples of this band. 
Consequently, we have a situation as shown at the top of Fig. 1 
where {d[k]} represents the sequence of signal samples in the 
actual sensing band. Based on these signal samples we want to 



decide whether the signal band lBq is occupied or not. To this 
end, the CR unit observes M consecutive samples {d[k]}�1 
at the output of the extraction filter r q, which can be written 
as 

d[k] = (rqc)[k] + (rqe)[k] 
= s[k] + 1'][k] , k = 1,2, ... ,M (15) 

where e = {�( n) [k] hEZ is again a noise sequence which 
is assumed to consists of independent, identical, normal dis­
tributed random variables with zero mean and variance (Jl. 
The sequence {s[k] = (r q c)[k]} contains the signal samples 
in the band lBvq• In general, the statistical properties of these 
samples are unknown, and they may be multiplied with a 
certain complex number representing the attenuation and phase 
shift introduced by the communication channel. Nevertheless, 
in the following we assume that the samples s[k] are normal 
distributed random variables with zero mean. This assumption 
is motivated by the fact that normal distributed random vari­
able have maximal entropy and can achieve a maximum data 
rate. Therefore decoding schemes in communications often try 
to approximate such an distribution of the data. 

The M + 1 consecutive samples, observed by the CR unit, 
are collected! in the vector 

d = (d[m],d[m + 1], ... ,d[m + M])T 

Using (14) and (15) this vector is obtained by 

d=Gc+Ge=s+i]. (16) 

Therein c and e are vectors of length N(2L + M + 1) con­
taining the samples {c(n) [k]} and the sample noise {�(n) [k]} 
as follows 

with 

- _ (-(1) -(2) -(N))T c- c ,c , ... ,c 

c(n) = (c(n)[m-L],c(n)[m-L+1], ... ,c(n)[m+M +L])T 

and analogous for e. The matrix G contains the filter coeffi­
cients of the filter (14). It has size (M + 1) x N(2L + M + 1) 
and the form 

wherein each G(n) is an (M + 1) x (2L + M + 1) Toeplitz 
matrix given by ( (n) 'Y£ 
G(n) = 

(n) (n) ) 'Yo 'Y-L 

(n) (n) (n)
· 

'YL 'Yo 'Y-L 
Thus the detector observes (16) where s rv N(O, �s) and 
i] rv N(O, �e). According to the above assumptions on the 
sample noise �(n) [k] the corresponding covariance matrix is 

1 In the following, all variables are assumed to be real valued. This 
assumption is only made for easy of notation. The complex case can be 
handled by resolve every complex number into its real and imaginary part. 

given by �'1 = (JlG GT. If no further information on the 
signal samples s[k] are available, we may assume that �s = 
(J;IM+!. Based on the observation (16), the detector has to 
decide between the two hypotheses 

and (17) 

i.e. between the hypothesis 1-l0 that a signal is absent and the 
hypothesis 1-ll that a signal is present. 

A. Energy detector 

The most simple form of an detector is a so called energy 
detector. Such a detector simply calculates the energy of the 
received signal d 

m=1 
and compares this quantity with a certain threshold T. If 
Ed < T the detector would decide for 1-l0 otherwise for 
1-l1. The threshold T is chosen, such that a certain desired 
probability of false alarm is obtained. Clearly, the threshold 
will be influenced by the noise variance as well as by the 
number M + 1 of observed observation sampled. 

B. Quadratic Detector 

The energy detector does not take into account the cor­
relation of the noise, characterized by �'1' and the possible 
correlation of the signal samples, characterized by �s. How­
ever, incorporating this information into the detector design 
will improved its performance. 

To this end, the detector first applies a prewhitening by 
mUltiplying d with the matrix P = (G GT) -1/2 : 

g = P d = P s + P i]  = r + ii . (18) 

this yields r = P S rv N(O, �r) with the covariance matrix 

�r = P �s pT = (GGT)-1/2 �s (GGT)-1/2 (19) 

and ii = Pi] rv N(O, �n) with �n = p�'1pT = (JlIM+!. 
Thus, the noise vector ii consists now of uncorrelated white 
Gaussian noise, and the two hypothesis (17) are equivalent to 

1-l0 : g = ii and 1-ll : g = r + ii . 

For such a hypothesis testing problem of a stochastic Gaussian 
signal r in uncorrelated Gaussian noise ii, it is known (see, 
e.g.,[12, Chap. III]) that the optimal decision rule is the so 
called quadratic detector. Using the prewhitened receive signal 
g, it calculates the quadratic form 

D=gT Qg with Q=(J�2 1 -((Jp+�r) -1 

and compares it with with a certain threshold T which is 
chosen to achieve a nominal probability of false alarm. The 
quadratic form Q depends essentially on the covariance matrix 
�r, given in (19), i.e. it depends on the covariance of the actual 
signal s and on the coefficients of the extraction filter r q which 
are contained in the matrix G. If �r would be proportional to 
the identity matrix, the quadratic detector reduces to a simple 
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Fig. 6. Comparison of the quadratic detector, taking into count the signal 
correlation, with an energy detector. 

energy detector. However, in our situation �r is generally 
not the identity matrix due to the filter r q which extract the 
sensing band from the multiband samples c, even if the signal 
s would be uncorrelated. 

