
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

DISTRIBUTED SUPPLY CHAIN SIMULATION IN A DEVS/CORBA EXECUTION ENVIRONMENT

Bernard P. Zeigler

AI and Simulation Group
Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721, U.S.A.

Doohwan Kim
Stephen J. Buckley

IBM T. J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598, U.S.A.

n

w

ly
e

hi
a
a
n

nt
d

te
s
ly
y
rk
s
t
a

y
n
n

a
lp
s
o
a

id
e

n

ain
es,
ry
en

 its
r

lly
ent
gh
e

ling
r

 It
n
ess
ts

ies
.
t is
s

ly
de
for
ry
se
n
.
)
d

ms
ing
el
has
sed
nd
).
is
ABSTRACT

The emerging electronic commerce and rapidly changi
business environments place strong requirements on
next-generation supply-chain analyzer to simulate the flo
of goods through the entire supply chain in a time
manner. Such requirements include scalable and effici
model execution and support for flexible future
extensibility based on an open industry standard. T
paper presents design considerations for a supply ch
modeling and simulation environment to execute in
parallel and distributed manner on a DEVS/CORBA ru
time infrastructure. We recall that DEVS (Discrete Eve
System Specification) is a sound formal modeling an
simulation framework based on generic dynamic system
concepts that can integrate into a parallel and distribu
run time infrastructure. CORBA (Common Object Reque
Broker Architecture) is an open standard that is rapid
gaining universal business acceptance. It can be emplo
as middleware to support a heterogeneous, netwo
centric, distributed computing environment that include
modeling and simulation as well as other business objec
Implementing a distributed supply chain simulator in
DEVS/CORBA execution environment not only may
significantly improve execution speed but also ma
provide advanced supply chain model developme
capability based on the DEVS modeling and simulatio
framework.

1 INTRODUCTION AND MOTIVATION

The IBM Supply Chain Analyzer (SCA) (Bagchi 1998) is
modeling and simulation software tool that can he
companies make strategic business decisions about the de
and operation of its supply chain. The supply chain simulati
evaluates all the components and variables in a supply ch
and helps companies determine which strategies will prov
the most flexible and profitable operating environment. Th
SCA, with a combination of simulation and optimizatio
1333
g
a

nt

s
in

s
d
t

ed
-

s.

t

ign
n
in
e

functions, is designed to model and analyze supply ch
issues such as site location, replenishment polici
manufacturing policies, transportation policies, invento
levels, lead times, and customer. The SCA has be
successfully implemented to provide competitive edges to
clients ranging from food industries to compute
manufacturing companies in recent years.

The emerging electronic commerce and dynamica
changing business environment require fast and effici
simulation execution to examine the flow of goods throu
the entire supply chain in a timely manner. Although th
current SCA provides advantageous supply chain mode
and optimization capabilities, it is not implemented fo
parallel execution in distributed computing environments.
runs on a single platform (Windows NT) and is built upo
SIMPROCESS (Swegles 1997), a general purpose busin
process simulator which is a product of CACI Produc
Company. SCA preserves all SIMPROCESS capabilit
while offering additional supply chain functionality
However, this dependency leads to a drawback since i
difficult to modify the deployment of the SCA tool and it i
not based on an open industry standard.

Thus the requirements for a next-generation supp
chain modeling and simulation environment should inclu
scalable and efficient model execution and support
flexible future extensibility based on an open indust
standard. An attractive combination to meet the
requirements is the DEVS modeling and simulatio
framework in conjunction with the CORBA middleware
The DEVS (Discrete Event System Specification
formalism offers a sound, formal, open modeling an
simulation framework based on generic dynamic syste
concepts. DEVS has a well defined approach to coupl
of components, supports hierarchical, modular mod
construction, and associated repository reuse. DEVS
also been implemented as highly portable C++/Java ba
environment executable in both sequential, parallel a
heterogeneously distributed platforms (Zeigler 1999
CORBA (Common Object Request Broker Architecture)

