Distributed Simulation, No Special Tools Required*

Frank Paterra, C. Michael Overstreet, and Kurt Maly

March 30, 1990

Abstract

In this paper the authora present a toolkit of C language functions
-that can be linked with SIMSCRIPT programs 6 provide the data
communication primitives necessary for distributed simulation. The
authors’ test case is discussed and some Liming data are presented.
Additionally soine metrics, developed Lo determine the applicability
of Lhe server model decomposilion for particular simulations, are dis-

cussed.

1 Why Distribute Simulations

Computer simulalions are often computationally intensive tasks requiring
long runs in order to obtain useful results. The runtime requirements of
a simulation model can be a problem both during model development and
validation and while performing production runs of the simulation.

The development of computer models to simulate a real world objects
is a well understood problem and number of tools exist to aid the model
developer [1]. Often times, the initial runs of a simulation model provide
more questions than answers and the focus of study is changed. This re-
sults in an evolutionary process for model development, with refinements
directed at diferent attributes as the object or its environment becomes
better understood. Often the complexity of the model also increases during
this process.

As the model is evolving, many runs may be needed to better understand
the object and to verify the correctness of the simulation. The runtime
requirements of complex models can greatly increase the time needed to

*This work was supported in part by CIT under grant INF-89.002.01, by NASA under
grant NAG-1-908, and Sun Microsysiems under RF596043.

Once a model has evolved to the point that production mns are being
made, the ranlime vequirciments again come into play. Olten the outpal
from each rin may only consist of o sinple data point for a praph. Tn this
case wttiple runs of the saome simuafation with different iprts are needed,
This can foree the investigator to reduce the nnmber ol data points collected
in order to reduce the time needed ta generate a graph, resudting in incorrect
conclusions about Lhe simulated object.

Complementary to the problem of long, computationally intensive, run-
times is the fact that many times other computers are sitting idle and can
provide basically free processor eveles to the simulation. In an effort, to
wtilize some of these free evelos, mach research as gone into developing,
alporithms for performing a single sitnulation on a nemhber of losely coupled,
cooperaling processors,

The idea of distributing a simulation model among caoperating proces-
sors involves diflicult problems. Principal among these are the identification
of an effective decomposition of the simulation model. and the maintenance
ol processor synchronization to insure that the program is heing exccuted in
the correct order. The use of very tightly coupled functions and dependence
on shared data, common in simulation programs, makes these problems are
very acute to distribated simulation,

Significant research has gone into these two problems and the results are
promising depending on the model being simulated. It is not our intention
to address these problems in this paper, but rather to select an effective de-
composition and syuchronization scheme that will be used 1o demonstrate
distributed stmalation nsing our commmication toolkit and standard simu-
fation and operating system tools. A coprehensive treatment of the pro-
cessor synchronization and model decomposition problems can be found in
[2,34]. The problem of processor synchronization is more casily solved in
very tightly coupled processors that support very high speed communication

[5,6].

2 Model Decomposition

The model decotuposition most easily supported by the tools here is (o
distribute some special Lypes of model components, here called servers and
receivers, o diflerent machines. The term server is horrowed from ob ject
oriented design: a component is a server sulinodel i i can be represented

as anly sending 1o other model components.

This decomposition can be thought of as o collection of data servers and
and reccivers with no eyceles. With no eveles svuchronization hecomes ecasier
and the problems with deadlock such as that deseribed in [7]is avoided. This
is an casy and wsually uselul decomposition for complex, tightly coupled
models, becanse the extensive data interaction among the model’s parts
are pol interfered with, Other, potential more ellective decompositions ave
outside the scope of this paper.

High performance scientific workstations sharing a LAN are becoming,
common. Since shared memory is not available and imessage passing among
workstations in the network is slow, a decomposition of the simulation task
is only likely to to be effective il messages are inlrequently passed among,
workstations. This toolkit has heen developed with these constraints in
nind.

