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Abstract—In this work the multiantenna bidirectional broadcast
channel under channel uncertainty is studied. This problem is
motivated by the broadcast phase of the decode-and-forward
bidirectional relaying protocol, where a relay node establishes a
bidirectional communication between two other nodes while hav-
ing only imperfect channel state information available. Different
uncertainty models are investigated, where the nominal channels
experience either a multiplicative or additive perturbation based
on a spectral norm constraint. For these uncertainty models
the corresponding capacity regions of the multiantenna bidirec-
tional broadcast channel are analyzed. Further, robust transmit
strategies are characterized and worst-case perturbations are
identified.

I. INTRODUCTION

The concept of bidirectional relaying turns out to be a key
technique to improve the performance of wireless networks
such as ad-hoc, sensor, and even cellular systems. Accordingly,
this is intensively discussed by the 3rd Generation Partner-
ship Projects Long-Term Evolution Advanced (3GPP LTE-
Advanced) group. Since a relay cannot transmit and receive
at the same time and frequency, it needs orthogonal resources
for transmission and reception. This can be done more ef-
ficiently, if bidirectional communication is considered [1-4].
In this work we consider bidirectional relaying in a three-
node network, where a relay node establishes a bidirectional
communication between two other nodes as shown in Figure 1.
Furthermore, since spatial MIMO techniques can improve
the performance significantly [5], we assume vector-valued
transmission.

In the initial multiple access phase of a two-phase decode-
and-forward protocol, the two nodes transmit their messages
to the relay node which decodes them. This is the classical
multiple access channel (MAC), which is well understood.
Therefore, we concentrate on the succeeding broadcast phase
in this work. Here, the relay re-encodes and transmits both
messages in such a way that both receiving nodes can decode
the other message using their own message from the previous
phase as side information. This differs from the classical
broadcast channel and is therefore known as bidirectional
broadcast channel (BBC).
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Fig. 1. Decode-and-forward bidirectional relaying with multiple antennas.

The BBC is widely studied. Capacity achieving strategies
can be found for instance in [6-9] for discrete memoryless
channels and in [10] for MIMO Gaussian channels. Optimal
transmit strategies for the multiantenna BBC are then analyzed
in [11,12]. Besides the decode-and-forward protocol [6-15]
there are also amplify-and-forward [15-19] or compress-and-
forward [20-22] approaches similarly as for the classical relay
channel. A newer approach is compute-and-forward [23-29],
where the relay decodes a certain function of both individual
messages. Another approach is given in [30] which is based
on the noisy network coding idea [31-33].

In practical systems there is always uncertainty in the
channel state information (CSI) due to the nature of the
wireless medium. But much more important is that CSI at the
transmitter is usually realized by limited feedback schemes
as for example in the current LTE system. This results in an
inherent loss in available CSI. More precisely, the channel
estimation is reported to the transmitter in terms of channel
direction (CDI) and channel quality (CQI) information. The
former specifies the beam from a pre-specified set of beam-
forming vectors while the latter characterizes a quantized SNR
information corresponding to this beam. Especially the rough
estimation of the channel quality necessitates the analysis of
robust transmit strategies.

There are different approaches to tackle the problem of
imperfect CSI at transmitter and receivers. On the one hand
there are statistical approaches which assume the channel to
be random but according to a certain statistic that is known.
For example heuristics are developed for the multiantenna
downlink scenario from a signal processing point of view in
[34,35]. On the other hand there are deterministic models as
the compound channel [36-38] where the actual channel is
assumed to be fixed but it is only known that this channel
belongs to a certain pre-specified set of channels. The corre-



sponding MIMO compound channel is analyzed under various
aspects in [39-42].

In this work we follow the deterministic uncertainty ap-
proach and therefore briefly revisit the discrete memoryless
compound BBC in Section II. In Section III we introduce the
uncertainty models which are considered for the multiantenna
BBC in this work. We assume that the nominal channel
experiences either a multiplicative or additive perturbation,
where the set of possible perturbations is specified by a
spectral norm constraint. Then we start with the analysis
of the multiplicative uncertainty model for different antenna
configurations in Section IV. Then we turn our attention to
the additive uncertainty model in Section V. Finally, we end
up with a conclusion in Section VI.!

