
Proceedings of the 1996 Winter Sirn11lation C'onjerence
ed. J. M. Cbarnes, D. J. lvIorrice, D. T. Brunner, and J. J. Sv./ain

INSIDE SIMULATION SOFTWARE:
HOW IT WORKS AND WHY IT MATTERS

Thomas J. Schriber

Computer and Information Systems
The University of Michigan

Ann Arbor, Michigan 48109-1234, U.S.A.

ABSTRACT

This paper provides simulation practItIoners and
interested simulation consumers with a grounding in
how discrete-event simulation software works. Topics
include discrete-event systems and modeling: entities,
resources and operations~ simulation runs~ entity states~

entity lists~ and entity-list management. The implemen
tation of these generic ideas in SIMAN, ProModel, and
GPSS/H is described. The paper concludes with several
examples of "why it matters" for modelers to know in
fine detail how their simulation software works. (This
paper is an updated version of an identically named
paper appearing in the Proceedings of the 1995 Winter
Simulation Conference, pp. 110-117.)

1 INTRODUCTION

1.1 Background

A ~'black box" approach is often taken in teaching and
learning discrete-event simulation software. The external
characteristics of the software are studied, but the fOWlda
tion on which the software is based is ignored or the
foundation is touched on only briefly. Choices made in
implementation of the foundation might not be studied
at all and related to step-by-step model execution. The
modeler therefore might not be able to reason things
through when faced with such needs as developing good
approaches for modeling complex situations, using
interactive tools to come to a rapid understanding of
error conditions arising during model development, and
using interactive tools to verify that complex system
logic has been accurately captured in a model. The
objective of this papec the~ is to present the logical
underpinnings of discrete-event simulation and illustrate
this material in terms of three implementations of
discrete-event simulation software.

1.2 Structure of the Paper

In Sections 2, 3 and 4 we comment on the nature of
discrete-event simulation~ entities, resources and opera
tions~ and simulation experiments. Sections 5 and 6 deal

23

Daniel T. Brunner

Systemflow Simulations, Inc.
6366 Guilford Avenue, Suite 310

Indianapolis, Indiana 46220-1750, U. S. A.

with entity states and entity management structures.
Section 7 discusses the implementation of the preceding
generic material in terms of SIMAN, ProModel, and
GPSSIH. Section 8 explores "why it matters."

1.3 Terminology and Conventions

Throughout this paper we use tenns that we define as
well as tenns reserved by the developers of particular
simulation tools. Tenns we defme are boldfaced on first
use. Tool-specific terms are Capitalized or, where
appropriate, are spelled out in ALL CAPS.

2 ABOUT DISCRETE-EVENT SIMULATION

2.1 The Transaction-Flow World View

The "transaction-flow world view" often provides the
basis for discrete-event simulation. In this view, a sys
tem consists of discrete units of traffic that move ("flow")
from point to point in the system while competing with
each other for the use of scarce resources. The units of
traffic are sometimes called '~transactions," giving rise to
the plL-ase "transaction flow."

Numerous systems fit the preceding description.
Included are many manufacturing, health care, transporta
tio~ civiL communication, defense and information pro
cessing systems, and queuing systems in general.

2.2 The Nature of Discrete-Event Simulation

A discrete-event simulation is one in which the state of a
model changes at only a discrete, but possibly random,
set of time points, known as event times. Two or more
traffic units often have to be manipulated at one and the
same time point. Such "simultaneous" movement of
traffic at a time point is achieved by manipulating units
of traffic seria/(v at that time point. This often leads to
logical complexities in discrete-event simulation.

2.3 Discrete-Event Modeling Languages

The challenges faced by a modeler escalate for the
designer of a modeling language. The designer must

24 Schriber and Brunner

take the logical requirements of discrete-event simulation
into account in a generalized \vay. Choices and tradeoffs
exist. As a result, although discrete-event simulation
languages are similar in broad terms. they can and
typically do differ in subtle but important particulars.

3 ENTITIES, RESOURCES AND OPERATIONS

The generic term entity is used here to designate a unit
of traffic (a "transaction"). Entities instigate events. An
event is a happening that changes the state of a model (or
system). In a model of an order-filling system. for exam
ple, the arrival of an order, which is an event, might be
simulated by bringing an entity into the model.

It is useful to distinguish between two possib Ie types
of entities, here referred to as external entities and
internal entities. External entities are those whose
creation and movement is explicitly arranged for by the
modeler. In contrast, internal entities are created and
manipulated implicitly by the simulation software itself.
For example, internal entities might be used in some
languages to simulate machine fai lures, whereas ex1ernal
entities might be used to simulate the use of machines
by work-in-process.