Zeigler, Kim, and Buckley

e
l

ce
f
n

t.
-

s.
y
d
d
,

rt
ls

 f
n
 t
S
i
S
u
A

g
e
ic
)
n
e
lo
c
c
e
c
ct
s
e
th
 t
e
n
e
ie
io
n
k
i

ce
n

ce
a
bs.
m
e

re

as
ct
ic,
be
rn

e
eric
ial
n

ing

g
in

l.
rete
wise
rate
eric
 not
ent
the
ll-
ing
nd
.
tly
to
ll
nt

rty
d
del

ls
els
++
n
m
m

an open standard promulgated by the Object Managem
Group (OMG), a consortium of over 700 companies (Orfa
and Harkey 1997). CORBA is rapidly gaining acceptan
due to a thriving middleware market consisting o
businesses enthusiastically adopting the technology a
vendors providing maturing products to support i
DEVS/CORBA refers to conceptual realization of a run
time infrastructure on top of CORBA middleware to
support distributed simulation of DEVS component
Combining the advantages of CORBA and DEVS ma
provide a heterogeneous, network-centric, distribute
computing environment that includes modeling an
simulation as well as other business objects. Therefore
DEVS/CORBA implementation, with a suitable
distributed/parallel simulation protocol, can suppo
efficient simulation of large scale supply chain mode
within an open industry middleware standard.

The purpose of this paper is to discuss considerations
the design of a to-be-developed DEVS/CORBA environme
to meet requirements such as mentioned above. To set
stage we briefly review some relevant CORBA and DEV
concepts. We then provide an overview of the supply cha
analyzer (SCA), its process models and their DEV
representations. With this background, we proceed to disc
the design alternatives and choices for a DEVS/CORB
environment supporting the SCA application.

2 REVIEW OF CORBA

Originally intended for local network distributed computin
environment, the recent CORBA 2.0 version has extend
the architecture’s capability to support network-centr
computing through the Internet Inter-ORB Protocol (IIOP
services. CORBA provides a common Interface Definitio
Language (IDL) to standardize the interfaces between obj
implementations and defines a set of components that al
applications to invoke methods (operations) on obje
implementations through such interfaces. Obje
implementations can be written in a variety of languag
including C, C++, Java, Smalltalk, and Ada. The Obje
Request Broker (ORB), or more specifically, an Obje
Adapter, is responsible for handling an invocation reque
finding the target object implementation, delivering th
request to the object, and returning the response to
requestor. Relative to a request, the requestor is called
client while the target is called the server. To map betwe
IDL interfaces and the application programs that impleme
them, vendor-supplied CORBA compilers write cod
fragments called stubs and skeletons. Stubs on the cl
side marshal typed data objects from a high-level applicat
representation to a low-level packet representatio
Skeletons on the server side demarshal the low-level pac
representation back into a typed data object that
meaningful to the application. Supported by the Interfa
Repository (IR), an online database of meta informatio
1334
nt
i

d

 a

or
t
he

n

ss

d

ct
w
t
t
s
t

t,

e
he
n
t

nt
n
.
et
s

about ORB object types, the Dynamic Invocation Interfa
(DII) provides runtime means for a client to invoke
server’s methods without reliance on precompiled stu
CORBA Object Services define a wide variety of syste
services with IDL-specified interfaces to augment th
functionality of the ORB.

The use of CORBA as communication middlewa
enhances application flexibility and portability by
automating many common development tasks such
object location, parameter marshaling, and obje
activation. These features enable network-centr
complex, distributed and concurrent applications to
developed more rapidly and correctly. A possible conce
to using CORBA as high-level middleware is th
performance hit that might be a consequence of its gen
and layered design. However, comparison of commerc
CORBA products with direct interprocess communicatio
implementations, such as sockets, and with compet
middleware has not lent credence to this concern .