II. BIDIRECTIONAL BROADCAST CHANNEL UNDER
CHANNEL UNCERTAINTY REVISITED

A reasonable way to model uncertainty in CSI is to assume
that the actual channel realization over which the transmission
takes place is unknown to the transmitter and the receivers.
It is only known that this realization is from a pre-specified
set of channels and that it remains fixed during the whole
transmission of a codeword. This is the concept of compound
channels [36-38] for which bidirectional relaying was ana-
lyzed for discrete memoryless channels in [43].

The discrete memoryless compound BBC is specified by
an arbitrary (not necessarily finite) set of channels S. Since
transmitter and receivers only know the set S but not the
actual realization s € &, a robust strategy is needed that
works for all channel realizations in the set simultaneously.
The corresponding compound capacity region is restated in
the following theorem.

Theorem 1 ([43]): The compound capacity region of the
discrete memoryless compound BBC is the set of all rate pairs
(R1, R2) € R? that satisfy

< inf I(X:Y < inf I(X:Y
R1_;I€13 (X;Y1,5) and Rz_igs (X5Y2,)

for all random variables X and Y; , denoting the input of the
relay node and the output at node ¢, ¢ = 1,2, for channel
realization s € S.

Similarly as for the single-user compound channel [36,
37], the optimal input distributions are specified by max min
optimization problems, since the transmitter does not know
the actual channel realization and therefore has to choose the
input distribution such that it works for all channel realizations
simultaneously.

If there is channel state information at the transmitter
(CSIT) available, the relay can adapt its input distribution
according to the actual channel realization. Thus, the optimal

I Notation: Matrices, vectors, and sets are denoted by bold capital letters,
bold lower case letters, and calligraphic letters; C and R4 are the sets of
complex and non-negative real numbers; (-)7 and () denote transpose and
Hermitian transpose; arg(-) denotes the phase of a complex number; tr(-) and
rank(-) are the trace and the rank of a matrix; diag(-) is a diagonal matrix
and o (+) is the k-th singular value of a matrix; Q > 0 means the matrix Q
is positive semidefinite; E{-} is the expectation; lhs := rhs assigns the right
hand side (rhs) to the left hand side (lhs).

input distributions are specified by minmax optimization
problems. This kind of optimization is also called worst-case
optimization. The corresponding worst-case capacity region of
the compound BBC is restated in the following theorem.

Theorem 2 ([43]): The worst-case capacity region of the
discrete memoryless compound BBC is the set of all rate pairs
(R1, Ry) € R that satisfy

R1 S SIIEIEI(XS,Yls) and R2 S slle'lgI(XS,YQ’s)

for all random variables X and Y; 4, ¢ = 1,2, where the input
depends also on the channel realization s € S.

Remark 1: In general, the worst-case capacity is greater
than the corresponding compound capacity which goes along
with the intuition that available CSIT improves capacity. This
is further confirmed by the observation that the solution of
a min max optimization problem is always greater or equal
than the solution of the corresponding max min optimization
problem.

Remark 2: Although the compound BBC was only ana-
lyzed for discrete memoryless channels, we expect that the
results given in Theorems 1 and 2 extend to MIMO Gaussian
channels. We expect Gaussian input to be optimal so that the
rates are given by well-known log det expressions. However,
this should be explicitly analyzed from an optimal coding point
of view and is left for future work.

III. MODELING THE UNCERTAINTY

In this work we consider vector-valued transmission. There-
fore we assume Ny antennas at the relay node and V; antennas
at node i, ¢ = 1,2, as shown in Figure 1. The input-output
relation between the relay and node ¢ in the bidirectional
broadcast (BBC) phase can be expressed as

Y, = .’BTHi +n; (1)

with y, € C™*Ni the output at node i, H; € CNrxN:
the multiplicative channel matrix, * € CNrX1 the input of
the relay node, and n; € C'*¥: the independent additive
noise according to a circular symmetric complex Gaussian
distribution CN'(0, NIy,), i = 1,2. We assume an average
transmit power constraint tr(Q) < P with Q = E{zz"}.