The generic term resou ree is used to designate con
structs that model system elements (such as servers) that
can cause unwanted delays for units of traffic. All tools
have "resource" constructs for the direct representation of
servers, and other constructs (e.g., switches, counters,
variables) whose state or value can be the basis for entity
delay. The view here is that any of these constructs can
at least sometimes appropriately be called a "resource."

An operation is a step carried out by or on an entity
while it moves through a system. The operations appli
cable to a ship at a harbor might be these: arrive: capture
a berth; capture a tugboat: get pulled into the berth: free
the tugboat; load cargo: etc. "Capture" is an example of
a compound operatio~ e.g.. wait (if necessary) for a tug
boat, then take control of the tugboat. Some operations
require time to pass, e.g., the loading of cargo.

4 OVERVIEW OF MODEL EXECUTION

4.1 Experiments, Replications, and Runs

A simulation project is composed of experiments.
Experiments are differentiated from each other by the use
of alternatives in a model's logic andlor data. An al
ternate part sequencing rule might be tried, for example,
or the quantity of various machines might be varied.

Each experiment consists of one or more replications
(trials). A replication is a simulation that uses the exper
iment's model logic and data but a different set of ran
dom numbers, and so produces different statistical results
that can then be analyzed across a set of replications.

A replication involves initializing the model, running
it until a run-ending condition is met and reporting
results. This "running if' phase is called a run.

.... 2 Inside a Run

During a run the simulation clock (an internally man
aged, stored data value) tracks the passage of simulated
time (as distinct from wall-clock time). The clock ad
vances in discrete steps (usually of unequal size) during
the run. After all possible actions have been taken at a
given simulated time, the simulation clock is advanced
to the time of the next earliest scheduled event. Then the
appropriate actions are carried out at this ne\\' simulated
time, etc.

The execution of a run thus takes the form of a two
phase loop: ~'carry out all possible actions at the current
simulated time," followed by "advance the simulated
clock," repeated over and over again until a run-ending
condition comes about. The two phases are here
respectively called the Entity Movement Pbase (EMP)
and the Clock Update Phase (CUP).

5 ENTITY STATES

Entities migrate from state to state while they work their
\vay through a model. An entity is always in exactly one
of five alternative states, as detailed belo\v.

5.1 The Active State

The Active State is the state of the currently moving en
tity. Only one entity moves at any instant of wall-clock
time. This entity progresses through its operations
nonstop until it encounters a delay. It then migrates to
an alternative state (or leaves the system). Some other
entity then becomes the next active entity. And so on.

5.2 The Ready State

During an Entity Movement Phase there may be more
than one entity ready to move, and yet entities can only
move (be in the Active State) one-by-one while wall
clock times goes by. The Ready State is the state of
those entities waiting their turn to enter the Active State
during the current Entity Movement Phase.

5.3 The Time-Delayed State

The Time-Delayed State is the state of entities waiting
for a known future simulated time to be reached so that
they can then (re)enter the Ready State. A "part" entity
is in a Time-Delayed State, for example, while waiting
for the future simulated time at which an operation
currently being perfonned on it by a machine will come
to an end.

5.4 The Condition-Delayed State

The Condition-Delayed State is the state of entities de
layed until some specified condition comes about, e.g., a
~~part" entity might wait in the Condition-Delayed State

Inside Simulation Software: HOTV It Works and \'1/11,1' It l\JHtters

until its tum comes to use a machine. Condition
Delayed entities are removed automatically from the
Condition-Delayed state when conditions permit.

5.5 The Dormant State

Sometimes it is desirable to put entities into a state from
which no escape will be triggered automatically by
changes in model conditions. We call this state the
Dormant State. Dormant-State entities rely on modeler
specified logic to transfer them from the Dormant State
back to the Ready State. Job-ticket entities might be put
into a Donnant State, for example, until an operator
entity decides which job-ticket to pull next.

6 ENTITY MANAGEMENT STRUCTURES

Simulation software uses the following lists to organize
and track entities in the five entity states.

6.1 The Active Entity

The active entity forms a single list of length one. This
"list" is not given a name here. The Active-State entity
moves nonstop until encountering an operation that puts
it into another state (transfers it to another list) or
removes it from the model. A Ready-State entity then
becomes the next Active-State entity. Eventually there is
no possibility of further action at the current time. The
EMP then ends and a Clock Update Phase begins.