3 OVERVIEW OF DEVS IN RELATION TO A
CORBA IMPLEMENTATION

This section provides a brief overview of DEVS, focusin
on the aspects needed to discuss the issues
DEVS/CORBA design. The DEVS formalism (Zeigler et a
1999) focuses on the changes of variable values – disc
events – and generates time segments that are piece
constant. In essence the formalism defines how to gene
events and their times of occurrence. Based on gen
system theoretic concepts, DEVS enables one to express
only pure discrete event models but also discrete ev
approximations of continuous systems. Advantages of
DEVS methodology for model development include we
defined separation of concerns supporting distinct model
and simulation layers that can be independently verified a
reused in later combinations with minimal re-verification
The resulting divide-and-conquer approach can grea
simplify and accelerate model development leading
greater credibility at reduced effort. DEVS has a we
defined concept of system modularity and compone
coupling to form composite models. It enjoys the prope
of closure under coupling which justifies treating couple
models as components and enables hierarchical mo
composition constructs.

3.1 DEVS Coupled and Atomic Model Templates

In the DEVS formalism one must specify 1) basic mode
from which larger ones are built, and 2) how these mod
are connected together in hierarchical fashion. DEVS-C
(Zeigler et al. 1997) is a C++ modeling and simulatio
environment based on the parallel DEVS formalis
(Zeigler et al. 1999). There are two major classes fro
which all user-defined models can be developed − atomic

Distributed Supply Chain Simulation in a DEVS/CORBA Execution Environment

f

ha
al
in
an
e
ing
the
m
its
 th
ts
e
fo

S

el
te

ut
f

e
r
l
f
r

ss

l.

asic
t
 a
the
he
be
or
ng
an
s,
or
st

ed,

 in
and coupled. The atomic class realizes the basic level o
the DEVS formalism, while the coupled model embodies
DEVS hierarchical model composition constructs.

To specify modular discrete event models requires t
we adopt a different view than that fostered by tradition
simulation languages. As with modular specification
general, we must view a model as possessing input
output ports through which all interaction with th
environment is mediated. When external events, aris
outside the model, are received on its input ports,
model description must determine how it responds to the
Also, internal events arising within the model, change
state, as well as manifesting themselves as events on
output ports to be transmitted to other model componen
Rather than employing the mathematical formalities, w
present basic and coupled models as templates
specifying model interfaces in the spirit of CORBA IDL.

A basic model template captures the following
information:

• the set of input ports through which external
events are received

• the set of output ports through which external
events are sent

• the set of state variables and parameters
• the time advance function which controls the

timing of internal transitions
• the internal transition function which

specifies to which next state the system will
transit after the time given by the time
advance function has elapsed

• the external transition function which
specifies how the system changes state when
an input is received. The next state is
computed on the basis of the present state, the
input port and value of the external event, and
the time that has elapsed in the current state.

• the confluent transition function which
specifies how the system changes state when
an input is received at the same time that an
internal event is scheduled.

• the output function which generates an
external output just before an internal
transition takes place.

DEVS basic models are implemented as the class atomic
models in DEVS-C++.

Basic models may be coupled in the DEV
formalism to form a coupled model. A coupled model,
tells how to couple (connect) several component mod
together to form a new model. A coupled model templa
captures the following information:

• the set of its components
1335
t

d

.

e
.

r

s

• the set of input ports through which external
events are received

• the set of output ports through which external
events are sent

• the coupling specification consisting of:

1. the external input coupling connects the inp
ports of the coupled model to one or more o
the input ports of the components

2. the external output coupling connects th
output ports of the components to one o
more of the output ports of the coupled mode

3. internal coupling connects output ports o
components to input ports of othe
components

DEVS coupled models are implemented as the cla
coupled models in DEVS-C++. A more complete review
of the DEVS formalism is provided in (Zeigler et a
1999).

3.2 Closure Under Coupling and
IDL Component Interfaces

A coupled model can be expressed as an equivalent b
model in the DEVS formalism. This follows from the fac
that the formalism is closed under coupling. (Expressing
coupled model as an equivalent basic model captures
means by which the components interact to yield t
overall behavior.) Such a basic model can itself
employed in a larger coupled model as required f
hierarchical model construction. Closure under coupli
implies that when networking DEVS components, we c
get away with one CORBA interface for all model classe
namely for basic model components. Of course, f
coupled model components the implementation mu
appropriately interpret the basic interface methods. Inde
this is how the DEVS-C++ implementation works. A
basic DEVS component interface has an expression
CORBA IDL such as the following:

Module DEVS_Component{
 Interface Basic
 {
 boolean initialize();
 double timeAdvance();
 boolean internalTransition();
 boolean externalTransition(in double
 elapsedTime, in message);
 boolean confluentTransition(in message);
 message outputFunction();
 };
};

(here message is a suitably defined data structure).