We model the uncertainty in CSI by letting the channel H;,
1 = 1,2, be consisting of two parts: a nominal part H; o that
is known to the relay and receiving node ¢, and the uncertainty
(or perturbation) D; that is unknown to both.

As in [40] we use the spectral (matrix) norm [44] to
specify the uncertainty. We define the uncertainty set (or set
of perturbations) for node 7 as

Di = {D7 : O'l(Di) S 61‘} (2)

where o (D;) denotes the k-th singular value of D;, i = 1,2.
The spectral norm has the advantage that it can be interpreted
as the maximum transfer gain which perfectly matches to the
uncertainty in channel quality (CQI) due to the quantized SNR
information in practical systems. The use of the spectral norm
has the additional advantage that it lower bounds any other



matrix norm such as the Frobenius norm [44]. Thus, it further
gives the largest uncertainty set D;, i = 1, 2.

We deal with two different kinds of uncertainty in this work:
multiplicative and additive perturbation. In the multiplicative
uncertainty model the nominal channel H;, experiences a
multiplicative perturbation so that

H,=H,((In, +D;) 3)
with D; € CNiXNi or
H,=(InN,+D;)H,, 4

with D; € CN&*Nr depending on if the nominal channel
is multiplied by the uncertainty from the right or from the
left. We identify (3) and (4) as receive-site and sent-site
multiplicative uncertainty motivated by the common MIMO
processing interpretation. For the multiplicative uncertainty
model we additionally require o1(D;) < ¢; < 1,7 = 1,2,
since otherwise the capacity region becomes empty.

In the additive uncertainty model the actual channel real-
ization is given by

H,=H;,+ D, 5

with D; € CNexNi j =1 2,

The goal is now to characterize what is at best possible
for the multiantenna BBC under these different uncertainty
models (3)-(5).

IV. MULTIPLICATIVE UNCERTAINTY

In this section we analyze the bidirectional broadcast chan-
nel under multiplicative channel uncertainty.

A. SIMO Bidirectional Broadcast Channel

First, we look at the easiest case where the relay is equipped
with a single antenna and the receiving nodes with multiple
antennas. Then the input-output relation (1) simplifies to

The difference to (1) is that the input is now a scalar and
the channel matrix is a row vector which we denote by h; €
C™Ni in this context.

Since the input of the relay node is scalar-valued, a Gaussian
input distribution maximizes the rates of both links simultane-
ously regardless of the actual perturbation. Thus, the max min
and minmax optimization problems reveal a saddle-point
property and the corresponding compound and worst-case
capacity regions coincide. It remains to characterize the impact
of the different uncertainty models.

In the case of receive-site uncertainty the uncertainty set D;
is given by (2). For sent-site uncertainty the perturbation d; is
a scalar and the uncertainty set reduces to D; = {d; : d; < ¢;},
1=1,2.

Theorem 3: The compound and worst-case capacity regions
of the SIMO BBC under receive-site and sent-site multiplica-
tive channel uncertainty (3) and (4) are given by all rate pairs
(R1, Ry) € R that satisfy

R; <log (14 (1 —€)?[lRiol?)- (6)

Moreover, the worst-case receive-site and sent-site perturba-
tions are given by

DY = —¢Iy, and d* = —¢;.
Proof: For the receive-site uncertainty, (3) becomes h; =
h;o(In, + D;) and we know from [10, 11] that for given D,

the rates are bounded by
R; <log (14 £ |hio(In, + D))|), i=1,2

Now we are interested in finding the minimum rates that are
achievable for all perturbations DD; € D; simultaneously. Then
the corresponding minimization problem is given by

min log (1+ % |hio(In, + Dl)HQ)

v

min log (1+ % (lhsoll = ki Dil)?)