6.2 The Current Events List

Entities in the Ready State are kept in a single list here
called the current events list (CEL). Entities migrate to
the current events list from the future events list, delay
lists, and user-managed lists. (Each of these latter lists is
described below). In addition, any entities cloned from
the Active-State entity usually start their existence on
the current events list.

6.3 The Future Events List

Entities in the Time-Delayed State belong to a single
list into which they are inserted at the beginning of their
time-based delay. This list, called the Cutu re events list
(FEL) here, is usually ranked by increasing entity move
time. (Move time is the simulated time at which an
entity is scheduled to try to move again.) At the time of
entity insertion into the FEL, the entity's move time is
calculated by adding the value of the simulation clock to
the known (sampled) duration of the time-based delay.

After an Entity Movement Phase is over, the Clock
Update Phase sets the clock's value to the move time of
the FEL's highest ranked (smallest move time) entity.
This entity is then transferred from the FEL to the CEL,
migrating from the Time-Delayed State to the Ready
State and setting the stage for the next Erv1P to begin.

The preceding statement assumes there are not other
entities on the FEL whose move time matches the
clock's updated value. In the case of move-time ties,
some tools will transfer all the time-tied entities from the
FEL to the CEL during a single CUP, whereas other
tools take a "one entity transfer per CUP" approach.

Languages that work with internal entities usually use
the FEL to support the timing requirements of these
entities. The FEL is typically composed both of ex1emal
and internal entities in such languages.

6.4 Delay Lists

Delay lists are lists of entities in the Condition-Delayed
State. These entities are waiting for a condition to come
about (e. g., waiting their tum to use a machine) so they
can be transferred automatically into Ready State on the
current events list. Delay lists, which are created auto
matically by the simulation software, are managed by us
ing related waiting or polled waiting. (The approach
taken may depend on the particular software being used.)

If delay can be related easily to events in the model
that eliminate the delay, then related waiting can be used
to manage the delay list. For example, suppose a
machine's status changes from busy to idle. In response,
the software can then automatically remove the next
machine-using entity from the appropriate delay list and
put it in Ready State on the current events list. Related
waiting is the prevalent approach used to manage delay.

If the delay condition is too complex to be related eas
ily to delay-resolving events in the model, polled
waiting can be used to manage the delay list. With
polled waiting the software checks regularly and
routinely to see if entities can now be transferred
automatically from delay lists to the Ready State.

Complex delay conditions for which polled waiting
can be useful can include Boolean (and/or) combinations
of state changes, e.g., a part supply runs low or an
output bin needs to be emptied.

6.5 User-Managed Lists

User-managed lists are lists of entities in the Dormant
State. The modeler must take steps to establish such
lists and provide the logic needed to transfer entities to
and from the lists. (The underlying software has no way
to know why entities are put into user-managed lists and
so has no basis for removing entities from such lists
automatically.)

7 IMPLEMENTATION IN THREE TOOLS

The three tools chosen here for commentary on
implementation particulars are Systems Modeling
Corporation's SIMAN V~ ProModel Corporation's
ProModel, Version 3: and Wolverine Software
Corporation's GPSSIH, Releases 2.x and 3. (See the
References.) These three are among more thanfifly tools

26 Schriber and Brunner

reported in 1995 for discrete-event simulation (Swain
1995). Some other tools might be better suited than any
of these three for particular modeling activities, but we
think that these three tools are representative.

7.1 SIMAN

SIMAN V equivalents of the generic tenns in earlier
sections are given in Table 1. For example, SIMAN
uses Blocks to specify operations for Entities.

Generic Term SIMAN Equivalent
Entity Entity

Resource Resource~ Blockage~

Conveyor Transporter
Operation Block

Current Events List Current Events Chain
Future Events List Future Events Heap

Delay List Attached or Internal Qu_eue
User-Mana~ed List Detached Queue

Table I: SIMAN Terminology

7.1.1 The Current Events Chain

The current events list is called the Current Events
Chain (CEC) in SIMAN. The SIMAN CEC is
composed of all Ready-State Entities. The first step in
Sllv1AN's Entity Movement Phase is to remove the
Entity from the head of the CEC and make it active.

If Entities are placed on the CEC while the Active
State Entity is moving, they are inserted in last-in, first
out order. For example, if an Entity produces a clone (a
copy of itself placed immediately on the CEC), then after
the clone-producing Entity is no longer active. its clone
will be the ne:\.1 Active-State Entity. If the Active-State
Entity produces two or more clones simultaneously.
they will be inserted at the front of the CEC (that is,
LIFO in terms of other Ready-State Entities) but they
will be FIFO among themselves.