Zeigler, Kim, and Buckley

n
e

on

y
ch
d

h

n
s

r
ce

a

 an

g
a
y

N,
ts
t
nd
n
od
n
e

e

he

as

n
n,
n

3.3 Parallel DEVS Simulation Protocol
and CORBA Interfaces

In this section we discuss simulation of DEVS models a
associated interface definitions in CORBA IDL. Later w
return to consider design choices in a full executi
environment.

Execution of a coupled DEVS model is mediated b
coordinator and simulator objects (Figure 1). Ea
simulator keeps track of the time-of-last-event, tL an
time-of-next-event, tN of its assigned DEVS component.

coordinator
Coupled
 Model

1. tN?

simulator

DEVS
Component

tN. tL

2. set_Global_and
_Send_Output

3. applyDeltaFunc

simulator

DEVS
Component

simulator

DEVS
Component

Figure 1: Execution of DEVS Simulation Protocol Throug
Collaboration of Coordinator and Simulators

Using the parallel DEVS simulation protocol, executio
proceeds through iteration of the following cycle, a
controlled by the coordinator:

1. Get component times to next event (tNi) and
take minimum as the global next event time,
tN

2. Tell all components the global tN and if
component is imminent (tNi == global tN),
then generate output message(using the
output function)

3. Sort and distribute (using coupling) the
output messages

4. Tell all components
if
a) component is imminent (tNi == global tN)
b) or has incoming mail (external events)
c) or both
then execute appropriate transition function
(a) internal, b) external, c) confluent,
respectively

The interaction between coordinator and simulato
can be implemented in CORBA by suitable interfa
definitions and implementations. The interface that
al

1336
d

s

simulator presents to a coordinator can be expressed in
IDL definitions such as:

Module Simulator{
 Interface toCoordinator
 {
 boolean start();
 double tN?();
 double set_Global_and_SendOutput
 (in double tN);
 boolean applyDeltaFunc(in message);
 };
};

Here a simulator can be told to start up (by invokin
its component’s initialize method). It can respond to
request for the time-of-next-event of its component (b
querying for its timeAdvance). Via
set_Global_and_SendOutput, it can receive a global t
determine if its component is imminent, and if so, return i
component’s output (otherwise returning null). Finally, i
can be sent its component’s input and told to determine a
apply the appropriate version of its component’s transitio
function (or none). The coordinator issues these meth
invocations in the correct order to implement an iteratio
of the simulation cycle. The coordinator’s interface can b
given an IDL definitions such as:

Module Coordinator{
 Interface toSimulator
 {
 boolean register
 (in Simulator::toCoordinator SimObjRef);
 boolean startSimulation();
 boolean stopSimulation();
 };};

When a simulator is first activated it is provided a
unique toCoordinator interface object reference by the
Object Adapter. It can then send this reference to th
coordinator using the register method. Having so
registered, a simulator can subsequently receive t
coordinator’s “call back” invocations to implement the
simulation cycle.

4 OVERVIEW OF SUPPLY CHAIN ANALYZER
AND PROCESS MODELS IN DEVS
REPRESENTATION

Figure 2 describes the system architecture of SCA
intended for a suitable DEVS/CORBA execution
environment. The tool is intended to provide a combinatio
of graphical process modeling, discrete event simulatio
animation, activity-based costing, and optimizatio
functions. The SCA employs a new Java-based graphic

Distributed Supply Chain Simulation in a DEVS/CORBA Execution Environment

a
e
d
th
a

VS

ly

ha

a
 a
y
e
te

a
n
ly
el
a

nd
a

th
tio
e
d
ds
in

s,
g.

ry
s,
ities

,
ng

ode

d
an
d

a

s.
nds

er
 is

ls
rs,
at
s,

ad
re
,
IP,
er

s to
 of
he
to
he
he
ed
d

the
the

ins
ost
 the
ch
re
an
user interface that allows a user to construct supply ch
models through graphical interaction and input mod
parameters. The model parameters can also be importe
exported in relational database or spreadsheets. In
section, we discuss the supply chain process models
capabilities and how they can be translated in DE
representation.