The tools support a “warchouse™ approach. Information to be sent to
receivers is “hatched™ and sent periodically as a single large message rather
that as several smaller messapes. T addition, the receiver workstation main-
tains inventories of data from servers, and based on anticipaled consumplion
“arders” additional data periadically so that new data should arrvive before
current supplies are exhausted,

Il data provided by the servers requires significant computation and data
sent Lo the receivers also requires computing time, than significant par-
allelismt can result since the required computation is off loaded from the
receiver workstation, No possibility of deadlock exists in this approach and

synchronization is particolarly simple,

3 Distributed Simulation with Standard Tools

In this paper we present a toolkit of functions that allows distributed sim-
ulation to be carried out in a loosely coupled, general purpose, workstation
ehvironment. without the use of special prurpose operations systems, pro-
gramming languages, or hardware,

The environment for which this software was developed contains a collee-
tion of Sun workstation computers connected via an ethernet LAN. These
arc very loosely coupled UNIN workstations with no shared memory and
only communicate via a shared bus (the ethernet LAN). SIMSCRIPT was
selected as the simulation Linguage because of it wide use in the simulation
community. All processors cooperating in the simulation run programs writ-
ten in SINMSCRIPT and call external finetions for processor commaunication.

The processor conununication functions are provided via the UNIX Inter.
process Communication (IPC) functions [R]. These functions are standard
with the BSD UNIX operating, system and allow commmunication among,
processes bolli within the same computer and thase residing on separate
compulers. Because the 1PPC Innetions are designed to provide communica-
tion among a large number of varying processor Lypes, a significant amonunt
ol overlicad is inherent with data communication. This could be reduced
by writing replacement functions that only provide for the needs of this
simulation, however a design goal was To nse as little custom soltware as

possible.

4 The Toolkit

The toolkit consists of a collection of Tunctions, written in the C langnage
and linkable with SIMSCRIPT programs. The basie functions provided by
the toolkit are interprocess data communications and suflicient processor
synchronization Lo allow a simulation to he hroken into a collection of data
servers and receivers,

To use these tools, one must first determine what in their model can he
thought of as a source or generalor of precomputable ohjects. Inorder for an
object to be precomputed. no information abont current simulation time or
access Lo local variables can be required. The most obvious precomputable
object is random nmmmbers, however, more complex objects imay be precom.
puted based on the simulation model at hand, Onee the data sources have
been identified, the simulation is written as usual, except that the identified
sonrce ohjects are writlen as a separade SINSCRIPT program. This results
in the simulation being tmplemented as a data generator program and a
simulation program. Two O Langnage functions must be called by both the
simulation program and the penerator program fo install the commmnnica-
tions interrupt handler and to identifv eacl ol the generators parlicipating
in Lhe simulation. Fach of the SINNSCRIPT programs must also contain a
function that the C routine will call 1o transler generated data to and from
SIMSCRIPT variables, Fach of these Tunetions are deseribed below.

C Functions
e inst_int(host mode)

— char *host - The wame of the host vunning, the receiver program

.

~ char *fmode - Nust equal “server™ or *receiver™ for the server and

receiver proprins respectively,

This is a € routine that is called by both the recetver and server
programs. Called only onee, and helore any the link sevver Tunetion
deseribed helow, this hrnetion opens a socket for reading, installs the
communications interrupt handler, and initializes the variables used
to maintain the server information.

link server(server host,mode) -

— char *service - The name of the service being identified

— char *host - T'he vame of the host where the server resides

- char Ymode - Must equal “server™ or “receiver” for the server and

receiver programs respectively. .

This C routine is called by both the receiver and server processes
to identily the services that are being used in this simualation. Fhe
function creates a record of the identified server’s information, opeus
a sending socket Tor the server, initializes the list of messages to that
server as null, and adds the server to the list of participating scrvers,

request(servicecommand) -

- char *service - The name of the service heing requested

- inb command A command 10 be sent Lo Lhe server. Fhis com-
mand integer is not examined by the tootkit: it is completely
definable by the model and server developers.

This C routine is called by the siimulation module 1o request more
data items from a server. After the request is senl, control is relurn
to the simalation soltware. AWhen the requested data are received, the
simulation code will be interrupted and the toolkit will make a call to
user provided accept_data routine, described helow.,

SIMSCRIPT Fuunctions

o acceplodata given service, data, fength

— service - text variable containing the wame of the service sup-
plying the data. This field is nsed Lo ronte data to the correet
inventory.

= data - memory tor objects ereated. This memory space will be for-
matied by the server to hold the datain the correct SIMSCRIPT

formalt.

- ength - This s the length in bytes of the data area,

The aceept_data function is called by the € routine that performs
the socket reads when new data arrives. Because the arrival of data
causes and interrupt to be serviced and this function is called during
that interrupt, the code may be executed at any time. This will have
an tmpact on the simulator’s use of pointers or indices to the inventory

of data.
! o lill_request given service, data, vieldiag length

— service - Text variable containing the name of the service heing

‘ requested.