When the active Entity leaves the Active State and
there are no more Ready-·State Entities. the EMF checks
all polled wait conditions. transfers any qualifying
Condition-Delayed Entities to the Ready State on the
CEC, etc .. until no more action can be taken at the
current simulated time. Then the nex1 CUP takes place.

7.1.2 The Future Events Heap

Time-Delayed Entities in SIMAN reside in a structure
named the Future Events Heap (FEH). This structure
behaves like a list ranked on increasing move time. The
Entity with the earliest move time is the ne:\.1 one off the
Future Events Heap when a Clock Update Phase occurs.

If there are ties for earliest move time. SIMAN will
remove all the tied Entities from the Future Events Heap
during one and the same Clock Update Phase.

The FEH can contain internal Entities resulting from
elements specified by the modeler in the SIMAN
experiment file. An example is beginning-of-downtime
and end-of-downtime Entities. When an internal Entity
is encountered on the FER during a CUP, it is processed
immediately. (In contrast, external Entities are simply
put into Ready State on the CEC.) Because of internal
Entities. the CEC might be empty after a CUP takes
place. An EMP nevertheless takes place, insuring that a
timely check of polled wait conditions will be made.

7.1.3 Attached and Internal Queues

Attached and Internal Queues are the two types of
SIMAN lists containing Entities engaged in related
waiting. Related waiting results from the use of Hold
Blocks. For example, SEIZE, the Block used by an
Entity (e.g., a part) to capture a Resource (e.g., a
machine). is a Hold Block. Other related-waiting Hold
Blocks are ACCESS. ALLOCATE, PREEMPT,
PROCEED. REQUEST. and WAIT.

Associated with each Hold Block is an Attached or
Internal Queue in which Entities wait for the Hold
condition to be satisfied. If a QUEUE Block
inunediately precedes a Hold Block, an Attached Queue
results. An Attached Queue is a named list of Entities
waiting to execute the associated Hold Block.

Sometimes it is convenient to use identical Hold
Blocks at multiple points in a model. e.g., to use a
"SEIZE DRILL" Block two or more places in a model.
The modeler can choose to associate with each Hold
Block its own Attached Queue. These are unshared
Attached Queues, because two or more lists of Entities
then wait for the same Resource. Hold-Block Priority is
used to detennine the next Entity to get the Resource.

Alternatively, the modeler can put Entities delayed at
two or more identical Hold Blocks into one and the
same Attached Queue, a shared Attached Queue.
Shared Attached Queues require use of the keyword
SHARED in the QUEUES element in the SIMAN
experiment fue.

Entities are put into Attached Queues FIFO or LIFO,
or are inserted into the Queues based on the value of a
modeler-supplied eXlJression

If no QUEUE Block precedes a Hold Block., SIMAN
provides an Internal Queue for that Hold. An Internal
Queue is an unnamed. non-sharable FIFO Queue.

The SCAN Hold Block is an exception to the rule
that Hold Blocks implement related waiting. A SCAN
Block delays Entities until a user-supplied eXlJression
(involving system-state infonnation and/or data values)
is true. Queues (delay lists) that form at SCAN Blocks
are polled at the end of each Entity Movement Phase.

7.1.4 Detached Queues

Detached Queues are Entity lists used by SIMAN to
implement the Dormant State. Entities are put into
Detached Queues \vhen they execute QUEUE Blocks at

Inside Simulation Softlvare: HunT It ,rarks and 1'~1l.\T It ..\Iattcrs C) ...
_I

which a DETACHED modifier is specified. Such
Entities are later transferred from their Dormant State to
the Ready State by other Entities that use SEARCH and
REMOVE or QPICK and MATCH Blocks for this
purpose.

7.2 ProModel

ProModel equivalents of the earlier generic tenus are
given in Table 2. In ProModel, Entities compete for
Locations and Resources and engage in operations on
the basis of Operation and Routing Statements.

Generic Term ProModel Equivalent
Entity Entitv

Resource Location~ Resource~

Variable~ Node
Operation Operation Statement~

Routin,g Statement
Current Events List Action List
Future Events List Future Events List

Delay List Waitin,g List
User-Managed List None (but see 7.2.3)

Table 2: ProModel Tenninology

A Location models the physical space an Entity
occupies. An Entity can only occupy one Location at a
time. ProModel Resources are used to model resources
other than Locations. e.g., forklift trucks~ humans.
Entities can control multiple Resources simultaneously.

Resources themselves can compete for Nodes. moving
independently through a Node network in search of
something to pick up or a place to be idle. In this sense
Resources can behave like Entities. They can migrate
among Entity states, and they are tracked in lists.