Relational
Database

Server Inventory
Optimizer

Supply
Planning
Optimizer

Supply Chain
Models

Graphic User
Interface

Client

Parallel /Distributed
DEVS Simulation Layer

DEVS / CORBA
Execution

Environment

CORBA
IIOP

Network

Local
Database

Figure 2: System Architecture of the Distributed Supp
Chain Analyzer

4.1 SCA Process Models and Components

SCA offers two types of activity process models; those t
represent manufacturing, distribution, customer,
transportation and those that perform inventory planning,
forecasting, and supply planning.

Customer process models external customers th
issue orders to the supply chain being modeled. Orders
generated on the basis of customer demand, which ma
modeled as a sequence of specific customer ord
obtained from historical records or as an aggrega
demand over a period of time. The customer process m
also contain information on the desired service level a
priority for the customer. When forecasting and supp
planning activities are included in a supply chain mod
the customer process may issue forecasts of future dem
to aid these activities.

Manufacturing process represents assembly a
keeps raw material and finished goods inventory. It c
also be used to model suppliers. During simulation,
manufacturing process makes use of modeled informa
such as, the types of manufactured products, th
manufacturing time, bills of material, manufacturing an
replenishment policies for components and finished goo
storage capacity, manufacturing and material handl
resources, and the order queuing policy.

Distribution process models distribution center
including finished goods inventory and material handlin
1337
in
l
 or
is
nd

t

t
re
be
rs
d
y

d

,
nd

n
e
n
ir

,
g

It can also be used to model a retail store. The invento
replenishment policy, safety stocks, reorder point
material handling resources, storage types and capac
can be modeled for the distribution center or retail store.

Transportation process models transportation time
vehicle loading, and transportation costs. Order batchi
policies (by weight or volume), material handling
resources and transportation resources owned by this n
may be specified.

Inventory Planning process simulates periodic setting
of inventory target levels, days of supply targets, an
continuous replenishment. Underlying this process is
optimization program developed at IBM Research calle
the Inventory Optimizer that computes and sets
recommended inventory levels at various facilities in
supply chain based on desired customer serviceability.

Forecasting models product forecasts, including
promotional and stochastic demand, for future period
This process accumulates forecasts and periodically se
them to other processes to create build plans.

Supply Planning models the allocation of production
and distribution resources to forecast demand und
capacity and supply constraints. Underlying this process
an optimization program, Supply planning Optimizer that
schedules replenishment orders or material shipping.

The typical input parameters for supply chain mode
include: number and location of suppliers, manufacture
and distribution centers, stocking level of each product
each site, manufacturing and replenishment policie
transportation policies, supply planning policies, and le
times. After each simulation run, numerous reports a
available. They include: Cycle time, serviceability, fill rate
stockout rate, shipments, and revenue, Inventory and W
Resource utilization and costs, Returns, incorrect ord
penalties, and late order penalties, etc. SCA allows user
evaluate various configurations and operational policies
supply chains on the basis of financial tradeoffs by t
financial reports. The objective of the financial reports is
come up with the minimum cost design that achieves t
desired customer serviceability and revenue targets. T
reports are generated by four components; activity bas
costing, inventory costing, transportation costing, an
inter-company financial transactions.

Activity based costing (ABC) (O’ Guin 1991) is the
process of assigning the cost of using resources to
activities that make use of them, and then assigning
cost of an activity to the cost objects for which the activity
was performed. The cost objects relevant to supply cha
include companies, orders, and products. The c
assignments are based on the time-weighted usage of
resources by activities and the activities by orders, whi
are monitored during the course of the simulation. Mo
detailed description of the four financial components c
be found in (Bagchi 1998).