C. Numerical Examples 

To study the influence of the correlation matrix �r, we 
performed simulations using 105 monte carlo runs with a 
correlation matrix of the form 

1 Pl PM-l PM 
Pl 1 Pl PM-l 

�r= Pl 1 

PM-l Pl 
PM PM-l Pl 1 

For a strong correlation situation the coefficients Pl, P2, P3 
are chosen to be equal to 0.3,0.2,0.1 respectively. For a 
low correlation situation we choose 0.03,0.02,0.01. All other 
correlation coefficients Pm with m > 3 are always set equal 
to zero. 

Fig. 6 depicts receiver operating characteristics (ROC) 
curves for both the energy detector and the quadratic de­
tector which are implemented in our scheme. It shows that 
the improvement of a quadratic detector compared with the 
energy detector will be larger for stronger correlated signal. 
In the strong correlation case, at a probability of false alarm 
of Pfa = 0.1, the usage of the quadratic detector in our 
scheme will increase the probability of detection from around 
Pd = 0.7 to Pd = 0.9 compared with the energy detector. 
This improvement signifies that for a certain capacity of 
cognitive radio (indicated by deciding correctly the existence 
of spectrum holes with probability 1 - Pfa = 0.9 for a 
certain band), the degree of interferences to the licensed users 
decreases from around 30% to 10%. 

Clearly, the performance of the detector for a certain S N R 
depends also strongly on the observation time M as longer the 
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Fig. 7. Probability of detection Fd as a function of observation length M + 1 
for strong correlation signal 
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Fig. 8. Minimal necessary observation length for a probability of detection 
of Fd = 0.9 by a probability of false alarm of Ffa = 0.1. 

observation time as better becomes the detector performance 
as shown in Fig. 7. Meanwhile, one cannot increase the 
observation time as large as possible in order to increase 
the performance of the detector, since it will increase overall 
channel detection time and further will reduce ilie capacity of 
the cognitive radio. Referring to IEEE 802.22 wireless regional 
area network, which is the first cognitive-radio based wireless 
standard that uses television band (analog tv, digital tv, and 
wireless microphone), ilie required channel detection has to 
be less equal to 2 sec [15], [16]. 

Fig. 8 compares minimal observation length or number of 
samples as a function of S N R for both detectors under strong 
correlation signal to obtain targeted probability of detection 
Pd = 0.9 and probability of false alarm Pf = 0.1. It suggests 
that it is better to use the quadratic detector rather than energy 
detector in our scheme to obtain lower detection time. As an 
example, in relation with IEEE 802.22 standard for detecting 
analog television band, in order to attain receiver sensitivity 
-94 dBm with corresponding SNR = 1 dB [16], the energy 
detector requires 48 samples which are almost double of the 
number of samples for quadratic detector which is only 28. In 
that case, the quadratic detector is more favorable. 



Assume that signals s are uncorrelated, i.e. �s = (Js IM+1. 
Then the correlation matrix (19) is completely determined 
by the coefficients hkn)} of the extraction filter (14) such 
that �r can explicitly calculate for given band locations and 
for a given sampling scheme, i.e. for given band location 
pattern K = {V1,"" VK} and for a chosen sampling pattern 
N = {01,"" ON} (cf. the derivation in Section IV-B). This 
was done for the setup as considered in Example 1. It turned 
out, that the corresponding correlation matrix �r lies always 
between the low correlation and the strong correlation case, 
considered above, depended on the band location and sampling 
pattern, on the degree L of the filter (14) as well as on the 
observation length M + 1. 

VI. CONCLUSIONS 

This paper proposed a signal processing architecture for 
cognitive radio applications based on a sub-Nyquist sampling 
scheme. A digital filter was derived which extracts a particular 
transmission band from the sub-Nyquist samples, and it was 
shown that the robustness of this structure with respect to 
sample noise depends strongly on the chosen sampling pattern. 
Consequently, the sampling scheme should always be adapted 
to the actual band locations. 

In the second part, we investigated two detectors, which 
may be applied for sensing the spectrum based on our signal 
processing scheme, namely an energy detector and a quadratic 
detector. We present numerical examples to compare these 
detectors which are implemented in our scheme. It is shown 
that the performance improvement of the quadratic detector 
compared with the energy detector will be larger for stronger 
correlated signal at the output of the prewhitening filter. 
Furthermore, our simulation result shows that the quadratic 
detector has the advantage of smaller number of samples than 
the energy detector for a certain targeted Pja and Pd. It 
signifies that the quadratic detector will have smaller channel 
detection time and lower receiver sensitivity than the energy 
detector and will possibly improve overall system capacity of 
the cognitive radio. With these results, it is more favorable 
to use the quadratic detector than the energy detector in our 
complete scheme. 
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