A ProModel l/ariable is a general-purpose data
element whose value can be the object of a WAIT
UNTIL and for which ProModel collects statistics.

7.2.1 The Action List

The ProModel Action List contains Entities (and Re
sources) in the Ready State. The list is ranked LIFO and
is empty by the end of each EMF. Deactivation of the
active Entity or Resource causes the first Entity or
Resource on the Action List to become active.

7.2.2 The Future Events List

Entities undergoing WAIT operations, and Resources
(while moving), along with certain internally generated
Entities and events. can wait on the Future Events List
(FEL). Processing is "first out based on earliest move
time." ProModel will remove only one Entity or event
per CUP. In case of time ties there will be successive
EMPs that occur at the same instant of simulated time.

Many ProModel model-definition constructs have
optional user-defined Logic fields. e.g.. Downtime Logic
and Location Exit Logic. Logic is a collection of
Operation Statements automatically executed \vhen
appropriate. An Entity can launch Independent Logic
which is like a subroutine call that is to be executed by a
clone. We mention Logic here because Do\vntime Logic
and Independent Logic can produce non-Entity-related
events on the FEL. When processed, these events may
go into another Future-Events-List \vait or into some
type of delay list. They may cause Entities (or
Resources) to materialize on the Action List.

7.2.3 Waiting Lists

ProModel's Waiting Lists function as delay lists to
implement a variety of related waiting conditions. There
is no polled waiting (for reasons given below) and there
are no user-managed lists (see the last 7.2.3 paragraph).

To understand the interaction among Locations,
Resources. and Variables. \ve need to consider the
model definition frame\vork of ProModel. The entity
flow part of ProModel is specified by the modeler via an
ordered collection of Process Steps that make up a
Process Table. Every Process Step includes the name of
an Entity Type (or AI!) and the name of a Location (or
All). An Entity ~~flows" fron1 one Process Step to the
next by jumping to the next Process Step that matches
its Type and Location (starting over again at the top of
the Table if necessary). This determines ~'what this
Entity Type is supposed to do at this Location."

A Process Step is composed of Operation Logic
and/or Routing Logic components. Competition among
Entities for non-transportation Resources is spelled out
in the Operation Logic. Competition among Entities for
Locations and transportation Resources is spelled out in
the Routing Logic. Routing Logic is acted upon after
Operation Logic has been acted upon.

A Waiting List (for Entities) is attached to each
Location. to each Resource. and to each Variable. A
Waiting List (for Resources) is attached ~o each Node.
(Competition among Resources for Nodes takes place
automatically based on Path Networks. Work/Park
Lists. and NodelLocation associations defined outside
the table of Process Steps.)

A single Entity (or Resource) can be represented in
nvo or more delay lists of the same type simultaneously.
As a result, ProModel does not require a polling
mechanism for modeling certain Boolean conditions.
(The Entity representations are deleted from all relevant
delay lists when a delay-ending condition comes about.)

There are various Routing Rule options for specifying
nex1-Location alternatives. And it is possible to define a
Location in such a way that it can override the ranking of
its delay list when it is ready to accept another occupant.

ProModel has no user-managed lists as such.
However. JOIN. LOAD. and SEND are all Routing
Logic options that place Entities on special Location-

28 Schriber and Brunner

specific lists where they await a JOIN. LOAD, or SEND
Operation Statement, .respectively. to be executed by
another Entity at the destination Location. This explicit
triggering makes these special lists resemble user
managed lists. But because the lists and conditions are
just for Locations and are not custom-managecl \ve con
sider the waiting to be related waiting and the lists to be
delay lists, not user-managed lists.

7.3 GPSS/H

GPSS/H equivalents of the generic terms in the
preceding sections are given in Table 3. For example.
GPSS/H uses Blocks to specify operations for
Transactions.

Generic Term GPSSIH Equivalent
Entity Transaction

Resource Facility~ Storage~

Lo.e;ic Switch
Operation Block

Current Events List Current Events Chain
Future Events List Future Events Chain

Delay List Current Events Chain
User-Managed List User Chain

Table 3: GPSSfH Terminology

7.3.1 The Current Events Chain

As in SIMAN, the current events list is named the
Current Events Chain in GPSSIH. A striking difference
between GPSSIH and SIMAN is that by default in
GPSSfH, Condition-Delayed Transactions (Xacts) are
commingled with Ready-State Transactions on the
CEC. For such Xacts, the CEC itself can be thought of
as a single global GPSSIH delay list.