> log (1+ £ (|[hioll - ellhiol)?)
log (1+ & (1—€)*[hiol?)

\Y

where the first inequality follows from the triangle inequality.
Let the worst-case perturbation being DX = —¢; Iy, we see
that we actually achieve the lower bound.

For sent-site uncertainty, (4) becomes h; = (1 + d;)h; o so
that the perturbation is scalar-valued. It is straightforward to
show that the rates are given by (6) and that the worst-case
perturbation is given by dIX = —¢;, i = 1,2. The details are
omitted for brevity. [ ]

B. MISO Bidirectional Broadcast Channel

Next, we study the more interesting case where the relay is
equipped with multiple antennas and the receiving nodes each
with only one antenna. The input-output relation (1) is now

in:EThi-i-’rLi, 1= 1,2.
The difference to (1) is that we now have single receive
antennas so that the channel matrix is a column vector which
we accordingly denote by h; € CNrx1,

In [11] we observed for perfect CSI that a single beam
transmit strategy is optimal. This means that the optimal
transmit covariance matrix Q = E{xz"} has rank one and
can be expressed as Q = qq’ = Puqug . The corresponding
capacity region is given by all rate pairs (Ry, Rz2) € Ri that
satisfy

Ri(Q) <log (1+ L|hf ugl?) (7)

for all Q = Pugqul! with r(Q) < P.

This observation and the fact that current systems such
as LTE usually apply a single beam strategy, cf. Section I,
motivates us to focus especially on single beam transmit
strategies in the following.

For multiplicative uncertainty we have to distinguish be-
tween receive-site and sent-site uncertainty.
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Fig. 2. Capacity region of the MISO BBC under receive-site multiplicative
channel uncertainty for increasing € = €1 = €a.

1) Receive-site uncertainty: This time, the perturbation d;
is a scalar and the uncertainty set reduces to D; = {d; : d; <
€}, t = 1,2. In this case we obtain the following result.

Theorem 4: The compound and worst-case capacity regions
of the MISO BBC under receive-site multiplicative channel
uncertainty (3) are given by all rate pairs (Ry, Ry) € R% that
satisfy

Ri(Q) <log (1+ £(1 - ¢)?|hfouql?) (8)

for all Q = Puqug, i=1,2.
Proof: For given h; = h; (1 + d;) we know that the
capacity region is given by

Ri(Q) <log (1+ £|(hio(1 + di) ug*)
=log (1+ % (1+ d)*[h{ougl?)

for all Q = Puquq ,
scalar-valued, it is straightforward to show that = —€,1 =
1,2, and that the compound and worst-case capacity regions
are characterized by (8) which completes the proof. ]

Interestingly, the worst-case perturbations do not depend
on the transmit strategy . Thus, the optimal single beam
transmit strategy depends only the (known) nominal channels
as in the case of perfect CSI.

Figure 2 depicts the loss in capacity due to the receive-
site multiplicative channel uncertainty. As expected, with
increasing uncertainty the capacity region shrinks.

2) Sent-site uncertainty: The scenario of sent-site uncer-
tainty is much more involved than the previous one of receive-
site uncertainty. We make the following observation by deter-
mining the worst-case rates for a given single beam transmit
strategy.

Proposition 1: For given single beam transmit strategy
Q= Puqué{ the worst-case rates for the MISO BBC under
sent-site multiplicative channel uncertainty (4) are given by

R™(Q) )%)

with € = min{e;, |h; qu\/Hhi,OH}, i = 1,2. Moreover, the
worst-case perturbatlon that yields this loss is given by

D¥(Q) =

cf. (7). Since the perturbation d; is
dRX

=log (1 + & (|hiuq| — € |[hs,

—eie_j‘“uqufo 9)

with ¢; = arg(h!! 0Uq)-
Proof: From [11] we know that for given single beam
transmit strategy Q = Puqué{ the rates can be expressed as

mmlog(1+N|h (In, + D;) uq|)
ﬁ|h uq+h DHuq’)
(|h10“q‘

e,;|\h7;70||) )

where the first inequality follows from the triangle inequality
and the second inequality from

log (1
o (14

Y

HEZH log (1 + % |h; ()Dz‘Huq|)2)

Y

log (1 + %(|hfouq| —

|R{0D; ug| < €il|hiolllug| = el

Next, we have to show that this lower is actually achieved.