— data - memory Tor objects being created. This is unformatted
memory and can beinterpreted and filled according to the objeets
heing requested.

~ dength - Integer vaviable returning the Tength in bytes of the data

Lo be supplied.

This SIMSCRIPT function is the server complement to the accept.
data function. Whew a request for objects is received by the commu-
nications handler, this Tunction is ealled to (1l the request. As before,
becanse the connmunications are interrupt deiven, this function can be

called at any time,

After the receiver code has heen moved to a separate program, addi-
tional SIMSCRIPT code will Tave to he added to the receiver program to
manage the remotely generated data. This additional code keeps track of
the available inventories of remotely generated data, placing requests for
additional data when the local inventory falls below some threshold. Tow
this threshold is caleulated is diseussed in o later section.

The receiver program may itsell be a dala source, for example generating
simulation data that are sent Lo additional programs that provide stalisical
analysis and summary reports or to other servers for graphical display.

6

5 Timing Data and Decomposition Considerations

Message passing overhead must be considered when designing any type of
distributed processing. To decide if any specdups can be expected for a
simulation using the server model decomposition. some analysis for message
passing Limes verse tocal computational costs shonld be performed. The

following definitions are used to perform this analysis.

o C1O - Overhead induced by servicing a communicalions interrupt.
This inchudes the time required to transfer data from the commu-
nications buller to a SINSCRIPT variable.

o (SO - Overhead induced by actively sending a message to another

server,
o C'I'I' - Time for a command message to travel between Lwo hosts.
e D'I'I" - Time Tor a data messape to travel between two hosts,
o MS'T - Minimum time required Lo supply objects,
e OS - Order size. The number of items shipped in each order,
o ECR - Expected consmmption rale for generated items.
e DCC - Distributed computation cost.
o L.CC - Local computational cost for generaling one object

o RGT - Remote generation time. The time required by the server to
generate the values. This value is determined by OS and LCC.

e I'BO . Time between orders,

Assume that the generators have precompited more of the objects than
will be requested so that the time that the penerator will spend processing
a request is 0. With Lhis assminption we can define

DCC = SO+ TT N

LCC = 1o 4 Drr (2)

MST = Doy Lo h
7

Clearly the formulae helow must hold or it will always be faster to com-

pite the objects locally.

OS> MST v (1)
OS+ LCC > ClO 4 (850 (5)

In many cases, unless 1,CC (the cost of computing the data locally) is
significant, OS will have to be large to make this approach feasible. Practi-
cally speaking, since for most simulations the actual consnmption rate can
vary, OS * LCC shonld he significantly larger than C1O + ('S0,

In order to assist in determining, the potential effectiveness of using this
approach for distributed simulation, some timing, data was collected for 1.CC,
ClO, CSO, and CT. The variable BCR is wodel dependent and, with the
other variables fixed, OS can be determined.

Timing data for message passing among, Sun workstations connected via
cthernet networks and bridges was collected. The thines required for message
passing are nol signilicantly allected by message length as long as are less
than the maximum packetl length for the cthernet (1500 bytes). Messages
were passed between processors that resided on the same physical network
and those on separate, bridged networks. As can be seen helow, messages
that had to go across bridges took twice as long as those that stayed on a
single network. Al data was collected when the network was lightly loaded.

Packet Size: 100 bytes
Number of Packets Single Net (seconds) Bridged Nets (seconds)

100 | 3
200 5 9
1.000 Y 23
5.000 ih 112
10,000 N7 206
50,000 435 14

Packet Size: K00 hytes

Number of Packets

Single Net (seconds)

100 } 3
H00 G IR
1.000 Il 20
5,000 6Hix 137
10,000 118 256
H0,000 513 (113

Bridged Nets (seconds)

Packet Size: 1000 bytes

Number of Packets Single Net (seconds) Bridged Nels (seconds)
100 2 3

h00 b 20

1000 16 13

5,000 70 171

10,000 156 332

50,000 703 1,721

Analysis of the above data gives the following, table of average times and
thironghput rates. Times are given in seconds/hyte and throughput is given

in bytes/second.