Zeigler, Kim, and Buckley

A
 in

in

ply

y

de
ain

 t
ace
ing
sed

ic
nal

e
ese
or

e is
g
e

te

n

ny
nt
on

t

f
n

g
e

t
t
t
e

1.
n
s

S

4.2 Implementing Supply Chain Models
in DEVS Framework

A basic class hierarchy for DEVS with extension for SC
in an object-oriented framework implementation is given
Figure 3. The basic class is entity from which class devs is
derived. Devs is specialized into classes atomic and
coupled. The ActivityNodes class is derived from atomic to

Entity

Devs

A tom icbase Coupled

D igraphA tom ic

Resources Activity
Nodes

ABC

content

SC_content

Figure 3: Basic DEVS Class Hierarchy for Supply Cha
Models Implementation

provide a template for activity process models with sup
chain data definitions. Class content is derived from entity
to carry ports and their values, where the latter can be an
instance of entity or its derived classes. SC_content is a
derived class to represent supply chain entities (plan, or
batch, and forecast) that flow through a supply ch
network of activity nodes. Derived from Atomic, the
Resources class represents the agents that add value
entities or perform work at activities such as storage sp
transportation, material handling, and manufactur
resources. The ABC class is to support activity ba
costing functions.

Distribution::Distribution(char*name):ActivityNodes
{ add_input_ports (“Ord”, “Deliv”, “Trig”, “Plan”);
 add_output_ports (“Ship”, “Repl”);
 add_state_variables (…);
 add_processing_time_variables(…);
 add_input_variables(…); }
double Distribution::timeAdvance();
void Distribution::internalTransition();
void Distribution::externalTransition(messages *,
 double elapsed_time);
message * Distribution :: output_function()

Each activity process in SCA is translated as an Atomic
model by representing its state and mapping its dynam
into transition functions. Such functions as exter
transition, internal transition, output function, and tim
advance function are defined for the activity node. Th
functions are applied to the state of the model. P
1338
r,

o
,

s

t

information is specified to connect to other activity
processes. The destination for sending an output messag
determined by coupling methods that manipulate couplin
information. The above sample code describes th
distribution process represented in DEVS model templa
in DEVS-C++.

5 DEVS/CORBA EXECUTION ENVIRONMENT

Although the interfaces and approach required for a
implementation of DEVS in a CORBA environment are
clear, there remain many alternatives to be decided in a
implementation scenario. Figure 4 illustrates an up-fro
choice (shown as arrows) between a direct implementati

Parallel/ Distributed
Simulation Protocol

Network

DEVS

CORBA HLA/RTI

CORBA

Figure 4: Alternative Implementation Strategies

and one that exploits the existing DEVS/HLA environmen
(Zeigler et al. 1997)1. In the latter, one can replace the
existing HLA/RTI by a CORBA-based version with
minimum additional effort.

The functional and non-functional requirements o
the application domain should be brought in whe
considering this option. At least in its initial operating
capability, the SCA is a purely discrete event modelin
environment, and therefore is unlikely to require th
object reflection capabilities afforded by HLA (intended
for continuous system modeling). Moreover, at leas
initially, federations containing live components are no
contemplated for the SCA. Accordingly, the relevan
scaled back functionality of the HLA is presented in th
following table:

1 High Level Architecture (HLA) is a standard that will be
required for all defense distributed simulations after 200
HLA is implemented through a parallel and distributed ru
time infrastructure (RTI) that supports live as well a
simulated entities. DEVS/HLA is an HLA-compliant
environments that supports executing distributed DEV
models.