Therefore, we choose DI *(Q) = —eie 1P uqully with o; =
arg(h!! ‘0Uq) and obtain
Ry(Q) =log (1+ & [nl(In, + DI¥(Q)) Tuq ")
=log (1+ N|hi,0uq — el hiyouwufuqf)
= log (1+ | |A5ugle’ — cie?? [olllfugl|*)
= log (14 & [Ihfuq| — llhioll|") = RPX(Q)
which completes the proof. [ ]

An important observation in Proposition 1 is the follow-
ing. In general, the worst-case sent-site perturbation DiTX(Q)
depends on the chosen transmit strategy Q. Especially this
means that if a single beam transmit strategy Q = PuqugI is
given and fixed, the worst-case perturbation is immediately
determined by D;¥(Q) = —e¢e ~I%iugull, depending on
the given single beam direction ug, cf. (9). On the other
hand, we know from [11] that the optimal single beam trans-
mit strategy itself depends on the actual channel realization
h; = (In, + D;)h; o and therewith on the perturbation D,
1=1,2.

This observation makes it very difficult to analyze the
compound and worst-case capacity regions since they are
determined by max min and min max optimization problems
involving optimizations over both, the transmit strategy Q
and the perturbation D,;, ¢ = 1,2. Moreover, note that a
single beam transmit strategy need not be optimal anymore
for max min optimization problems where the worst-case
perturbation depends on the transmit strategy. Thus, it can be
necessary to also characterize the worst-case perturbations for
higher rank transmit strategies similarly as done for the single
beam transmit strategy in Proposition 1, cf. (9).

C. MIMO Bidirectional Broadcast Channel

Here, we study the MIMO case where each node is equipped
with multiple antennas. We consider receive-site uncertainty
(3) and look at the worst-case rates for a given (not necessarily
rank one) transmit strategy Q. Basically, the following result
follows immediately from [40, Lemma 1], but we present it
for completeness in the following.



Lemma 1 ([40]): For given transmit strategy ) the worst-
case rates for the MIMO BBC under receive-site multiplicative
channel uncertainty (3) are given by

RX(Q) (1 —€i)2HgoQHi,o)~

Moreover, the worst-case perturbation that yields this loss is
given by

=logdet (I, +

D(Q) =

where U;,o comes from the singular value decomposition of
the channel Hj, = H[} V2 je, H,, = U, 0 ViR,
1=1,2.

Proof: For receive-site uncertainty we know from [10, 12]
that for given D, the rates are bounded by

Ri(Q) <logdet(In, + ~H'QH,)

with H; = H, o(In, + D;), i = 1,2. Now we are interested
in finding the minimum rates that are achievable for all
possible perturbations D; € D; simultaneously. Then the
corresponding minimization problem is given by

min logdet (Iy, + 4 H{'QH;)

U! ydiag(—e;)U, (10)

“min Y log (14 Lo? (/@)

b k=1
n
> Zlog (14 & (1—€)’0p
k=1

%(1 — 67;)2H14[7{0QHZ'70) .

(H,Q'?))

=logdet (In, +
The inequality follows from
oR(H'Q'?) = (o((In, + D))" H[5Q'?))*
> (0u(In, + D)oy, (HE,QY?))?
> ((0a(In) = o2 (D) ow(H,Q?))*
> ((1— €)or( H1H0 1/2))
= (-

e) o (H{,Q'?)
where we used the relations a,,L(A)Uk(B) < 0x(AB) and
0x(B)—01(C) < 0p(B+C), k = min{N;, N} with A €
CNixNi and B, C € CNiXNr_ cf. also [40,44].