Other than the CEC and some internal delay lists ..
there are no delay lists in GPSSIH. (GPSS/H has a
Queue construct and a QUEUE Block that do not
perform list management functions: they are for statistics
gathering purposes only.)

A characteristic of GPSSIH is that Transactions on the
CEC are ranked FIFO within Priority Class. (priority
Class is a Transaction attribute.) This reflects the CEC's
global-delay-list function

Like other types of delay lists and unlike other types
of current events lists .. the GPSSfH CEC is frequently
not empty whenever an EMF ends.

7.3.2 The Scan Phase

The EMF in GPSS/H is called the Scan Phase. The
GPSSIH Scan Phase is more involved than the ENlP in
SIMAN and ProModel. (See Schriber 1991.)

GPSSIH starts a Scan Phase with the Transaction
(Xact) at the head of the CEC and tries to move that
candidate-Xact into its next Block. If the Block is one

that can deny entry (SEIZE, ENTER, GATE, TEST or
PREElvIPT) and entry is denied, then the Xact is in a
Condition-Delayed State and GPSSIH leaves the candi
date on the CEC and examines the sequential CEe
Xact. If entry is not denied, then the candidate becomes
the active Xact (without being removed from the CEC)
and begins executing Blocks.

If the active Transaction tries to execute a Block and
entry is denied, the Transaction shifts to the Condition
Delayed State and remains on the CEC. GPSSIH then
resumes scanning the CEC for the next active
Transaction. However, because of possible state changes
precipitated by the previously active Transaction's
Block execution(s). the scan will either continue
sequentially or restart (see below).

The GPSS/H mechanism of keeping certain
Condition-Delayed Transactions on the CEC and
examining them one or more times during the Scan
Phase to see if they are in the Ready State at the instant
of examination implies that all of these Transactions are
fundamentally in a polled wait condition.

7.3.3 Restarting the Scan

GPSSIH has an internal status change flag (SCF) that is
set to true whenever a unique blocking condition (see
Section 7.3.4) is resolved. If the SCF is true \vhen the
active Transaction ceases to be active. the SCF is set
back to false and the scan restarts at the head of the CEC
as if the El\1P had just begun~ otherwise the scan of the
CEC continues with the sequential CEC Xact.

Scan restarts occur because there may be Transactions
at or near the top of the CEC that should be given first
crack at moving in response to the resolution of a unique
blocking condition. The net effect of scan restarts and
CEC Xact ranking within Priority Class is to provide
FIFO-within-Priority-Class queuing in GPSS/H for
condition-delayed Xacts resident on the CEC.

The active Xact can execute a YIELD (synonym:
BUFFER) Block in GPSSIH to return itself temporarily
to the Ready State and force an irnmediate scan restart.
The restarted scan will eventually re-encounter the
yielding Xact at the same simulated time, which will
then again become active. The ability of an Xact to yield
control deliberately but only temporarily to one or more
other Xacts is quite useful in discrete-event modeling.

7.3.4 Related Waiting on the CEC

State changes involving unique blocking include the
transition of a Facility (server) into or out of use~ the
transition of a Storage (a GPSSIH counter with a capac
ity) to a smaller count, or out of the empty or into the
full state: and a change in the setting of an on-or-off
Logic Switch. Transactions waiting to SEIZE a Facility
or ENTER a Storage or waiting at a GATE for a Storage
to become non-empty or full or for a Logic Switch to
change are in a unique blocking condition. (Other types
of unique blocking are possible as well.)

Inside Simulation Software: How It Works and -VVhy It Ivlatters 29

Scan restarts imply extra processing demands while
GPSS/H re-encounters and re-evaluates CEC
Transactions. To offset this each Transaction has a Scan
Skip Indicator (SSI) that flags those Transactions
waiting for unique blocking conditions to be resolved.
The SSI flag is checked before an attempt is made to
move a candidate-for-active Transaction into its next
Block, allowing the scan to quickly skip over such
Condition-Delayed Transactions.

An Xact's SSI is cleared automatically at the moment
of resolution of the unique blocking condition which has
been forcing the Xact to wait. Internal delay lists are
used to track which Xacts' SSIs need to be cleared in
response to a given state change. These lists are related
to an underlying condition, so the polled-waiting nature
of the GPSS/H CEC scan is in fact a hybrid
polled/related approach in the case of unique blocking.

7.3.5 The Future Events Chain

The GPSSIH Future Events Chain (FEC) is like future
events lists in other tools. The GPSSIH CUP will
remove multiple Transactions from the FEC if they are
tied for the earliest move time, inserting them one by
one into their appropriate place on the CEC.