Distributed Supply Chain Simulation in a DEVS/CORBA Execution Environment

d
,
)
e
c
he
n
ic

s

s
p
t
e

te

s

y
s
r

ed

d
n

d
of

o

e
n

Table 1: Relevant HLA Functionality

Category Functionality

Create and delete federation
executions

Federation
Management Join and resign federation

executions

 Time
Management

Coordinate the advance of
 logical time

Data Distribution
Management

Supports efficient routing
of data

Since public domain and commercial CORBA-base
HLA/RTI implementations are becoming available
adopting the DEVS/HLA alternative for the (reduced
functionality is a real option. However, performanc
issues point in the other direction. In the direct approa
we can tune the implementation to the specifics of t
DEVS parallel simulation protocol and probably gai
efficiency over the mapping of DEVS to the more gener
HLA/RTI layer, which itself sits upon CORBA.2

A sketch of the direct implementation architecture is
given in Figure 5. The IDL interfaces for coordinator and
simulators, defined earlier, enable the two kinds of object

Network

Run
Time
Infrastructure

DEVS
Component

DEVSDEVS
ComponentComponent

ORB/BOA

SimulatorSimulatorSimulator

InterfaceInterfaceInterface

DEVS
Component

DEVSDEVS
ComponentComponent

SimulatorSimulatorSimulator

InterfaceInterfaceInterface

Internal coupling()

DEVS
Coupled
Modelt

DEVSDEVS
CoupledCoupled
ModeltModelt

CoordinatorCoordinatorCoordinator

InterfaceInterfaceInterface

External Input coupling()

External Output coupling()

components()

externalTrans()

outputFunc()

timeAdvance()

...

Figure 5: Direct Implementation Architecture

to collaborate to perform DEVS simulation. Simulator
collaborate with their assigned model components to sup
the information required for time management and da
exchange as mediated by the coordinator. Anoth
implementation choice arises here since the lat

2 Indeed, problems with the definition of the HLA
specification itself would be obviated (Zeigler 1999).
1339
h

ly
a
r
r

collaboration may, or may not, be mediated through
CORBA. In the former case, we treat model components a
arbitrary implementations of the toSimulator CORBA
interface. This allows including as components, not onl
models coded in DEVS-C++, but also of other language
(such as DEVSJAVA) and legacy codes as well (Zeigle
1998). In the latter case, we eliminate the extra CORBA
mediated pathways between simulators and their assign
components by implementing the toSimulator interface
directly in DEVS-C++. A similar choice arises in the case
of the coordinator and its interface to its assigned couple
model at the network level. The tradeoff here is betwee
flexibility and potential performance benefits. Note that the
implementation of the coupled class in DEVS-C++ is base
on closure under coupling and therefore permits the use
the basic model interface for coupled model components.

5.1 Exploiting CORBA Functionality and Services

CORBA-based implementation of DEVS opens the door t
exploiting the full range of CORBA functionality and
services, both existing and under development. Som
important benefits of CORBA features are delineated i
Table 2.

Table 2: CORBA Features and DEVS/CORBA Benefits
CORBA Feature Benefit for DEVS

Implementation
Language-neutral
Data Types

Marshalling and de-marshalling of
method arguments greatly simplify
message exchange among
components over the network
(contrast this with HLA that does
not support this level of data
transparency).

Local/remote
Transparency

Similarly, model components can
communicate in the same way
whether on a single processor or
over a network between processors
with different bit-level architectures

Dynamic Method
Invocation

Not needed for DEVS itself, since
DEVS has well defined and
therefore statically compilable
interfaces. However, it supports late
binding access to databases and
other business object is supported.

High Level
Binding

As already indicated, use of IDL
interfaces enables coupling of
components in arbitrary languages
and wrapping of legacy code.

Self Describing
Meta Data

CORBA offers access to
configuration meta data that may
be exploited for understanding
model behavior and monitoring
simulation progress.

Zeigler, Kim, and Buckley

it
-
f

re
B
g
e
e
n
e
e
S

tr
t

d

e
n

ly

d
e
o
ts
e
,
g
n

s

y
v
e
i

e

S
c

h

y.

:
.

,
n
s

t
n

nt
e

n
y
ly
T

In addition the open CORBA environment makes
possible to embed DEVS/CORBA in a larger network
centric environment. A wide and extensive variety o
additional services are defined in CORBA 2.0 that a
being incorporated by CORBA vendors in the OR
offerings. These include: Lifecycle Service, Namin
Service, Event Service, Persistent Object Servic
Concurrency Control Service, Transaction Servic
Security Service, Trader Service, Query Service, Licensi
Service, Properties Service, Time Synchronization Servic
Collection Management Service, and Startup Servic
These services may be of significant value when DEV
models and simulations are embedded into network-cen
collaboration with larger web and other business objec
Further, they offer a panoply of alternative
implementations that may enhance functionality an
performance of DEVS/CORBA itself.