Packet Size

Average Time (sec.) Thronghpat (bytes/sec)
Intra-net Inter-net Inlra-net Inter-net

100 0.000087 0.000194 1,400 5,100
500 0.000022 0.000047 16,000 21,600
1,000 0.000015 0.000034 63,000 29,000

To obtain values for the variables LCC, CSO, and ClO, the UNIX prof
command was used. This is a standard UNIX tool that profiles executable
code and generates reports on number of times each function is called, time
spent during cach call, and total time spent in the Tunction during program

exceution, For more information on the prol conunand see [9].

6 Example

As an example, consider the generation of normally distributed random
numbers. The machines nsed are Sun 3/60 workstations with & megabytes
of memory. LCC was found to be 0.1 ms; the CSO and CIO were both 0.025
ms. The table below shows values for OS with corresponding FCR values,

9

ECR/minute 0S Ovders RGT TBO MST

10,000 no 200 0.005 0.30 0.002
100 100 0.010 0.60 0.013

500 200 0.050 3.00 0.061

1,000 10 0.100 600 0.121

5.000 2 0500 30.00 0.601

100,000 H0 2,600 0.005 0.03 0.002
100 1.000 0.010 0.06 0.013

Hoao 200 0.050 .30 0.061

1.000 100 0.100 0.60 0.121

5.000 20 0.500 200 0.601

100,000 50 10,000 0.005 0.006 0.002

100 H000 0.0 0012 0.013
- H00 1.000 0.050 0.060 0061

1.600 Ho0 0.100 0.120 0121
H.000 100 0.500 0.600 0.601
1,000,000 S0 200000 .005 0.003 0.002

100 10,000 0.0§0 0.006 0.013
H00 2.000 0.050 0.030 0.061
1.000 1.000 0,100 0.060 0.121
5,000 200 0500 0.300 0.601

Two points can be made from this table. First, when the order size
becomes farge, the communication time for transferring the mnmbers from
the server to the simtlator hecomes Larvger than the time required to compute
the values locally. As long as the time needed to consume the numbers is
greater than the MST, a speedup is possible with the server decomposition.

Secondly, when the ECR becomes very large, Lhe remole server cannot
keep up with the FCR, the receiver will be foreed to wait for the server to
generate numbers. I Lhe fime spent waiting is signilicantly less than what
1s required Lo compute the vadnes locally, then the server decomposition still

provides speedup.

7 Conclusion

The toolkit that we have developed can be use 1o develop distributed simnla-
tion applications without having to inveslt in new environments or training.
SIMSCRIPT and the UNIX operating system are widely available, allow-
ing easy access to these tools. The toolkit is composed of 650 lines of C

10

code and requires about approximately 50 lines of additional SIMSCRIPT
code per server/receiver pair to be added Lo the simulation model. The user
of Lhiese tools need only he concerned with three € function calls and two
SIMSCRIPT rontines, so the complexity of the simulation program is not
significantly alfected.

Use of these tools requires decomposing a model into components in

which information flow is unidirectional such as traflic arrival generators,
statistical analysis procedures, or graphical displays.

References

(1)

(2l

(3]

(4]

{7l

(8]
(9]

Richard L. Gimarc. Distributed simmulation using hierarchical roliback.
In 1989 Winter Simaulation Conference Procecdings, pages 621-629, 1989.

Richard M. Fujimoto. Parallel discrete event simulation. In Procecdings
of the 1989 Winter Simulation Conference, pages 19 -28, 1989,

David Jeflerson. Distribnted simulation and the time warp operating
system. ACMN SIGOPS, 77-93, Nov. 1987,

B. A. Cota and RR. (. Sargent. Concurrent Programming in Discrele
Event Stmulation: A Survey. Technical Report, Syacuse University, Dec.
1986.

I'red J. Kandel, oA litevature Survey on Distribuled Diservete Fvent Simn-
wlation. 1987,

Douglas W. Joues, Chicn-Chun Chou, Debra Renk, and Steven C. Bru-
ell. Expericnce with concurrent simulation. In Procecdings of the 1989
Winter Simulation Conferenee, pages 756763, 1989,

Rajive L. Bagrodia, K. Mani Chandy, and Jayadev Misra, A message-
bascd approach to diserete-event simulation. (EEE Transactions on Soft-
ware Fngineering, SE-13(6):654- 665, June 1987.

Uniz Programmer’'s Manual, Supplementary Docwmnends |.

Unir User's Manual, Referenee (GCuide,