It remains to check that this lower bound is achieved.
Therefore we choose D{™(Q) = U’ odiag(—e;)U% to obtain
the desired rates which completes the proof. [ |

Unfortunately, we are again in the situation that the worst-
case perturbations as given in (10) depend on the transmit
strategy. But again, the optimal transmit strategy itself depend
on the channel realization and therewith on the actual pertur-
bation. Thus, the analysis of the compound and worst-case
capacity regions becomes a hard task.

Therefore we consider in the following the special case of
parallel nominal channels. Accordingly, as in [12, Sec. IV] let

H; H[,=W,S;W/

with S; = diag(s; 1, 8,2, .-, Si,n) = 0 denote the eigenvalue
decomposition of each channel. Then for parallel channels we

assume that the unitary matrices W and W, are equal, i.e.,
we have W = W, = W, For parallel channels we know
from [12, Proposition 3] that the optimal transmit covariance
matrix @ has the eigenvalue decomposition

Q=wxzowh

with EQ = diag()\l, Ao, ...,/\NR) > 0.

With the result we can analyze the compound and worst-
case capacity regions for the special case of parallel channels
in more detail.

Theorem 5: The compound capacity region of the parallel
MIMO BBC with receive-site multiplicative channel uncer-
tainty (3) is given by all rate pairs (Ry, Ro) € R? that satisfy

R; (Q) < log det (IN + = (1 — 61) S EQ)

(1)

for all power allocations 3¢g = diag(A1, A2, ..., An,) = O.

Proof: Since the compound capacity region is convex, we
can characterize it by their boundary which corresponds to the
set of weighted rate sum optimal rate pairs. The weighted rate
sum for a given weight vector w = (w,ws) € Rﬁ_ with
wy + wy = 1, given transmit covariance matrix @, and given
perturbation D = (D1, D5) is given by

Ry (w,Q, D) Zwllogdet (In, + +HIQH,).

i=1
Then the boundary is characterized by max min optimization
problems as

RZ,maxmin(“’) = mgx Hgn Ry (w> Q, D)

—mngwlmlnlogdet (IN + ]{,HHQH)
i=1
2

_man;wl logdet (I, + & (1 —¢)*H\QH, )
2

— I%ZX;W logdet (In, + % (1—¢)?8:2q)

where the second last equality follows from Lemma 1 and the
last equality from the assumption of parallel channels and the
decomposition (11). |

We observe that it is always optimal to transmit into the
direction of the nominal channels as it is optimal for the
point-to-point MIMO channel. Since the directions of the
nominal channel and the transmit strategy coincide, the worst-
case perturbation depends only on the channel direction. This
makes it possible to characterize the compound capacity region
as done in Theorem 5. Next, we look at the corresponding
worst-case capacity region.

Theorem 6: The worst-case capacity region of the parallel
MIMO BBC with receive-site multiplicative channel uncer-
tainty (3) equals the corresponding compound capacity region
of Theorem 5 and is given by all rate pairs (Ry, Ry) € R?
that satisfy

Ri(Q) <logdet (I, + % (1 — €)°S:iXq)



for all power allocations 3¢q = diag(A1, A2, ..., Any) = 0.

Proof: Since the compound and worst-case capacity re-
gions are both convex, we can characterize them by their
boundaries. As in the proof of Theorem 5 we define the
weighted rate sum for a given weight vector w = (wy,ws) €
]Rf_ with wy + wy = 1, given transmit covariance matrix @,
and given perturbation D = (D1, D5) as

2
Rs(w,Q,D) =Y logdet (In, + +H{'QH,).

i=1
Then the boundaries of the compound and worst-case capacity
regions are characterized by max min and min max optimiza-
tion problems as