6 CONCLUSIONS AND FUTURE WORK

We have discussed the prototype design of distribut
supply chain simulation based on a DEVS/CORBA ru
time infrastructure. By employing DEVS/CORBA
execution environment for parallel and distributed supp
chain simulation, one can expect to achieve the followin
benefits. First, DEVS provides a sound modeling an
simulation framework for advanced supply chain mod
development, which supports easier-to-achieve and m
powerful, future extensions. Secondly, DEVS suppor
parallel and distributed simulation to significantly improv
the speed and flexibility of model execution. Finally
CORBA middleware is an industry standard enablin
integration into a heterogeneous, distributed computi
environment that supports simulation on
(LAN/intranet/internet) networked platforms and
connectivity of simulation to other web and busines
enterprise objects. Many alternatives for implementatio
of DEVS in a CORBA environment are enabled b
CORBA features and services, only a few of which ha
been enumerated here. In future work, we will b
implementing prototype alternatives and evaluating the
performance.

REFERENCES

Bagchi, S. S.J. Buckley, M. Ettl, and G.Y. Lin Experienc
Using the IBM Supply Chain Simulator. Proceedings
of the 1998 Winter Simulation Conference, ed. D.J.
Medeiros, E.F. Watson, J.S. Carson, and M.
Manivannan. Institute of Electrical and Electroni
Engineers, Piscataway, New Jersey, 1998.

O'Guin, M., The Complete Guide to Activity Based
Costing, 1991, Prentice Hall.
1340
,
,
g
,
.

ic
s.

d

g

l
re

g

n

e

r

.

Orfali, R. and D. Harkey, Client/Server Programming with
Java and CORBA. 1997, New York, NY: Wiley
Computer Publishing.

Swegles, S., Business process modeling wit
SIMPROCESS. In Proceedings of the 1997 Winter
Simulation Conference, ed. S. Andradottir, K.J. Healy,
D.H. Withers, and B.L. Nelson. Institute of Electrical
and Electronic Engineers, Piscataway, New Jerse
1997.

Zeigler, B.P., et al., The DEVS Environment for High-
Performance Modeling and Simulation. IEEE C S &
E, 1997. 4(3): p. 61-71.

Zeigler, B.P., et al. Distributed/Real Time Simulation
Integrating Legacy and Modern Codes. in Int'l Conf
Env. Sys., Soc. Aut. Engr. 1998. Danvers, MA.

Zeigler, B.P. Implementation of the DEVS Formalism over
the HLA/RTI: Problems and Solutions. in SIW. 1999.
Orlando, FL. (See the HLA web site: www.hla.mil for
further information.)

Zeigler, B.P., T.G. Kim, and H. Praehofer, Theory of
Modeling and Simulation. 2 ed. 1999, New York, NY:
Academic Press.

AUTHOR BIOGRAPHIES

BERNARD P. ZEIGLER is Professor of Electrical and
Computer Engineering at the University of Arizona
Tucson. He has written several foundational books o
modeling and simulation theory and methodology. He i
currently leading a DARPA sponsored project on DEVS
framework for HLA and predictive contracts. He is a
Fellow of the IEEE.

DOOHWAN KIM is a post doctoral research scientist a
IBM Thomas J. Watson Research Center in Yorktow
Heights, NY. He received his Ph.D. degree from
University of Arizona in Electrical and Computer
Engineering. His research interests include discrete eve
modeling, distributed simulation, and high performanc
computing.

STEPHEN J. BUCKLEY is a Research Staff Member at
the IBM Thomas J. Watson Research Center in Yorktow
Heights, NY. He is currently the manager of the Suppl
Chain Analysis department, which developed the Supp
Chain Simulator. He received the Ph.D. degree from MI
in Computer Science. In addition to simulation, his
interests include algorithms, scheduling, and robotics.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