GPSSIH does not use internal entities to model
downtimes. GPSSIH models downtimes (and some
other control conditions as well) with actual Xacts.
These are ordinary Xacts (external entities) that go
through the ordinary Time-Delayed State to simulate
time-between-failures and time-to-repair.

7.3.6 User Chains

GPSS/H implements the Dormant State with User
Chains, which are user-managed lists of Xacts. After a
Transaction puts itself onto a User Chain (by executing a
LINK Block), it can only be removed by another
Transaction (which triggers the removal by executing an
UNLINK Block). If UNLINK execution transfers one or
more Dormant-State Transactions to Ready State, the
SCF will be made true (to trigger a scan restart) so these
CEC newcomers will have their tum to become active
before the next CUP. User Chains can achieve
performance improvements over CEC-based queuing
because User Chains (like delay lists in other tools) need
never be scanned except when an UNLINK is executed.

8 WHY IT MATTERS

8.1 Overview

We now describe three situations that reveal some of the
practical differences in implementation particulars among
SIMAN, ProModel and GPSS/H. (Space restrictions
limit us to three situations.) We then conclude with
comments on how knowledge of software internals is
needed to make effective use of software checkout tools.

8.2 Trying to Re-capture a Resource Immediately

Suppose a part releases a machine, then immediately re
competes for the machine (e.g., RELEASE followed by
SEIZE in SIMAN or GPSS/H~ FREE or USE followed
by GET or USE in ProModel). The objective is to let a
more higWy qualified waiting part be the next to capture
the machine~ in the absence of such a part the releasing
part itself is to re-capture the machine.

Of interest here is the order of events following the
giving up of a server. There are at least tlrree alternatives:
(1) Coupled with the giving up of the server is the
immediate choosing of the next user of the server.
without the releasing entity having yet become a
contender for the server. (2) The choosing of the next
user of the server is deferred until the releasing entity has
become a contender. (3) "Neither of the above"~ that is,
without paying heed to other contenders, the releasing
entity recaptures the server immediately.

STh1AN, ProModel, and GPSSIH respectively imple
ment the first, second and third alternatives by default.
And so one or another alternative is in effect in the tools
considered here, reflecting differing implementation
choices made by the software designers.

Note that these alternatives are not intrinsically either
"right" or 4'wrong." The modeler must be aware of the
alternative in effect and work with it to produce the de
sired outcome. (If a modeler is una\vare of the alternative
in effect in the simulation software being used, it is pos
sible to model a given situation with an unintended ef
fect and perhaps not even become aware of this fact.)

8.3 The First in Line is Still Delayed

Suppose two Condition-Delayed entities are waiting in a
list because no units of a particular resource are idle.
Suppose the first entity needs two units of the resource,
whereas the second entity only needs one unit. Now
assume that one unit of the resource becomes idle. The
needs of the first list entity cannot yet be satisfied, but
the needs of the second entity can. What will happen?

There are at least three possible alternatives: (1)
Neither entity claims the idle resource unit. (2) The fITst
entity claims the one idle resource unit and waits for a
second unit. (3) The second entity claims the idle
resource unit and goes immediately on its way.

As in Section 8.2, each of these alternatives comes
into play in the tools considered here. SIMAN (SEIZE),
ProModel (GET or USE), and GPSS/H (ENTER or
TEST) respectively implement the first, second and
third alternatives by default.

6.4 Yielding Control

Suppose the active entity wants to give control to one or
more Ready-State entities, but then needs to become the
active entity again before the simulated clock has been
advanced. This might be usefuL for example, if the

30 Scllri ber and Brunner

active entity has opened a switch peIllUtting a set of
other entities to move past a point in the modeL and
then needs to re-close the s\vitch after the fonvard
movement has been accomplished. (perhaps a group of
identically -flavored cartons of ice cream is to be
transferred from an accumulation point to a conveyor
leading to a one-flavor-per-box packing operation)

In SIMAN, the effect can be accomplished approxi
mately with a DELAY that puts the active Entity into a
Time-Delayed State for an arbitrarily short but non-zero
simulated time.

In ProModeL ~~WAIT 0" can be used to put the active
Entity back on the FEL. It will be returned later (at the
same simulated time) by the CUP to the Active State.

In GPSSIH, the active entity can execute a YIELD
(BUFFER) Block to move from the Active State to the
Ready State and restart the CEC scan. Higher-priority
Xacts on the CEC can then become active, one by one,
before the control-yielding Xact itself again becomes
active at the same simulated time. (If all relevant Xacts
have the same priority, a ~'PRIORITY PR,YIELD"
Block can be used to reposition the active Xact behind
equal-priority Xacts on the CEC, shift the active Xact to
the Ready State, and restart the scan of the CEC.)