RE,maxmin('w) = mgx mDin Ry (w, C?7 D)

and
RZ,minmax (w) - mDin mgx RZ (wa Q7 D)

respectively. Note that the relation

RZ,minmax (w) Z RE,maxmin (’U))

always holds for all weight vectors w € Ri so that it remains
to show the reversed inclusion to prove equality of both
capacity regions. To do this we choose a specific perturbation
D; = —¢;1, 7= 1,2, and obtain for every weight vector w

RE ,minmax (’UJ )

2
= min max ; logdet (Iy, + ¥ HI'QH,)

IN

2
1 27 H
mgxglogdet (IN,i + 51 —€) Hi,oQHi,O)
= RZ,maxmin(w)

where the inequality follows from the simple observation that
a specific perturbation is always greater or equal than the
minimum over all possible perturbations. This completes the
proof. ]

The optimal transmit directions are independent of the
weight vector w so that it remains to determine the optimal
power allocation allocation between the different beams for
certain weights. Analogously to [12, Sec. IV] this can be
expressed by the following optimization problem

2 Ng
Ry maxmin(W) = mgxz; ; w; log(1+ %(1 - 62‘)282‘71@7 k)
1= c—

S.t. ||>\|| <P, A>0k=12,..,Np

with A = (A1, A2, ..., Ay ). If we compare this to the case
of perfect CSI in [12, Sec. IV], we see that the optimization
problem only differs in the factor (1 — ¢;)? in the objective
function. Thus, the optimal power allocation can easily be
deduced from [12, Sec. IV].

Remark 3: Here we considered vector-valued transmission
in the spatial domain, but the results obviously also apply to
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Fig. 3. Capacity regions of the SIMO BBC under additive and multiplicative
uncertainty for equidistantly increasing € = €1 = €2 for hy = [1.3 1.3j],
ho=[1 —je 77/3],and Ngp =1, N; = Ny = 2.

vector-valued processing in the frequency domain. Especially
the scenario of parallel MIMO Gaussian channels matches a
single-antenna OFDM system where the unitary matrix W
equals the IDFT-matrix. Thus, these results also characterize
the optimal power allocation for single-antenna OFDM sys-
tems.

V. ADDITIVE UNCERTAINTY

In this section we analyze the bidirectional broadcast chan-
nel under additive channel uncertainty.

A. SIMO Bidirectional Broadcast Channel

Similarly to the channel vector, the additive perturbation is
also a row vector which we denote by d; € CIxN: = 1,2.
The corresponding uncertainty set (2) becomes

'Di = {dl . Ol(di) = Hd,H S Ei}. (12)

Theorem 7: The compound and worst-case capacity regions
of the SIMO BBC under additive channel uncertainty (5) are
given by all rate pairs (Ry, Ry) € R% that satisfy

Ri <log (1+ £ (ol — e)?)

with € = min{e;, [|h; 0|/}, i = 1,2. Moreover, the worst-case
additive perturbation that yields this loss is given by

d = —eju, (13)

with w; 0 = h; 0/||hioll, ¢ = 1,2, the direction of the nominal
channel.
Proof: From [10,11] we know that for any channel

realization h; = h; o + d;, the rates are bounded by
R; <log (1+ %lhio+dil?), i=1,2.

Now we are interested in finding the minimum rates that are
achievable for all perturbations d; € D; simultaneously, cf.
(12). We have

min log (1+ Fllhio +dil?)

v

min log (1-+ & (Iheol - ld:1)?)

log (1+ £ (hiol — €)?)

where the inequality follows from the triangle inequality. To
complete the proof it remains to show that this lower bound is



tight. Therefore we choose the worst-case perturbation d?dd =
—€;u;,0, cf. (13), which actually yields the desired rates. H

As expected Theorem 7 shows that the additive worst-case
perturbation is anti-parallel to the nominal channel so that the
gain of the nominal channel is reduced most.

Figure 3 depicts the capacity regions of the SIMO BBC
under additive and multiplicative uncertainty. It shows the
different influence of increasing uncertainty e.

B. MISO Bidirectional Broadcast Channel

As in the corresponding SIMO case in the previous sub-
section, the additive perturbation is a vector d; € CNr*1,
i = 1,2, and the uncertainty set is given by (12). Similarly
as for sent-site multiplicative uncertainty, cf. Section IV-B, we
determine the worst-case rates for a given single beam transmit
strategy.

Proposition 2: For given single beam transmit strategy
Q= Puqugl the worst-case rates for the MISO BBC under
additive channel uncertainty (5) are given by

RY(Q) =log (1 + %(|hfouq| - ej)z)

with € = min{e;, |hfouq|}, i = 1,2. Moreover, the worst-
case perturbation that yields this loss is given by

d(Q) = —eieIPiu,

with o; = arg(hlju,), i = 1,2

Proof: From [11] we know that for given single beam
transmit strategy Q = Puqu,‘;{ and h; = h; o + d;, the rates
can be expressed as (7). Now we are interested in finding
the minimum rates that are achievable for all perturbations
d; € D; simultaneously. We have

min log (1+ | (hio + di)H“q|2)

néi'n log (1 + %|hfouq +d ugl?)

v

rréi_n log (1+ %(|h£[ouq| - |d?“q|)2)

V

> log (1+ £ (Ihfug| — &)°)

where the first inequality follows from the triangle inequality
and the second inequality from

H
|d; uq| < || dillllug|l = lldi]| < €.

Next, we have to show that this lower bound is tight.
Therefore, we choose d2(Q) = —eje 7%9iu, with ¢; =
arg(hfouq) and obtain

Ri(Q) =log (14 F|(hio + (@) "ug )
= log (1+ £|(hio — cie 9 ug)Tugy|”)
=log (1 + %|hfo'u,q - eiej%ugqu)

=log (1 + %thouqkj‘“ — el 2)

=log (1+ £ (|hjug| — ei)2)

= R"(Q)

Fig. 4. Visualization of the influence of additive uncertainty for the MISO
BBC. The worst-case perturbations d2%¢(Q) are anti-parallel to the direction
of the transmit strategy q.

which shows that the desired rates are actually achieved. This
completes the proof. [ ]

Proposition 2 shows that for any given single beam transmit
strategy Q = Puqu{f the worst-case perturbations d*(Q),
i = 1,2, are anti-parallel to the chosen transmit strategy @ =
Puqugl . Figure 4 visualizes this behavior. Note that this in
contrast to the SIMO case, where the worst-case perturbation
is anti-parallel to the nominal channel.

Unfortunately, we run into the same problem as for the
corresponding scenario under sent-site multiplicative channel
uncertainty, cf. Section IV-B. The worst-case additive perturba-
tion depends on the chosen transmit strategy while the optimal
transmit strategy again depends on the actual perturbation.
This makes it difficult to analyze the compound and worst-
case capacity regions of the MISO BBC under additive channel
uncertainty.

VI. CONCLUSION

In this paper we studied bidirectional relaying under channel
uncertainty. This required the analysis of the multiantenna
bidirectional broadcast channel under multiplicative and addi-
tive channel uncertainty for which we analyzed the compound
and worst-case capacity regions. Further, we characterized ro-
bust transmit strategies and identified worst-case perturbations.

Unfortunately, under additive channel uncertainty but also
for some multiplicative uncertainty scenarios, the worst-case
perturbations usually depend on the chosen transmit strategy.
On the other hand the optimal transmit strategies also depend
on the actual channel and therewith on the perturbations. This
makes it difficult to characterize the corresponding compound
and worst-case capacity regions in closed form, since they are
determined by max min and min max optimization problems
which involves optimizations over both, the transmit strategy
and the perturbations.

Here we only analyzed the scenario where the relay helps
to exchange the individual messages of both nodes. As future
work it would be interesting and important to further analyze
the scenario where the relay integrates additional services
such as multicast or confidential services while suffering from
uncertainty in channel state information. Physical layer service



integration (PLSI) of bidirectional, common, and confidential
services in multiantenna bidirectional relay networks is ana-
lyzed in [45] for perfect CSI.
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