6.5 Interactive Model Verification

We now comment briefly on \vhy a detailed understand
ing of "ho\v simulation soft\vare \vorks" supports inter
active probing of simulation-nlodel behavior.

In general, simulation models can be run interactively
or in batch mode. Interactive runs are of use in checking
out (verifying) model logic during model-building and
in troubleshooting a model when execution errors occur.
Batch mode is then used to nlake production runs.

Interactive runs put a magnifying glass on a sinlula
tion model while it executes. The modeler can follo\v
the active entity step by step and display the current and
future events lists and the delay and user-managed lists
as well as other aspects of the model. These activities
yield valuable insights into model behavior for the mod
eler \vho knows the underlying concepts. Without such
knowledge, the modeler might not take full advantage of
the interactive tools provided by the software or. \vorse
yet might even avoid using the tools.

ACKNOWLEDGMENTS

Much of the information in the original yersion of this
paper was derived from conversations \vith sofuvare
vendor personnel. The authors gratefully ackno\vledge
the support provided by David T. Sturrock, Deborah A.
Sado\vski, C. Dennis Pegden and Vivek Bapat all of
SystenlS Modeling Corporation: Charles Harrell and Eric
Du, of ProModel Corporation: Kerim Tumay (no\\' of
CACI Products Company): and Robert C. Crain and
James O. Henriksell of Wolverine Software Corporation.

REFERENCES

Baird, S. P., and J. J. Leavy. 1994. Simulation
Modeling Using ProModel for Windows. In
Proceedings of the 1994 Winter Simulation
Conference~ 527-532. LaJolla, California: Society for
Computer Simulation.

Banks, J., 1. S. CarsoIL and 1. N. Sy. 1995. Getting
Started with GPSS:IH, Second Edition. Annandale,
Virginia: Wolverine Software Corporation.

Banks, J., B. Burnette, H. Kozloski. and 1. Rose. 1995.
Introduction to SIA1AN r' and Cinema V. New York~

Ne\v York: Jolm Wiley & Sons.
CraiQ R. C. 1995. GPSS/H Release 3. In CHECK

POJ.,\fT, Vol. 11, NO.1. Annandale, Virginia:
Wolverine Software Corporation

Crain. R. C., and D. S. Smith. 1995. Industrial
Strength Simulation Using GPSS/H. In Proceedings
of the 1995 lVinter Sinlulation Conference, 487-493.
LaJolla, California: Society for Computer Simulation.

Henriksen, 1. O. 1995. An Introduction to SLX. In
Proceedings oJ~ the 1995 Hrinter S'irnulation
C'onference, 502-509. LaJolla, California: Society for
Computer Simulation.

Pegdell C. D., R. E. Shannon, and R. P. Sadowski.
1995. Introduction to S'imulation [Ising SIA,1AN,
Second Edition. New York, New York: McGraw-Hill.

Profozich. D. M., and D. T. Sturrock. 1995.
Introduction to SIMAN/Cinema. In Proceedings of
the 1995 H'inter Simulation (lonference, 515-518.
LaJolla, California: Society for Computer Simulation

ProModel Corporation. 1995. ProAlodel r'ersion 3
['"ser's Guide. Orenl, Utah: ProModel Corporation.

Schriber, T. 1. 1991. An Introduction to 5'i111ulation
[Ising GPSS/H. New York, New York: John Wiley.

S\vaiQ J. 1. 1995. Sinlulation Survey: Tools for Pro·cess
Understanding and Improvement. ORlA151 Today,
Ailgust '95, 64-79, Baltimore, Maryland: INFORMS.

AUTHOR BIOGRAPHIES

DANIEL T. BRUNNER is President of Svstemflow
Simulations, Inc., a services finn active in rrianufactur
ing, material handling, distribution, transportation,
health care, computer systems, and mining. He received
a B.S.E.E. from Purdue University and an MBA from
The University of Michigan. He has served as Winter
Simulation Conference Publicity Chair (1988) and
Business Chair (1992), and is General Chair for the 1996
WSC. He is a member of lIE and SCS.

THOMAS J. SCHRIBER is a Professor of Computer
and Infonnation Systems at The University of Michigan.
He teaches a number of subjects \vbile doing research and
consulting in discrete-event simulation. He is a member
of ASIM (the German-language simulation society),
DSL lIE, and INFORMS.

